acoular 23.6__py3-none-any.whl → 24.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- acoular/__init__.py +2 -2
- acoular/configuration.py +37 -1
- acoular/environments.py +15 -9
- acoular/fastFuncs.py +199 -472
- acoular/fbeamform.py +168 -109
- acoular/grids.py +33 -114
- acoular/sources.py +77 -3
- acoular/spectra.py +2 -2
- acoular/tbeamform.py +15 -8
- acoular/tests/reference_data/BeamformerBaseFalse1.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseFalse2.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseFalse3.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseFalse4.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseTrue1.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseTrue2.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseTrue3.npy +0 -0
- acoular/tests/reference_data/BeamformerBaseTrue4.npy +0 -0
- acoular/tests/reference_data/BeamformerCMFLassoLarsBIC.npy +0 -0
- acoular/tests/reference_data/BeamformerCMFNNLS.npy +0 -0
- acoular/tests/reference_data/BeamformerCleantSqTraj.npy +0 -0
- acoular/tests/reference_data/BeamformerCleantTraj.npy +0 -0
- acoular/tests/reference_data/BeamformerEigFalse1.npy +0 -0
- acoular/tests/reference_data/BeamformerEigFalse2.npy +0 -0
- acoular/tests/reference_data/BeamformerEigFalse3.npy +0 -0
- acoular/tests/reference_data/BeamformerEigFalse4.npy +0 -0
- acoular/tests/reference_data/BeamformerEigTrue1.npy +0 -0
- acoular/tests/reference_data/BeamformerEigTrue2.npy +0 -0
- acoular/tests/reference_data/BeamformerEigTrue3.npy +0 -0
- acoular/tests/reference_data/BeamformerEigTrue4.npy +0 -0
- acoular/tests/reference_data/BeamformerGIB.npy +0 -0
- acoular/tests/reference_data/BeamformerSODIX.npy +0 -0
- acoular/tests/reference_data/FiltFiltOctave__.npy +0 -0
- acoular/tests/reference_data/FiltFiltOctave_band_100_0_fraction_Thirdoctave_.npy +0 -0
- acoular/tests/reference_data/FiltFreqWeight_weight_A_.npy +0 -0
- acoular/tests/reference_data/FiltFreqWeight_weight_C_.npy +0 -0
- acoular/tests/reference_data/FiltFreqWeight_weight_Z_.npy +0 -0
- acoular/tests/reference_data/FiltOctave__.npy +0 -0
- acoular/tests/reference_data/FiltOctave_band_100_0_fraction_Thirdoctave_.npy +0 -0
- acoular/tests/reference_data/Filter__.npy +0 -0
- acoular/tests/reference_data/OctaveFilterBank__.npy +0 -0
- acoular/tests/reference_data/TimeAverage__.npy +0 -0
- acoular/tests/reference_data/TimeCumAverage__.npy +0 -0
- acoular/tests/reference_data/TimeExpAverage_weight_F_.npy +0 -0
- acoular/tests/reference_data/TimeExpAverage_weight_I_.npy +0 -0
- acoular/tests/reference_data/TimeExpAverage_weight_S_.npy +0 -0
- acoular/tests/reference_data/TimeInOut__.npy +0 -0
- acoular/tests/reference_data/TimePower__.npy +0 -0
- acoular/tests/reference_data/TimeReverse__.npy +0 -0
- acoular/tests/test_beamformer_results.py +39 -8
- acoular/tests/test_grid.py +92 -0
- acoular/tests/test_integrate.py +102 -0
- acoular/tests/test_tprocess.py +52 -0
- acoular/tests/test_traj_beamformer_results.py +2 -2
- acoular/tfastfuncs.py +24 -25
- acoular/tools.py +144 -2
- acoular/tprocess.py +91 -102
- acoular/version.py +2 -2
- acoular-24.3.dist-info/METADATA +181 -0
- {acoular-23.6.dist-info → acoular-24.3.dist-info}/RECORD +62 -25
- {acoular-23.6.dist-info → acoular-24.3.dist-info}/WHEEL +1 -1
- {acoular-23.6.dist-info → acoular-24.3.dist-info}/licenses/LICENSE +1 -1
- acoular/tests/reference_data/BeamformerCMF.npy +0 -0
- acoular-23.6.dist-info/METADATA +0 -82
- {acoular-23.6.dist-info → acoular-24.3.dist-info}/licenses/AUTHORS.rst +0 -0
acoular/tprocess.py
CHANGED
|
@@ -40,7 +40,7 @@
|
|
|
40
40
|
from numpy import array, empty, empty_like, pi, sin, sqrt, zeros, newaxis, unique, \
|
|
41
41
|
int16, nan, concatenate, sum, float64, identity, argsort, interp, arange, append, \
|
|
42
42
|
linspace, flatnonzero, argmin, argmax, delete, mean, inf, asarray, stack, sinc, exp, \
|
|
43
|
-
polymul, arange, cumsum, ceil, split
|
|
43
|
+
polymul, arange, cumsum, ceil, split, array_equal
|
|
44
44
|
|
|
45
45
|
from numpy.linalg import norm
|
|
46
46
|
from numpy.matlib import repmat
|
|
@@ -59,7 +59,7 @@ import numba as nb
|
|
|
59
59
|
from datetime import datetime
|
|
60
60
|
from os import path
|
|
61
61
|
import wave
|
|
62
|
-
from scipy.signal import butter,
|
|
62
|
+
from scipy.signal import butter, filtfilt, bilinear, tf2sos, sosfilt, sosfiltfilt
|
|
63
63
|
from warnings import warn
|
|
64
64
|
from collections import deque
|
|
65
65
|
from inspect import currentframe
|
|
@@ -957,7 +957,7 @@ class SpatialInterpolator(TimeInOut):
|
|
|
957
957
|
# Interpolation for 1D Arrays
|
|
958
958
|
if self.array_dimension =='1D' or self.array_dimension =='ring':
|
|
959
959
|
#for rotation add phidelay
|
|
960
|
-
if not phiDelay
|
|
960
|
+
if not array_equal(phiDelay,[]):
|
|
961
961
|
xInterpHelp = repmat(virtNewCoord[0, :], nTime, 1) + repmat(phiDelay, virtNewCoord.shape[1], 1).T
|
|
962
962
|
xInterp = ((xInterpHelp + pi ) % (2 * pi)) - pi # shifting phi cootrdinate into feasible area [-pi, pi]
|
|
963
963
|
#if no rotation given
|
|
@@ -1001,7 +1001,7 @@ class SpatialInterpolator(TimeInOut):
|
|
|
1001
1001
|
# Interpolation for arbitrary 2D Arrays
|
|
1002
1002
|
elif self.array_dimension =='2D':
|
|
1003
1003
|
#check rotation
|
|
1004
|
-
if not phiDelay
|
|
1004
|
+
if not array_equal(phiDelay,[]):
|
|
1005
1005
|
xInterpHelp = repmat(virtNewCoord[0, :], nTime, 1) + repmat(phiDelay, virtNewCoord.shape[1], 1).T
|
|
1006
1006
|
xInterp = ((xInterpHelp + pi ) % (2 * pi)) - pi #shifting phi cootrdinate into feasible area [-pi, pi]
|
|
1007
1007
|
else:
|
|
@@ -1081,7 +1081,7 @@ class SpatialInterpolator(TimeInOut):
|
|
|
1081
1081
|
# Interpolation for arbitrary 3D Arrays
|
|
1082
1082
|
elif self.array_dimension =='3D':
|
|
1083
1083
|
#check rotation
|
|
1084
|
-
if not phiDelay
|
|
1084
|
+
if not array_equal(phiDelay,[]):
|
|
1085
1085
|
xInterpHelp = repmat(virtNewCoord[0, :], nTime, 1) + repmat(phiDelay, virtNewCoord.shape[1], 1).T
|
|
1086
1086
|
xInterp = ((xInterpHelp + pi ) % (2 * pi)) - pi #shifting phi cootrdinate into feasible area [-pi, pi]
|
|
1087
1087
|
else:
|
|
@@ -1294,7 +1294,10 @@ class Mixer( TimeInOut ):
|
|
|
1294
1294
|
for temp in self.source.result(num):
|
|
1295
1295
|
sh = temp.shape[0]
|
|
1296
1296
|
for g in gens:
|
|
1297
|
-
|
|
1297
|
+
try:
|
|
1298
|
+
temp1 = next(g)
|
|
1299
|
+
except StopIteration:
|
|
1300
|
+
return
|
|
1298
1301
|
if temp.shape[0] > temp1.shape[0]:
|
|
1299
1302
|
temp = temp[:temp1.shape[0]]
|
|
1300
1303
|
temp += temp1[:temp.shape[0]]
|
|
@@ -1455,10 +1458,10 @@ class Filter(TimeInOut):
|
|
|
1455
1458
|
Should not be instanciated by itself
|
|
1456
1459
|
"""
|
|
1457
1460
|
#: Filter coefficients
|
|
1458
|
-
|
|
1461
|
+
sos = Property()
|
|
1459
1462
|
|
|
1460
|
-
def
|
|
1461
|
-
return [1],[1]
|
|
1463
|
+
def _get_sos( self ):
|
|
1464
|
+
return tf2sos([1],[1])
|
|
1462
1465
|
|
|
1463
1466
|
def result(self, num):
|
|
1464
1467
|
"""
|
|
@@ -1477,20 +1480,17 @@ class Filter(TimeInOut):
|
|
|
1477
1480
|
Delivers the bandpass filtered output of source.
|
|
1478
1481
|
The last block may be shorter than num.
|
|
1479
1482
|
"""
|
|
1480
|
-
|
|
1481
|
-
zi = zeros((
|
|
1483
|
+
sos = self.sos
|
|
1484
|
+
zi = zeros((sos.shape[0], 2, self.source.numchannels))
|
|
1482
1485
|
for block in self.source.result(num):
|
|
1483
|
-
|
|
1484
|
-
# to self.
|
|
1485
|
-
block, zi =
|
|
1486
|
+
sos = self.sos # this line is useful in case of changes
|
|
1487
|
+
# to self.sos during generator lifetime
|
|
1488
|
+
block, zi = sosfilt(sos, block, axis=0, zi=zi)
|
|
1486
1489
|
yield block
|
|
1487
1490
|
|
|
1488
|
-
class
|
|
1491
|
+
class FiltOctave( Filter ):
|
|
1489
1492
|
"""
|
|
1490
|
-
Octave or third-octave filter
|
|
1491
|
-
|
|
1492
|
-
This filter can be applied on time signals.
|
|
1493
|
-
It requires large amounts of memory!
|
|
1493
|
+
Octave or third-octave filter (causal, non-zero phase delay).
|
|
1494
1494
|
"""
|
|
1495
1495
|
#: Band center frequency; defaults to 1000.
|
|
1496
1496
|
band = Float(1000.0,
|
|
@@ -1499,33 +1499,28 @@ class FiltFiltOctave( TimeInOut ):
|
|
|
1499
1499
|
#: Octave fraction: 'Octave' or 'Third octave'; defaults to 'Octave'.
|
|
1500
1500
|
fraction = Trait('Octave', {'Octave':1, 'Third octave':3},
|
|
1501
1501
|
desc = "fraction of octave")
|
|
1502
|
+
|
|
1503
|
+
#: Filter order
|
|
1504
|
+
order = Int(3, desc = "IIR filter order")
|
|
1502
1505
|
|
|
1506
|
+
sos = Property( depends_on = ['band', 'fraction', 'source.digest', 'order'])
|
|
1507
|
+
|
|
1503
1508
|
# internal identifier
|
|
1504
1509
|
digest = Property( depends_on = ['source.digest', '__class__', \
|
|
1505
|
-
'band', 'fraction'])
|
|
1510
|
+
'band', 'fraction','order'])
|
|
1506
1511
|
|
|
1507
1512
|
@cached_property
|
|
1508
1513
|
def _get_digest( self ):
|
|
1509
1514
|
return digest(self)
|
|
1510
1515
|
|
|
1511
|
-
|
|
1512
|
-
|
|
1513
|
-
Internal Butterworth filter design routine.
|
|
1514
|
-
|
|
1515
|
-
Parameters
|
|
1516
|
-
----------
|
|
1517
|
-
order : integer
|
|
1518
|
-
The order of the filter.
|
|
1519
|
-
|
|
1520
|
-
Returns
|
|
1521
|
-
-------
|
|
1522
|
-
b, a : ndarray, ndarray
|
|
1523
|
-
Filter coefficients.
|
|
1524
|
-
"""
|
|
1516
|
+
@cached_property
|
|
1517
|
+
def _get_sos( self ):
|
|
1525
1518
|
# filter design
|
|
1526
1519
|
fs = self.sample_freq
|
|
1527
|
-
# adjust filter edge frequencies
|
|
1528
|
-
|
|
1520
|
+
# adjust filter edge frequencies for correct power bandwidth (see ANSI 1.11 1987
|
|
1521
|
+
# and Kalb,J.T.: "A thirty channel real time audio analyzer and its applications",
|
|
1522
|
+
# PhD Thesis: Georgia Inst. of Techn., 1975
|
|
1523
|
+
beta = pi/(2*self.order)
|
|
1529
1524
|
alpha = pow(2.0, 1.0/(2.0*self.fraction_))
|
|
1530
1525
|
beta = 2 * beta / sin(beta) / (alpha-1/alpha)
|
|
1531
1526
|
alpha = (1+sqrt(1+beta*beta))/beta
|
|
@@ -1534,9 +1529,44 @@ class FiltFiltOctave( TimeInOut ):
|
|
|
1534
1529
|
raise ValueError("band frequency too high:%f,%f" % (self.band, fs))
|
|
1535
1530
|
om1 = fr/alpha
|
|
1536
1531
|
om2 = fr*alpha
|
|
1537
|
-
|
|
1538
|
-
|
|
1539
|
-
|
|
1532
|
+
return butter(self.order, [om1, om2], 'bandpass', output = 'sos')
|
|
1533
|
+
|
|
1534
|
+
class FiltFiltOctave( FiltOctave ):
|
|
1535
|
+
"""
|
|
1536
|
+
Octave or third-octave filter with zero phase delay.
|
|
1537
|
+
|
|
1538
|
+
This filter can be applied on time signals.
|
|
1539
|
+
It requires large amounts of memory!
|
|
1540
|
+
"""
|
|
1541
|
+
#: Filter order (applied for forward filter and backward filter)
|
|
1542
|
+
order = Int(2, desc = "IIR filter half order")
|
|
1543
|
+
|
|
1544
|
+
# internal identifier
|
|
1545
|
+
digest = Property( depends_on = ['source.digest', '__class__', \
|
|
1546
|
+
'band', 'fraction','order'])
|
|
1547
|
+
|
|
1548
|
+
@cached_property
|
|
1549
|
+
def _get_digest( self ):
|
|
1550
|
+
return digest(self)
|
|
1551
|
+
|
|
1552
|
+
@cached_property
|
|
1553
|
+
def _get_sos( self ):
|
|
1554
|
+
# filter design
|
|
1555
|
+
fs = self.sample_freq
|
|
1556
|
+
# adjust filter edge frequencies for correct power bandwidth (see FiltOctave)
|
|
1557
|
+
beta = pi/(2*self.order)
|
|
1558
|
+
alpha = pow(2.0, 1.0/(2.0*self.fraction_))
|
|
1559
|
+
beta = 2 * beta / sin(beta) / (alpha-1/alpha)
|
|
1560
|
+
alpha = (1+sqrt(1+beta*beta))/beta
|
|
1561
|
+
# additional bandwidth correction for double-pass
|
|
1562
|
+
alpha = alpha * {6:1.01,5:1.012,4:1.016,3:1.022,2:1.036,1:1.083}.get(self.order,1.0)**(3/self.fraction_)
|
|
1563
|
+
fr = 2*self.band/fs
|
|
1564
|
+
if fr > 1/sqrt(2):
|
|
1565
|
+
raise ValueError("band frequency too high:%f,%f" % (self.band, fs))
|
|
1566
|
+
om1 = fr/alpha
|
|
1567
|
+
om2 = fr*alpha
|
|
1568
|
+
return butter(self.order, [om1, om2], 'bandpass', output = 'sos')
|
|
1569
|
+
|
|
1540
1570
|
def result(self, num):
|
|
1541
1571
|
"""
|
|
1542
1572
|
Python generator that yields the output block-wise.
|
|
@@ -1554,63 +1584,22 @@ class FiltFiltOctave( TimeInOut ):
|
|
|
1554
1584
|
Delivers the zero-phase bandpass filtered output of source.
|
|
1555
1585
|
The last block may be shorter than num.
|
|
1556
1586
|
"""
|
|
1557
|
-
|
|
1587
|
+
sos = self.sos
|
|
1558
1588
|
data = empty((self.source.numsamples, self.source.numchannels))
|
|
1559
1589
|
j = 0
|
|
1560
1590
|
for block in self.source.result(num):
|
|
1561
1591
|
ns, nc = block.shape
|
|
1562
1592
|
data[j:j+ns] = block
|
|
1563
1593
|
j += ns
|
|
1594
|
+
# filter one channel at a time to save memory
|
|
1564
1595
|
for j in range(self.source.numchannels):
|
|
1565
|
-
data[:, j] =
|
|
1596
|
+
data[:, j] = sosfiltfilt(sos, data[:, j])
|
|
1566
1597
|
j = 0
|
|
1567
1598
|
ns = data.shape[0]
|
|
1568
1599
|
while j < ns:
|
|
1569
1600
|
yield data[j:j+num]
|
|
1570
1601
|
j += num
|
|
1571
1602
|
|
|
1572
|
-
|
|
1573
|
-
class FiltOctave( Filter ):
|
|
1574
|
-
"""
|
|
1575
|
-
Octave or third-octave filter (causal, non-zero phase delay).
|
|
1576
|
-
"""
|
|
1577
|
-
#: Band center frequency; defaults to 1000.
|
|
1578
|
-
band = Float(1000.0,
|
|
1579
|
-
desc = "band center frequency")
|
|
1580
|
-
|
|
1581
|
-
#: Octave fraction: 'Octave' or 'Third octave'; defaults to 'Octave'.
|
|
1582
|
-
fraction = Trait('Octave', {'Octave':1, 'Third octave':3},
|
|
1583
|
-
desc = "fraction of octave")
|
|
1584
|
-
|
|
1585
|
-
#: Filter order
|
|
1586
|
-
order = Int(3, desc = "IIR filter order")
|
|
1587
|
-
|
|
1588
|
-
ba = Property( depends_on = ['band', 'fraction', 'source.digest', 'order'])
|
|
1589
|
-
|
|
1590
|
-
# internal identifier
|
|
1591
|
-
digest = Property( depends_on = ['source.digest', '__class__', \
|
|
1592
|
-
'band', 'fraction','order'])
|
|
1593
|
-
|
|
1594
|
-
@cached_property
|
|
1595
|
-
def _get_digest( self ):
|
|
1596
|
-
return digest(self)
|
|
1597
|
-
|
|
1598
|
-
@cached_property
|
|
1599
|
-
def _get_ba( self ):
|
|
1600
|
-
# filter design
|
|
1601
|
-
fs = self.sample_freq
|
|
1602
|
-
# adjust filter edge frequencies
|
|
1603
|
-
beta = pi/(4*self.order)
|
|
1604
|
-
alpha = pow(2.0, 1.0/(2.0*self.fraction_))
|
|
1605
|
-
beta = 2 * beta / sin(beta) / (alpha-1/alpha)
|
|
1606
|
-
alpha = (1+sqrt(1+beta*beta))/beta
|
|
1607
|
-
fr = 2*self.band/fs
|
|
1608
|
-
if fr > 1/sqrt(2):
|
|
1609
|
-
raise ValueError("band frequency too high:%f,%f" % (self.band, fs))
|
|
1610
|
-
om1 = fr/alpha
|
|
1611
|
-
om2 = fr*alpha
|
|
1612
|
-
return butter(self.order, [om1, om2], 'bandpass')
|
|
1613
|
-
|
|
1614
1603
|
class TimeExpAverage(Filter):
|
|
1615
1604
|
"""
|
|
1616
1605
|
Computes exponential averaging according to IEC 61672-1
|
|
@@ -1622,7 +1611,7 @@ class TimeExpAverage(Filter):
|
|
|
1622
1611
|
weight = Trait('F', {'F':0.125, 'S':1.0, 'I':0.035},
|
|
1623
1612
|
desc = "time weighting")
|
|
1624
1613
|
|
|
1625
|
-
|
|
1614
|
+
sos = Property( depends_on = ['weight', 'source.digest'])
|
|
1626
1615
|
|
|
1627
1616
|
# internal identifier
|
|
1628
1617
|
digest = Property( depends_on = ['source.digest', '__class__', \
|
|
@@ -1633,11 +1622,11 @@ class TimeExpAverage(Filter):
|
|
|
1633
1622
|
return digest(self)
|
|
1634
1623
|
|
|
1635
1624
|
@cached_property
|
|
1636
|
-
def
|
|
1625
|
+
def _get_sos( self ):
|
|
1637
1626
|
alpha = 1-exp(-1/self.weight_/self.sample_freq)
|
|
1638
1627
|
a = [1, alpha-1]
|
|
1639
1628
|
b = [alpha]
|
|
1640
|
-
return b,a
|
|
1629
|
+
return tf2sos(b,a)
|
|
1641
1630
|
|
|
1642
1631
|
class FiltFreqWeight( Filter ):
|
|
1643
1632
|
"""
|
|
@@ -1646,17 +1635,18 @@ class FiltFreqWeight( Filter ):
|
|
|
1646
1635
|
#: weighting characteristics
|
|
1647
1636
|
weight = Trait('A',('A','C','Z'), desc="frequency weighting")
|
|
1648
1637
|
|
|
1649
|
-
|
|
1638
|
+
sos = Property( depends_on = ['weight', 'source.digest'])
|
|
1650
1639
|
|
|
1651
1640
|
# internal identifier
|
|
1652
|
-
digest = Property( depends_on = ['source.digest', '__class__'
|
|
1641
|
+
digest = Property( depends_on = ['source.digest', '__class__', \
|
|
1642
|
+
'weight'])
|
|
1653
1643
|
|
|
1654
1644
|
@cached_property
|
|
1655
1645
|
def _get_digest( self ):
|
|
1656
1646
|
return digest(self)
|
|
1657
1647
|
|
|
1658
1648
|
@cached_property
|
|
1659
|
-
def
|
|
1649
|
+
def _get_sos( self ):
|
|
1660
1650
|
# s domain coefficients
|
|
1661
1651
|
f1 = 20.598997
|
|
1662
1652
|
f2 = 107.65265
|
|
@@ -1677,7 +1667,7 @@ class FiltFreqWeight( Filter ):
|
|
|
1677
1667
|
b = zeros(7)
|
|
1678
1668
|
b[0] = 1.0
|
|
1679
1669
|
a = b # 6th order flat response
|
|
1680
|
-
return b,a
|
|
1670
|
+
return tf2sos(b,a)
|
|
1681
1671
|
|
|
1682
1672
|
class FilterBank(TimeInOut):
|
|
1683
1673
|
"""
|
|
@@ -1688,7 +1678,7 @@ class FilterBank(TimeInOut):
|
|
|
1688
1678
|
"""
|
|
1689
1679
|
|
|
1690
1680
|
#: List of filter coefficients for all filters
|
|
1691
|
-
|
|
1681
|
+
sos = Property()
|
|
1692
1682
|
|
|
1693
1683
|
#: List of labels for bands
|
|
1694
1684
|
bands = Property()
|
|
@@ -1699,8 +1689,8 @@ class FilterBank(TimeInOut):
|
|
|
1699
1689
|
#: Number of bands
|
|
1700
1690
|
numchannels = Property()
|
|
1701
1691
|
|
|
1702
|
-
def
|
|
1703
|
-
return [[1]
|
|
1692
|
+
def _get_sos( self ):
|
|
1693
|
+
return [tf2sos([1],[1])]
|
|
1704
1694
|
|
|
1705
1695
|
def _get_bands( self ):
|
|
1706
1696
|
return ['']
|
|
@@ -1729,13 +1719,13 @@ class FilterBank(TimeInOut):
|
|
|
1729
1719
|
"""
|
|
1730
1720
|
numbands = self.numbands
|
|
1731
1721
|
snumch = self.source.numchannels
|
|
1732
|
-
|
|
1733
|
-
zi = [zeros( (
|
|
1722
|
+
sos = self.sos
|
|
1723
|
+
zi = [zeros( (sos[0].shape[0],2, snumch)) for _ in range(numbands)]
|
|
1734
1724
|
res = zeros((num,self.numchannels),dtype='float')
|
|
1735
1725
|
for block in self.source.result(num):
|
|
1736
1726
|
bl = block.shape[0]
|
|
1737
1727
|
for i in range(numbands):
|
|
1738
|
-
res[:,i*snumch:(i+1)*snumch], zi[i] =
|
|
1728
|
+
res[:,i*snumch:(i+1)*snumch], zi[i] = sosfilt(sos[i], block, axis=0, zi=zi[i])
|
|
1739
1729
|
yield res
|
|
1740
1730
|
|
|
1741
1731
|
class OctaveFilterBank(FilterBank):
|
|
@@ -1780,15 +1770,14 @@ class OctaveFilterBank(FilterBank):
|
|
|
1780
1770
|
return len(self.bands)
|
|
1781
1771
|
|
|
1782
1772
|
@cached_property
|
|
1783
|
-
def
|
|
1773
|
+
def _get_sos( self ):
|
|
1784
1774
|
of = FiltOctave(source=self.source, fraction=self.fraction)
|
|
1785
|
-
|
|
1775
|
+
sos = []
|
|
1786
1776
|
for i in range(self.lband,self.hband,4-self.fraction_):
|
|
1787
1777
|
of.band = 10**(i/10)
|
|
1788
|
-
|
|
1789
|
-
|
|
1790
|
-
|
|
1791
|
-
return b, a
|
|
1778
|
+
sos_ = of.sos
|
|
1779
|
+
sos.append(sos_)
|
|
1780
|
+
return sos
|
|
1792
1781
|
|
|
1793
1782
|
class TimeCache( TimeInOut ):
|
|
1794
1783
|
"""
|
acoular/version.py
CHANGED
|
@@ -0,0 +1,181 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: acoular
|
|
3
|
+
Version: 24.3
|
|
4
|
+
Summary: Python library for acoustic beamforming
|
|
5
|
+
Project-URL: homepage, https://acoular.org
|
|
6
|
+
Project-URL: documentation, https://acoular.org
|
|
7
|
+
Project-URL: repository, https://github.com/acoular/acoular
|
|
8
|
+
Author-email: Acoular Development Team <info@acoular.org>
|
|
9
|
+
Maintainer-email: Adam Kujawski <adam.kujawski@tu-berlin.de>, Art Pelling <a.pelling@tu-berlin.de>, Ennes Sarradj <ennes.sarradj@tu-berlin.de>, Gert Herold <gert.herold@tu-berlin.de>, Mikolaj Czuchaj <mikolaj.czuchaj@tu-berlin.de>, Simon Jekosch <s.jekosch@tu-berlin.de>
|
|
10
|
+
License: Copyright (c) Acoular Development Team.
|
|
11
|
+
All rights reserved.
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
Redistribution and use in source and binary forms, with or without
|
|
15
|
+
modification, are permitted provided that the following conditions are met:
|
|
16
|
+
|
|
17
|
+
a. Redistributions of source code must retain the above copyright notice,
|
|
18
|
+
this list of conditions and the following disclaimer.
|
|
19
|
+
b. Redistributions in binary form must reproduce the above copyright
|
|
20
|
+
notice, this list of conditions and the following disclaimer in the
|
|
21
|
+
documentation and/or other materials provided with the distribution.
|
|
22
|
+
c. Neither the name of the acoular developers nor the names of
|
|
23
|
+
its contributors may be used to endorse or promote products
|
|
24
|
+
derived from this software without specific prior written
|
|
25
|
+
permission.
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
29
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
30
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
31
|
+
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
|
32
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
33
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
34
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
35
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
36
|
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
37
|
+
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
38
|
+
DAMAGE.
|
|
39
|
+
License-File: AUTHORS.rst
|
|
40
|
+
License-File: LICENSE
|
|
41
|
+
Keywords: acoustics,beamforming,microphone array
|
|
42
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
43
|
+
Classifier: Intended Audience :: Education
|
|
44
|
+
Classifier: Intended Audience :: Science/Research
|
|
45
|
+
Classifier: License :: OSI Approved :: BSD License
|
|
46
|
+
Classifier: Programming Language :: Python :: 3.7
|
|
47
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
48
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
49
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
50
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
51
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
52
|
+
Requires-Python: <=11,>=3.7
|
|
53
|
+
Requires-Dist: numba
|
|
54
|
+
Requires-Dist: numpy
|
|
55
|
+
Requires-Dist: scikit-learn
|
|
56
|
+
Requires-Dist: scipy>=1.1.0
|
|
57
|
+
Requires-Dist: tables>=3.4.4
|
|
58
|
+
Requires-Dist: traits>=6.0
|
|
59
|
+
Provides-Extra: dev
|
|
60
|
+
Requires-Dist: graphviz; extra == 'dev'
|
|
61
|
+
Requires-Dist: ipython; extra == 'dev'
|
|
62
|
+
Requires-Dist: matplotlib; extra == 'dev'
|
|
63
|
+
Requires-Dist: nox; extra == 'dev'
|
|
64
|
+
Requires-Dist: numpydoc; extra == 'dev'
|
|
65
|
+
Requires-Dist: pickleshare; extra == 'dev'
|
|
66
|
+
Requires-Dist: sounddevice; extra == 'dev'
|
|
67
|
+
Requires-Dist: sphinx; extra == 'dev'
|
|
68
|
+
Provides-Extra: full
|
|
69
|
+
Requires-Dist: matplotlib; extra == 'full'
|
|
70
|
+
Requires-Dist: pylops; extra == 'full'
|
|
71
|
+
Requires-Dist: sounddevice; extra == 'full'
|
|
72
|
+
Description-Content-Type: text/markdown
|
|
73
|
+
|
|
74
|
+

|
|
75
|
+
|
|
76
|
+
[](https://pypi.org/project/acoular)
|
|
77
|
+
[](https://pypi.org/project/acoular)
|
|
78
|
+
[](https://github.com/acoular/acoular/actions/workflows/python-package.yml)
|
|
79
|
+
|
|
80
|
+
# Acoular
|
|
81
|
+
Acoular is a Python module for acoustic beamforming that is distributed under the new BSD license.
|
|
82
|
+
|
|
83
|
+
It is aimed at applications in acoustic testing. Multichannel data recorded by a microphone array can be processed and analyzed in order to generate mappings of sound source distributions. The maps (acoustic photographs) can then be used to locate sources of interest and to characterize them using their spectra.
|
|
84
|
+
|
|
85
|
+
# Features
|
|
86
|
+
- frequency domain beamforming algorithms: delay & sum, Capon (adaptive), MUSIC, functional beamforming, eigenvalue beamforming
|
|
87
|
+
- frequency domain deconvolution algorithms: DAMAS, DAMAS+, Clean, CleanSC, orthogonal deconvolution
|
|
88
|
+
- frequency domain inverse methods: CMF (covariance matrix fitting), general inverse beamforming, SODIX
|
|
89
|
+
- time domain methods: delay & sum beamforming, CleanT deconvolution
|
|
90
|
+
- time domain methods applicable for moving source with arbitrary trajectory (linear, circular, arbitrarily 3D curved),
|
|
91
|
+
- frequency domain methods for rotating sources via virtual array rotation for arbitrary arrays and with different interpolation techniques
|
|
92
|
+
- 1D, 2D and 3D mapping grids for all methods
|
|
93
|
+
- gridless option for orthogonal deconvolution
|
|
94
|
+
- four different built-in steering vector formulations
|
|
95
|
+
- arbitrary stationary background flow can be considered for all methods
|
|
96
|
+
- efficient cross spectral matrix computation
|
|
97
|
+
- flexible modular time domain processing: n-th octave band filters, fast, slow, and impulse weighting, A-, C-, and Z-weighting, filter bank, zero delay filters
|
|
98
|
+
- time domain simulation of array microphone signals from fixed and arbitrarily moving sources in arbitrary flow
|
|
99
|
+
- fully object-oriented interface
|
|
100
|
+
- lazy evaluation: while processing blocks are set up at any time, (expensive) computations are only performed when needed
|
|
101
|
+
- intelligent and transparent caching: computed results are automatically saved and loaded on the next run to avoid unnecessary re-computation
|
|
102
|
+
- parallel (multithreaded) implementation with Numba for most algorithms
|
|
103
|
+
- easily extendable with new algorithms
|
|
104
|
+
|
|
105
|
+
# License
|
|
106
|
+
Acoular is licensed under the BSD 3-clause. See [LICENSE](LICENSE)
|
|
107
|
+
|
|
108
|
+
# Citing
|
|
109
|
+
|
|
110
|
+
If you use Acoular for academic work, please consider citing our
|
|
111
|
+
[publication](https://doi.org/10.1016/j.apacoust.2016.09.015):
|
|
112
|
+
|
|
113
|
+
Ennes Sarradj, Gert Herold,
|
|
114
|
+
A Python framework for microphone array data processing,
|
|
115
|
+
Applied Acoustics, Volume 116, 2017, Pages 50-58
|
|
116
|
+
|
|
117
|
+
# Dependencies
|
|
118
|
+
Acoular runs under Linux, Windows and MacOS and needs Numpy, Scipy, Traits, scikit-learn, pytables, Numba packages available.
|
|
119
|
+
Matplotlib is needed for some of the examples.
|
|
120
|
+
|
|
121
|
+
If you want to use input from a soundcard hardware, you will also need to install the [sounddevice](https://python-sounddevice.readthedocs.io/en/0.3.12/installation.html) package. Some solvers for the CMF method need [Pylops](https://pylops.readthedocs.io/en/stable/installation.html).
|
|
122
|
+
|
|
123
|
+
# Installation
|
|
124
|
+
|
|
125
|
+
Acoular can be installed via [conda](https://docs.conda.io/en/latest/), which is also part of the [Anaconda Python distribution](https://www.anaconda.com/). It is recommended to install into a dedicated [conda environment](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html). After activating this environment, run
|
|
126
|
+
|
|
127
|
+
conda install -c acoular acoular
|
|
128
|
+
|
|
129
|
+
This will install Acoular in your Anaconda Python enviroment and make the Acoular library available from Python. In addition, this will install all dependencies (those other packages mentioned above) if they are not already present on your system.
|
|
130
|
+
|
|
131
|
+
A second option is to install Acoular via [pip](https://pip.pypa.io/en/stable/). It is recommended to use a dedicated [virtual environment](https://virtualenv.pypa.io/en/latest/) and then run
|
|
132
|
+
|
|
133
|
+
pip install acoular
|
|
134
|
+
|
|
135
|
+
For more detailed install instructions see the [documentation](http://acoular.org/install/index.html).
|
|
136
|
+
|
|
137
|
+
# Documentation and help
|
|
138
|
+
Documentation is available [here](http://acoular.org) with a
|
|
139
|
+
[getting started](http://acoular.org/get_started/index.html) section and
|
|
140
|
+
[examples](http://acoular.org/examples/index.html).
|
|
141
|
+
|
|
142
|
+
The Acoular [blog](https://acoular.github.io/blog/) contains some tutorials.
|
|
143
|
+
|
|
144
|
+
Problems, suggestions and success using Acoular may be reported via the [acoular-users](https://groups.google.com/forum/#!forum/acoular-users) discussion forum.
|
|
145
|
+
|
|
146
|
+
# Example
|
|
147
|
+
This reads data from 64 microphone channels and computes a beamforming map for the 8kHz third octave band:
|
|
148
|
+
|
|
149
|
+
```python
|
|
150
|
+
from os import path
|
|
151
|
+
import acoular
|
|
152
|
+
from matplotlib.pylab import figure, plot, axis, imshow, colorbar, show
|
|
153
|
+
|
|
154
|
+
# this file contains the microphone coordinates
|
|
155
|
+
micgeofile = path.join(path.split(acoular.__file__)[0],'xml','array_64.xml')
|
|
156
|
+
# set up object managing the microphone coordinates
|
|
157
|
+
mg = acoular.MicGeom( from_file=micgeofile )
|
|
158
|
+
# set up object managing the microphone array data (usually from measurement)
|
|
159
|
+
ts = acoular.TimeSamples( name='three_sources.h5' )
|
|
160
|
+
# set up object managing the cross spectral matrix computation
|
|
161
|
+
ps = acoular.PowerSpectra( time_data=ts, block_size=128, window='Hanning' )
|
|
162
|
+
# set up object managing the mapping grid
|
|
163
|
+
rg = acoular.RectGrid( x_min=-0.2, x_max=0.2, y_min=-0.2, y_max=0.2, z=0.3, \
|
|
164
|
+
increment=0.01 )
|
|
165
|
+
# set up steering vector, implicitely contains also the standard quiescent
|
|
166
|
+
# environment with standard speed of sound
|
|
167
|
+
st = acoular.SteeringVector( grid = rg, mics=mg )
|
|
168
|
+
# set up the object managing the delay & sum beamformer
|
|
169
|
+
bb = acoular.BeamformerBase( freq_data=ps, steer=st )
|
|
170
|
+
# request the result in the 8kHz third octave band from approriate FFT-Lines
|
|
171
|
+
# this starts the actual computation (data intake, FFT, Welch CSM, beamforming)
|
|
172
|
+
pm = bb.synthetic( 8000, 3 )
|
|
173
|
+
# compute the sound pressure level
|
|
174
|
+
Lm = acoular.L_p( pm )
|
|
175
|
+
# plot the map
|
|
176
|
+
imshow( Lm.T, origin='lower', vmin=Lm.max()-10, extent=rg.extend(), \
|
|
177
|
+
interpolation='bicubic')
|
|
178
|
+
colorbar()
|
|
179
|
+
```
|
|
180
|
+
|
|
181
|
+

|