abstractflow 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,111 @@
1
+ """
2
+ AbstractFlow - Diagram-based AI workflow generation.
3
+
4
+ Built on top of AbstractCore for unified LLM provider access.
5
+ """
6
+
7
+ __version__ = "0.1.0"
8
+ __author__ = "AbstractFlow Team"
9
+ __email__ = "contact@abstractflow.ai"
10
+ __license__ = "MIT"
11
+
12
+ # Core imports that will be available when the package is fully implemented
13
+ __all__ = [
14
+ "__version__",
15
+ "WorkflowBuilder",
16
+ "Node",
17
+ "LLMNode",
18
+ "TextNode",
19
+ "ConditionalNode",
20
+ "TransformNode",
21
+ ]
22
+
23
+ # Placeholder implementations - these will be replaced with actual implementations
24
+ class WorkflowBuilder:
25
+ """
26
+ Visual workflow builder for creating AI-powered diagrams.
27
+
28
+ This is a placeholder implementation. The full version will provide:
29
+ - Drag-and-drop workflow creation
30
+ - Real-time execution monitoring
31
+ - Multi-provider LLM support via AbstractCore
32
+ - Export to various formats
33
+ """
34
+
35
+ def __init__(self):
36
+ """Initialize a new workflow builder."""
37
+ raise NotImplementedError(
38
+ "AbstractFlow is currently in development. "
39
+ "This placeholder package reserves the PyPI name. "
40
+ "Follow https://github.com/lpalbou/AbstractFlow for updates."
41
+ )
42
+
43
+
44
+ class Node:
45
+ """Base class for all workflow nodes."""
46
+
47
+ def __init__(self, node_id: str):
48
+ """Initialize a workflow node."""
49
+ raise NotImplementedError(
50
+ "AbstractFlow is currently in development. "
51
+ "This placeholder package reserves the PyPI name. "
52
+ "Follow https://github.com/lpalbou/AbstractFlow for updates."
53
+ )
54
+
55
+
56
+ class LLMNode(Node):
57
+ """Node for LLM-based text generation and processing."""
58
+
59
+ def __init__(self, provider: str, model: str, **kwargs):
60
+ """Initialize an LLM node with AbstractCore provider."""
61
+ raise NotImplementedError(
62
+ "AbstractFlow is currently in development. "
63
+ "This placeholder package reserves the PyPI name. "
64
+ "Follow https://github.com/lpalbou/AbstractFlow for updates."
65
+ )
66
+
67
+
68
+ class TextNode(Node):
69
+ """Node for text input/output operations."""
70
+
71
+ def __init__(self, text_id: str):
72
+ """Initialize a text node."""
73
+ raise NotImplementedError(
74
+ "AbstractFlow is currently in development. "
75
+ "This placeholder package reserves the PyPI name. "
76
+ "Follow https://github.com/lpalbou/AbstractFlow for updates."
77
+ )
78
+
79
+
80
+ class ConditionalNode(Node):
81
+ """Node for conditional branching in workflows."""
82
+
83
+ def __init__(self, condition: str):
84
+ """Initialize a conditional node."""
85
+ raise NotImplementedError(
86
+ "AbstractFlow is currently in development. "
87
+ "This placeholder package reserves the PyPI name. "
88
+ "Follow https://github.com/lpalbou/AbstractFlow for updates."
89
+ )
90
+
91
+
92
+ class TransformNode(Node):
93
+ """Node for data transformation operations."""
94
+
95
+ def __init__(self, transform_func: str):
96
+ """Initialize a transform node."""
97
+ raise NotImplementedError(
98
+ "AbstractFlow is currently in development. "
99
+ "This placeholder package reserves the PyPI name. "
100
+ "Follow https://github.com/lpalbou/AbstractFlow for updates."
101
+ )
102
+
103
+
104
+ def get_version() -> str:
105
+ """Get the current version of AbstractFlow."""
106
+ return __version__
107
+
108
+
109
+ def is_development_version() -> bool:
110
+ """Check if this is a development/placeholder version."""
111
+ return True # This will be False in the actual implementation
@@ -0,0 +1,10 @@
1
+ """
2
+ Main entry point for AbstractFlow when run as a module.
3
+
4
+ Usage: python -m abstractflow [args...]
5
+ """
6
+
7
+ from .cli import main
8
+
9
+ if __name__ == "__main__":
10
+ exit(main())
abstractflow/cli.py ADDED
@@ -0,0 +1,42 @@
1
+ """
2
+ Command-line interface for AbstractFlow.
3
+
4
+ This is a placeholder CLI that will be expanded in future versions.
5
+ """
6
+
7
+ import sys
8
+ from typing import List, Optional
9
+
10
+
11
+ def main(args: Optional[List[str]] = None) -> int:
12
+ """
13
+ Main entry point for the AbstractFlow CLI.
14
+
15
+ Args:
16
+ args: Command-line arguments (defaults to sys.argv[1:])
17
+
18
+ Returns:
19
+ Exit code (0 for success, non-zero for error)
20
+ """
21
+ if args is None:
22
+ args = sys.argv[1:]
23
+
24
+ print("🚧 AbstractFlow CLI - Coming Soon!")
25
+ print()
26
+ print("AbstractFlow is currently in development.")
27
+ print("This placeholder package reserves the PyPI name.")
28
+ print()
29
+ print("Planned CLI features:")
30
+ print(" • abstractflow create <workflow> - Create new workflow")
31
+ print(" • abstractflow run <workflow> - Execute workflow")
32
+ print(" • abstractflow validate <workflow> - Validate workflow")
33
+ print(" • abstractflow export <workflow> - Export workflow")
34
+ print(" • abstractflow serve - Start workflow server")
35
+ print()
36
+ print("Follow https://github.com/lpalbou/AbstractFlow for updates!")
37
+
38
+ return 0
39
+
40
+
41
+ if __name__ == "__main__":
42
+ sys.exit(main())
abstractflow/py.typed ADDED
@@ -0,0 +1 @@
1
+ # Marker file for PEP 561 - indicates this package supports type checking
@@ -0,0 +1,238 @@
1
+ Metadata-Version: 2.4
2
+ Name: abstractflow
3
+ Version: 0.1.0
4
+ Summary: Diagram-based AI workflow generation built on AbstractCore
5
+ Author-email: AbstractFlow Team <contact@abstractflow.ai>
6
+ Maintainer-email: AbstractFlow Team <contact@abstractflow.ai>
7
+ License-Expression: MIT
8
+ Project-URL: Homepage, https://github.com/lpalbou/AbstractFlow
9
+ Project-URL: Documentation, https://abstractflow.readthedocs.io
10
+ Project-URL: Repository, https://github.com/lpalbou/AbstractFlow
11
+ Project-URL: Bug Tracker, https://github.com/lpalbou/AbstractFlow/issues
12
+ Project-URL: Changelog, https://github.com/lpalbou/AbstractFlow/blob/main/CHANGELOG.md
13
+ Keywords: ai,workflow,diagram,llm,automation,visual-programming,abstractcore,machine-learning
14
+ Classifier: Development Status :: 2 - Pre-Alpha
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Operating System :: OS Independent
18
+ Classifier: Programming Language :: Python :: 3
19
+ Classifier: Programming Language :: Python :: 3.8
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
25
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
26
+ Classifier: Topic :: System :: Distributed Computing
27
+ Requires-Python: >=3.8
28
+ Description-Content-Type: text/markdown
29
+ License-File: LICENSE
30
+ Requires-Dist: abstractcore>=2.0.0
31
+ Requires-Dist: pydantic>=2.0.0
32
+ Requires-Dist: typing-extensions>=4.0.0
33
+ Provides-Extra: dev
34
+ Requires-Dist: pytest>=7.0.0; extra == "dev"
35
+ Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
36
+ Requires-Dist: black>=23.0.0; extra == "dev"
37
+ Requires-Dist: isort>=5.12.0; extra == "dev"
38
+ Requires-Dist: flake8>=6.0.0; extra == "dev"
39
+ Requires-Dist: mypy>=1.0.0; extra == "dev"
40
+ Requires-Dist: pre-commit>=3.0.0; extra == "dev"
41
+ Provides-Extra: server
42
+ Requires-Dist: fastapi>=0.100.0; extra == "server"
43
+ Requires-Dist: uvicorn[standard]>=0.23.0; extra == "server"
44
+ Requires-Dist: websockets>=11.0.0; extra == "server"
45
+ Provides-Extra: ui
46
+ Requires-Dist: streamlit>=1.28.0; extra == "ui"
47
+ Requires-Dist: plotly>=5.15.0; extra == "ui"
48
+ Requires-Dist: networkx>=3.1.0; extra == "ui"
49
+ Provides-Extra: all
50
+ Requires-Dist: abstractflow[dev,server,ui]; extra == "all"
51
+ Dynamic: license-file
52
+
53
+ # AbstractFlow
54
+
55
+ **Diagram-Based AI Workflow Generation**
56
+
57
+ > 🚧 **Coming Soon** - This project is currently in early development. We're reserving the PyPI name for the upcoming release.
58
+
59
+ AbstractFlow is an innovative Python library that enables visual, diagram-based creation and execution of AI workflows. Built on top of [AbstractCore](https://github.com/lpalbou/AbstractCore), it provides an intuitive interface for designing complex AI pipelines through interactive diagrams.
60
+
61
+ ## 🎯 Vision
62
+
63
+ AbstractFlow aims to democratize AI workflow creation by providing:
64
+
65
+ - **Visual Workflow Design**: Create AI workflows using intuitive drag-and-drop diagrams
66
+ - **Multi-Provider Support**: Leverage any LLM provider through AbstractCore's unified interface
67
+ - **Real-time Execution**: Watch your workflows execute in real-time with live feedback
68
+ - **Collaborative Development**: Share and collaborate on workflow designs
69
+ - **Production Ready**: Deploy workflows to production with built-in monitoring and scaling
70
+
71
+ ## 🚀 Planned Features
72
+
73
+ ### Core Capabilities
74
+ - **Diagram Editor**: Web-based visual editor for workflow creation
75
+ - **Node Library**: Pre-built nodes for common AI operations (text generation, analysis, transformation)
76
+ - **Custom Nodes**: Create custom nodes with your own logic and AI models
77
+ - **Flow Control**: Conditional branching, loops, and parallel execution
78
+ - **Data Transformation**: Built-in data processing and transformation capabilities
79
+
80
+ ### AI Integration
81
+ - **Universal LLM Support**: Works with OpenAI, Anthropic, Ollama, and all AbstractCore providers
82
+ - **Tool Calling**: Seamless integration with external APIs and services
83
+ - **Structured Output**: Type-safe data flow between workflow nodes
84
+ - **Streaming Support**: Real-time processing for interactive applications
85
+
86
+ ### Deployment & Monitoring
87
+ - **Cloud Deployment**: One-click deployment to major cloud platforms
88
+ - **Monitoring Dashboard**: Real-time workflow execution monitoring
89
+ - **Version Control**: Git-based workflow versioning and collaboration
90
+ - **API Generation**: Automatic REST API generation from workflows
91
+
92
+ ## 🏗️ Architecture
93
+
94
+ AbstractFlow is built on a robust foundation:
95
+
96
+ ```
97
+ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
98
+ │ Diagram UI │ │ Workflow Engine │ │ AbstractCore │
99
+ │ │────│ │────│ │
100
+ │ Visual Editor │ │ Execution Logic │ │ LLM Providers │
101
+ └─────────────────┘ └─────────────────┘ └─────────────────┘
102
+ ```
103
+
104
+ - **Frontend**: React-based diagram editor with real-time collaboration
105
+ - **Backend**: Python workflow execution engine with FastAPI
106
+ - **AI Layer**: AbstractCore for unified LLM provider access
107
+ - **Storage**: Workflow definitions, execution history, and metadata
108
+
109
+ ## 🎨 Use Cases
110
+
111
+ ### Business Process Automation
112
+ - Customer support ticket routing and response generation
113
+ - Document analysis and summarization pipelines
114
+ - Content creation and review workflows
115
+
116
+ ### Data Processing
117
+ - Multi-step data analysis with AI insights
118
+ - Automated report generation from raw data
119
+ - Real-time data enrichment and validation
120
+
121
+ ### Creative Workflows
122
+ - Multi-stage content creation (research → draft → review → publish)
123
+ - Interactive storytelling and narrative generation
124
+ - Collaborative writing and editing processes
125
+
126
+ ### Research & Development
127
+ - Hypothesis generation and testing workflows
128
+ - Literature review and synthesis automation
129
+ - Experimental design and analysis pipelines
130
+
131
+ ## 🛠️ Technology Stack
132
+
133
+ - **Core**: Python 3.8+ with AsyncIO support
134
+ - **AI Integration**: [AbstractCore](https://github.com/lpalbou/AbstractCore) for LLM provider abstraction
135
+ - **Web Framework**: FastAPI for high-performance API server
136
+ - **Frontend**: React with TypeScript for the diagram editor
137
+ - **Database**: PostgreSQL for workflow storage, Redis for caching
138
+ - **Deployment**: Docker containers with Kubernetes support
139
+
140
+ ## 📦 Installation (Coming Soon)
141
+
142
+ ```bash
143
+ # Install AbstractFlow
144
+ pip install abstractflow
145
+
146
+ # Or with all optional dependencies
147
+ pip install abstractflow[all]
148
+
149
+ # Development installation
150
+ pip install abstractflow[dev]
151
+ ```
152
+
153
+ ## 🚀 Quick Start (Preview)
154
+
155
+ ```python
156
+ from abstractflow import WorkflowBuilder, TextNode, LLMNode
157
+
158
+ # Create a simple workflow
159
+ workflow = WorkflowBuilder()
160
+
161
+ # Add nodes
162
+ input_node = workflow.add_node(TextNode("user_input"))
163
+ llm_node = workflow.add_node(LLMNode(
164
+ provider="openai",
165
+ model="gpt-4o-mini",
166
+ prompt="Analyze this text: {user_input}"
167
+ ))
168
+ output_node = workflow.add_node(TextNode("analysis_result"))
169
+
170
+ # Connect nodes
171
+ workflow.connect(input_node, llm_node)
172
+ workflow.connect(llm_node, output_node)
173
+
174
+ # Execute workflow
175
+ result = await workflow.execute({
176
+ "user_input": "The future of AI is bright and full of possibilities."
177
+ })
178
+
179
+ print(result["analysis_result"])
180
+ ```
181
+
182
+ ## 🎯 Roadmap
183
+
184
+ ### Phase 1: Foundation (Q1 2025)
185
+ - [ ] Core workflow engine
186
+ - [ ] Basic node types (LLM, Transform, Condition)
187
+ - [ ] CLI interface for workflow execution
188
+ - [ ] AbstractCore integration
189
+
190
+ ### Phase 2: Visual Editor (Q2 2025)
191
+ - [ ] Web-based diagram editor
192
+ - [ ] Real-time collaboration features
193
+ - [ ] Workflow templates and examples
194
+ - [ ] Import/export functionality
195
+
196
+ ### Phase 3: Advanced Features (Q3 2025)
197
+ - [ ] Custom node development SDK
198
+ - [ ] Advanced flow control (loops, parallel execution)
199
+ - [ ] Monitoring and analytics dashboard
200
+ - [ ] Cloud deployment integration
201
+
202
+ ### Phase 4: Enterprise (Q4 2025)
203
+ - [ ] Enterprise security features
204
+ - [ ] Advanced monitoring and alerting
205
+ - [ ] Multi-tenant support
206
+ - [ ] Professional services and support
207
+
208
+ ## 🤝 Contributing
209
+
210
+ We welcome contributions from the community! Once development begins, you'll be able to:
211
+
212
+ - Report bugs and request features
213
+ - Submit pull requests for improvements
214
+ - Create and share workflow templates
215
+ - Contribute to documentation
216
+
217
+ ## 📄 License
218
+
219
+ AbstractFlow will be released under the MIT License, ensuring it remains free and open-source for all users.
220
+
221
+ ## 🔗 Related Projects
222
+
223
+ - **[AbstractCore](https://github.com/lpalbou/AbstractCore)**: The unified LLM interface powering AbstractFlow
224
+ - **[AbstractCore Documentation](http://www.abstractcore.ai/)**: Comprehensive guides and API reference
225
+
226
+ ## 📞 Contact
227
+
228
+ For early access, partnerships, or questions about AbstractFlow:
229
+
230
+ - **GitHub**: [Issues and Discussions](https://github.com/lpalbou/AbstractFlow) (coming soon)
231
+ - **Email**: Contact through AbstractCore channels
232
+ - **Website**: [www.abstractflow.ai](http://www.abstractflow.ai) (coming soon)
233
+
234
+ ---
235
+
236
+ **AbstractFlow** - Visualize, Create, Execute. The future of AI workflow development is here.
237
+
238
+ > Built with ❤️ on top of [AbstractCore](https://github.com/lpalbou/AbstractCore)
@@ -0,0 +1,10 @@
1
+ abstractflow/__init__.py,sha256=1TSNs83F1JDWeYugCphVaHSkBwVk-uFLocK01YReCtU,3532
2
+ abstractflow/__main__.py,sha256=55J_F_eUrulW9Y-ImavC5XqQy3jRpmJKTRksQf9OOwM,173
3
+ abstractflow/cli.py,sha256=mz3eD_xpgowhr47Ietyvtj7S6kHa7afTKmDH5ShlDvM,1235
4
+ abstractflow/py.typed,sha256=cZhjU4bgcfkAJgWW8rlBPwh-6sWO56Oixl8mV1RlwjI,74
5
+ abstractflow-0.1.0.dist-info/licenses/LICENSE,sha256=3KHWoiN3qgyUUU_7dYBp8Psby9dx2FpUFfZiRbNL_34,1074
6
+ abstractflow-0.1.0.dist-info/METADATA,sha256=uYJ7bcrgvgC5VRREnVm-Jl2GZqaTMikOyJ8GltsvTHs,9380
7
+ abstractflow-0.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
8
+ abstractflow-0.1.0.dist-info/entry_points.txt,sha256=Gc916Xwp7HMEOUlxFYHn7lMRrOT3Ah0Q_3tP9S8LHP0,55
9
+ abstractflow-0.1.0.dist-info/top_level.txt,sha256=bimZZ-20W8CxqozcCSWc_NlDus4gBMlKsMZC7xQxzww,13
10
+ abstractflow-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ abstractflow = abstractflow.cli:main
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 AbstractFlow Team
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ abstractflow