abstractflow 0.1.0__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. abstractflow/__init__.py +74 -94
  2. abstractflow/__main__.py +2 -0
  3. abstractflow/adapters/__init__.py +11 -0
  4. abstractflow/adapters/agent_adapter.py +5 -0
  5. abstractflow/adapters/control_adapter.py +5 -0
  6. abstractflow/adapters/effect_adapter.py +5 -0
  7. abstractflow/adapters/event_adapter.py +5 -0
  8. abstractflow/adapters/function_adapter.py +5 -0
  9. abstractflow/adapters/subflow_adapter.py +5 -0
  10. abstractflow/adapters/variable_adapter.py +5 -0
  11. abstractflow/cli.py +75 -28
  12. abstractflow/compiler.py +23 -0
  13. abstractflow/core/__init__.py +5 -0
  14. abstractflow/core/flow.py +11 -0
  15. abstractflow/py.typed +2 -0
  16. abstractflow/runner.py +402 -0
  17. abstractflow/visual/__init__.py +43 -0
  18. abstractflow/visual/agent_ids.py +5 -0
  19. abstractflow/visual/builtins.py +5 -0
  20. abstractflow/visual/code_executor.py +5 -0
  21. abstractflow/visual/event_ids.py +33 -0
  22. abstractflow/visual/executor.py +968 -0
  23. abstractflow/visual/interfaces.py +440 -0
  24. abstractflow/visual/models.py +277 -0
  25. abstractflow/visual/session_runner.py +182 -0
  26. abstractflow/visual/workspace_scoped_tools.py +29 -0
  27. abstractflow/workflow_bundle.py +290 -0
  28. abstractflow-0.3.1.dist-info/METADATA +186 -0
  29. abstractflow-0.3.1.dist-info/RECORD +33 -0
  30. {abstractflow-0.1.0.dist-info → abstractflow-0.3.1.dist-info}/WHEEL +1 -1
  31. {abstractflow-0.1.0.dist-info → abstractflow-0.3.1.dist-info}/licenses/LICENSE +2 -0
  32. abstractflow-0.1.0.dist-info/METADATA +0 -238
  33. abstractflow-0.1.0.dist-info/RECORD +0 -10
  34. {abstractflow-0.1.0.dist-info → abstractflow-0.3.1.dist-info}/entry_points.txt +0 -0
  35. {abstractflow-0.1.0.dist-info → abstractflow-0.3.1.dist-info}/top_level.txt +0 -0
@@ -1,238 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: abstractflow
3
- Version: 0.1.0
4
- Summary: Diagram-based AI workflow generation built on AbstractCore
5
- Author-email: AbstractFlow Team <contact@abstractflow.ai>
6
- Maintainer-email: AbstractFlow Team <contact@abstractflow.ai>
7
- License-Expression: MIT
8
- Project-URL: Homepage, https://github.com/lpalbou/AbstractFlow
9
- Project-URL: Documentation, https://abstractflow.readthedocs.io
10
- Project-URL: Repository, https://github.com/lpalbou/AbstractFlow
11
- Project-URL: Bug Tracker, https://github.com/lpalbou/AbstractFlow/issues
12
- Project-URL: Changelog, https://github.com/lpalbou/AbstractFlow/blob/main/CHANGELOG.md
13
- Keywords: ai,workflow,diagram,llm,automation,visual-programming,abstractcore,machine-learning
14
- Classifier: Development Status :: 2 - Pre-Alpha
15
- Classifier: Intended Audience :: Developers
16
- Classifier: Intended Audience :: Science/Research
17
- Classifier: Operating System :: OS Independent
18
- Classifier: Programming Language :: Python :: 3
19
- Classifier: Programming Language :: Python :: 3.8
20
- Classifier: Programming Language :: Python :: 3.9
21
- Classifier: Programming Language :: Python :: 3.10
22
- Classifier: Programming Language :: Python :: 3.11
23
- Classifier: Programming Language :: Python :: 3.12
24
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
25
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
26
- Classifier: Topic :: System :: Distributed Computing
27
- Requires-Python: >=3.8
28
- Description-Content-Type: text/markdown
29
- License-File: LICENSE
30
- Requires-Dist: abstractcore>=2.0.0
31
- Requires-Dist: pydantic>=2.0.0
32
- Requires-Dist: typing-extensions>=4.0.0
33
- Provides-Extra: dev
34
- Requires-Dist: pytest>=7.0.0; extra == "dev"
35
- Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
36
- Requires-Dist: black>=23.0.0; extra == "dev"
37
- Requires-Dist: isort>=5.12.0; extra == "dev"
38
- Requires-Dist: flake8>=6.0.0; extra == "dev"
39
- Requires-Dist: mypy>=1.0.0; extra == "dev"
40
- Requires-Dist: pre-commit>=3.0.0; extra == "dev"
41
- Provides-Extra: server
42
- Requires-Dist: fastapi>=0.100.0; extra == "server"
43
- Requires-Dist: uvicorn[standard]>=0.23.0; extra == "server"
44
- Requires-Dist: websockets>=11.0.0; extra == "server"
45
- Provides-Extra: ui
46
- Requires-Dist: streamlit>=1.28.0; extra == "ui"
47
- Requires-Dist: plotly>=5.15.0; extra == "ui"
48
- Requires-Dist: networkx>=3.1.0; extra == "ui"
49
- Provides-Extra: all
50
- Requires-Dist: abstractflow[dev,server,ui]; extra == "all"
51
- Dynamic: license-file
52
-
53
- # AbstractFlow
54
-
55
- **Diagram-Based AI Workflow Generation**
56
-
57
- > 🚧 **Coming Soon** - This project is currently in early development. We're reserving the PyPI name for the upcoming release.
58
-
59
- AbstractFlow is an innovative Python library that enables visual, diagram-based creation and execution of AI workflows. Built on top of [AbstractCore](https://github.com/lpalbou/AbstractCore), it provides an intuitive interface for designing complex AI pipelines through interactive diagrams.
60
-
61
- ## 🎯 Vision
62
-
63
- AbstractFlow aims to democratize AI workflow creation by providing:
64
-
65
- - **Visual Workflow Design**: Create AI workflows using intuitive drag-and-drop diagrams
66
- - **Multi-Provider Support**: Leverage any LLM provider through AbstractCore's unified interface
67
- - **Real-time Execution**: Watch your workflows execute in real-time with live feedback
68
- - **Collaborative Development**: Share and collaborate on workflow designs
69
- - **Production Ready**: Deploy workflows to production with built-in monitoring and scaling
70
-
71
- ## 🚀 Planned Features
72
-
73
- ### Core Capabilities
74
- - **Diagram Editor**: Web-based visual editor for workflow creation
75
- - **Node Library**: Pre-built nodes for common AI operations (text generation, analysis, transformation)
76
- - **Custom Nodes**: Create custom nodes with your own logic and AI models
77
- - **Flow Control**: Conditional branching, loops, and parallel execution
78
- - **Data Transformation**: Built-in data processing and transformation capabilities
79
-
80
- ### AI Integration
81
- - **Universal LLM Support**: Works with OpenAI, Anthropic, Ollama, and all AbstractCore providers
82
- - **Tool Calling**: Seamless integration with external APIs and services
83
- - **Structured Output**: Type-safe data flow between workflow nodes
84
- - **Streaming Support**: Real-time processing for interactive applications
85
-
86
- ### Deployment & Monitoring
87
- - **Cloud Deployment**: One-click deployment to major cloud platforms
88
- - **Monitoring Dashboard**: Real-time workflow execution monitoring
89
- - **Version Control**: Git-based workflow versioning and collaboration
90
- - **API Generation**: Automatic REST API generation from workflows
91
-
92
- ## 🏗️ Architecture
93
-
94
- AbstractFlow is built on a robust foundation:
95
-
96
- ```
97
- ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
98
- │ Diagram UI │ │ Workflow Engine │ │ AbstractCore │
99
- │ │────│ │────│ │
100
- │ Visual Editor │ │ Execution Logic │ │ LLM Providers │
101
- └─────────────────┘ └─────────────────┘ └─────────────────┘
102
- ```
103
-
104
- - **Frontend**: React-based diagram editor with real-time collaboration
105
- - **Backend**: Python workflow execution engine with FastAPI
106
- - **AI Layer**: AbstractCore for unified LLM provider access
107
- - **Storage**: Workflow definitions, execution history, and metadata
108
-
109
- ## 🎨 Use Cases
110
-
111
- ### Business Process Automation
112
- - Customer support ticket routing and response generation
113
- - Document analysis and summarization pipelines
114
- - Content creation and review workflows
115
-
116
- ### Data Processing
117
- - Multi-step data analysis with AI insights
118
- - Automated report generation from raw data
119
- - Real-time data enrichment and validation
120
-
121
- ### Creative Workflows
122
- - Multi-stage content creation (research → draft → review → publish)
123
- - Interactive storytelling and narrative generation
124
- - Collaborative writing and editing processes
125
-
126
- ### Research & Development
127
- - Hypothesis generation and testing workflows
128
- - Literature review and synthesis automation
129
- - Experimental design and analysis pipelines
130
-
131
- ## 🛠️ Technology Stack
132
-
133
- - **Core**: Python 3.8+ with AsyncIO support
134
- - **AI Integration**: [AbstractCore](https://github.com/lpalbou/AbstractCore) for LLM provider abstraction
135
- - **Web Framework**: FastAPI for high-performance API server
136
- - **Frontend**: React with TypeScript for the diagram editor
137
- - **Database**: PostgreSQL for workflow storage, Redis for caching
138
- - **Deployment**: Docker containers with Kubernetes support
139
-
140
- ## 📦 Installation (Coming Soon)
141
-
142
- ```bash
143
- # Install AbstractFlow
144
- pip install abstractflow
145
-
146
- # Or with all optional dependencies
147
- pip install abstractflow[all]
148
-
149
- # Development installation
150
- pip install abstractflow[dev]
151
- ```
152
-
153
- ## 🚀 Quick Start (Preview)
154
-
155
- ```python
156
- from abstractflow import WorkflowBuilder, TextNode, LLMNode
157
-
158
- # Create a simple workflow
159
- workflow = WorkflowBuilder()
160
-
161
- # Add nodes
162
- input_node = workflow.add_node(TextNode("user_input"))
163
- llm_node = workflow.add_node(LLMNode(
164
- provider="openai",
165
- model="gpt-4o-mini",
166
- prompt="Analyze this text: {user_input}"
167
- ))
168
- output_node = workflow.add_node(TextNode("analysis_result"))
169
-
170
- # Connect nodes
171
- workflow.connect(input_node, llm_node)
172
- workflow.connect(llm_node, output_node)
173
-
174
- # Execute workflow
175
- result = await workflow.execute({
176
- "user_input": "The future of AI is bright and full of possibilities."
177
- })
178
-
179
- print(result["analysis_result"])
180
- ```
181
-
182
- ## 🎯 Roadmap
183
-
184
- ### Phase 1: Foundation (Q1 2025)
185
- - [ ] Core workflow engine
186
- - [ ] Basic node types (LLM, Transform, Condition)
187
- - [ ] CLI interface for workflow execution
188
- - [ ] AbstractCore integration
189
-
190
- ### Phase 2: Visual Editor (Q2 2025)
191
- - [ ] Web-based diagram editor
192
- - [ ] Real-time collaboration features
193
- - [ ] Workflow templates and examples
194
- - [ ] Import/export functionality
195
-
196
- ### Phase 3: Advanced Features (Q3 2025)
197
- - [ ] Custom node development SDK
198
- - [ ] Advanced flow control (loops, parallel execution)
199
- - [ ] Monitoring and analytics dashboard
200
- - [ ] Cloud deployment integration
201
-
202
- ### Phase 4: Enterprise (Q4 2025)
203
- - [ ] Enterprise security features
204
- - [ ] Advanced monitoring and alerting
205
- - [ ] Multi-tenant support
206
- - [ ] Professional services and support
207
-
208
- ## 🤝 Contributing
209
-
210
- We welcome contributions from the community! Once development begins, you'll be able to:
211
-
212
- - Report bugs and request features
213
- - Submit pull requests for improvements
214
- - Create and share workflow templates
215
- - Contribute to documentation
216
-
217
- ## 📄 License
218
-
219
- AbstractFlow will be released under the MIT License, ensuring it remains free and open-source for all users.
220
-
221
- ## 🔗 Related Projects
222
-
223
- - **[AbstractCore](https://github.com/lpalbou/AbstractCore)**: The unified LLM interface powering AbstractFlow
224
- - **[AbstractCore Documentation](http://www.abstractcore.ai/)**: Comprehensive guides and API reference
225
-
226
- ## 📞 Contact
227
-
228
- For early access, partnerships, or questions about AbstractFlow:
229
-
230
- - **GitHub**: [Issues and Discussions](https://github.com/lpalbou/AbstractFlow) (coming soon)
231
- - **Email**: Contact through AbstractCore channels
232
- - **Website**: [www.abstractflow.ai](http://www.abstractflow.ai) (coming soon)
233
-
234
- ---
235
-
236
- **AbstractFlow** - Visualize, Create, Execute. The future of AI workflow development is here.
237
-
238
- > Built with ❤️ on top of [AbstractCore](https://github.com/lpalbou/AbstractCore)
@@ -1,10 +0,0 @@
1
- abstractflow/__init__.py,sha256=1TSNs83F1JDWeYugCphVaHSkBwVk-uFLocK01YReCtU,3532
2
- abstractflow/__main__.py,sha256=55J_F_eUrulW9Y-ImavC5XqQy3jRpmJKTRksQf9OOwM,173
3
- abstractflow/cli.py,sha256=mz3eD_xpgowhr47Ietyvtj7S6kHa7afTKmDH5ShlDvM,1235
4
- abstractflow/py.typed,sha256=cZhjU4bgcfkAJgWW8rlBPwh-6sWO56Oixl8mV1RlwjI,74
5
- abstractflow-0.1.0.dist-info/licenses/LICENSE,sha256=3KHWoiN3qgyUUU_7dYBp8Psby9dx2FpUFfZiRbNL_34,1074
6
- abstractflow-0.1.0.dist-info/METADATA,sha256=uYJ7bcrgvgC5VRREnVm-Jl2GZqaTMikOyJ8GltsvTHs,9380
7
- abstractflow-0.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
8
- abstractflow-0.1.0.dist-info/entry_points.txt,sha256=Gc916Xwp7HMEOUlxFYHn7lMRrOT3Ah0Q_3tP9S8LHP0,55
9
- abstractflow-0.1.0.dist-info/top_level.txt,sha256=bimZZ-20W8CxqozcCSWc_NlDus4gBMlKsMZC7xQxzww,13
10
- abstractflow-0.1.0.dist-info/RECORD,,