abstractcore 2.5.2__py3-none-any.whl → 2.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. abstractcore/__init__.py +19 -1
  2. abstractcore/architectures/detection.py +252 -6
  3. abstractcore/assets/architecture_formats.json +14 -1
  4. abstractcore/assets/model_capabilities.json +533 -10
  5. abstractcore/compression/__init__.py +29 -0
  6. abstractcore/compression/analytics.py +420 -0
  7. abstractcore/compression/cache.py +250 -0
  8. abstractcore/compression/config.py +279 -0
  9. abstractcore/compression/exceptions.py +30 -0
  10. abstractcore/compression/glyph_processor.py +381 -0
  11. abstractcore/compression/optimizer.py +388 -0
  12. abstractcore/compression/orchestrator.py +380 -0
  13. abstractcore/compression/pil_text_renderer.py +818 -0
  14. abstractcore/compression/quality.py +226 -0
  15. abstractcore/compression/text_formatter.py +666 -0
  16. abstractcore/compression/vision_compressor.py +371 -0
  17. abstractcore/config/main.py +64 -0
  18. abstractcore/config/manager.py +100 -5
  19. abstractcore/core/retry.py +2 -2
  20. abstractcore/core/session.py +193 -7
  21. abstractcore/download.py +253 -0
  22. abstractcore/embeddings/manager.py +2 -2
  23. abstractcore/events/__init__.py +113 -2
  24. abstractcore/exceptions/__init__.py +49 -2
  25. abstractcore/media/auto_handler.py +312 -18
  26. abstractcore/media/handlers/local_handler.py +14 -2
  27. abstractcore/media/handlers/openai_handler.py +62 -3
  28. abstractcore/media/processors/__init__.py +11 -1
  29. abstractcore/media/processors/direct_pdf_processor.py +210 -0
  30. abstractcore/media/processors/glyph_pdf_processor.py +227 -0
  31. abstractcore/media/processors/image_processor.py +7 -1
  32. abstractcore/media/processors/office_processor.py +2 -2
  33. abstractcore/media/processors/text_processor.py +18 -3
  34. abstractcore/media/types.py +164 -7
  35. abstractcore/media/utils/image_scaler.py +2 -2
  36. abstractcore/media/vision_fallback.py +2 -2
  37. abstractcore/providers/__init__.py +18 -0
  38. abstractcore/providers/anthropic_provider.py +228 -8
  39. abstractcore/providers/base.py +378 -11
  40. abstractcore/providers/huggingface_provider.py +563 -23
  41. abstractcore/providers/lmstudio_provider.py +284 -4
  42. abstractcore/providers/mlx_provider.py +27 -2
  43. abstractcore/providers/model_capabilities.py +352 -0
  44. abstractcore/providers/ollama_provider.py +282 -6
  45. abstractcore/providers/openai_provider.py +286 -8
  46. abstractcore/providers/registry.py +85 -13
  47. abstractcore/providers/streaming.py +2 -2
  48. abstractcore/server/app.py +91 -81
  49. abstractcore/tools/common_tools.py +2 -2
  50. abstractcore/tools/handler.py +2 -2
  51. abstractcore/tools/parser.py +2 -2
  52. abstractcore/tools/registry.py +2 -2
  53. abstractcore/tools/syntax_rewriter.py +2 -2
  54. abstractcore/tools/tag_rewriter.py +3 -3
  55. abstractcore/utils/__init__.py +4 -1
  56. abstractcore/utils/self_fixes.py +2 -2
  57. abstractcore/utils/trace_export.py +287 -0
  58. abstractcore/utils/version.py +1 -1
  59. abstractcore/utils/vlm_token_calculator.py +655 -0
  60. {abstractcore-2.5.2.dist-info → abstractcore-2.6.0.dist-info}/METADATA +207 -8
  61. abstractcore-2.6.0.dist-info/RECORD +108 -0
  62. abstractcore-2.5.2.dist-info/RECORD +0 -90
  63. {abstractcore-2.5.2.dist-info → abstractcore-2.6.0.dist-info}/WHEEL +0 -0
  64. {abstractcore-2.5.2.dist-info → abstractcore-2.6.0.dist-info}/entry_points.txt +0 -0
  65. {abstractcore-2.5.2.dist-info → abstractcore-2.6.0.dist-info}/licenses/LICENSE +0 -0
  66. {abstractcore-2.5.2.dist-info → abstractcore-2.6.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,352 @@
1
+ """
2
+ Model capability definitions for input and output filtering.
3
+
4
+ This module provides clear enums for filtering models based on what types of
5
+ input they can process and what types of output they can generate.
6
+
7
+ Key Concepts:
8
+ - Input Capabilities: What data types can the model accept and analyze?
9
+ - Output Capabilities: What data types can the model generate?
10
+
11
+ Examples:
12
+ >>> from abstractcore.providers.model_capabilities import ModelInputCapability, ModelOutputCapability
13
+ >>> from abstractcore.providers import OllamaProvider
14
+ >>>
15
+ >>> # Get models that can analyze images
16
+ >>> vision_models = OllamaProvider.list_available_models(
17
+ ... input_capabilities=[ModelInputCapability.IMAGE]
18
+ ... )
19
+ >>>
20
+ >>> # Get embedding models
21
+ >>> embedding_models = OllamaProvider.list_available_models(
22
+ ... output_capabilities=[ModelOutputCapability.EMBEDDINGS]
23
+ ... )
24
+ >>>
25
+ >>> # Get vision models that generate text (most common case)
26
+ >>> vision_text_models = OllamaProvider.list_available_models(
27
+ ... input_capabilities=[ModelInputCapability.TEXT, ModelInputCapability.IMAGE],
28
+ ... output_capabilities=[ModelOutputCapability.TEXT]
29
+ ... )
30
+ """
31
+
32
+ from enum import Enum
33
+ from typing import List, Set, Optional, Dict, Any
34
+ from ..architectures.detection import get_model_capabilities
35
+
36
+
37
+ class ModelInputCapability(Enum):
38
+ """
39
+ Enumeration of input data types that models can process and analyze.
40
+
41
+ These capabilities define what types of input data a model can accept
42
+ and understand. Most multimodal models support TEXT plus one or more
43
+ additional input types.
44
+
45
+ Values:
46
+ TEXT: Model can process text input (all models support this)
47
+ IMAGE: Model can analyze and understand images (vision models)
48
+ AUDIO: Model can process and analyze audio input
49
+ VIDEO: Model can analyze video content
50
+
51
+ Examples:
52
+ >>> # Text-only model
53
+ >>> text_only = [ModelInputCapability.TEXT]
54
+ >>>
55
+ >>> # Vision model (supports both text and images)
56
+ >>> vision_model = [ModelInputCapability.TEXT, ModelInputCapability.IMAGE]
57
+ >>>
58
+ >>> # Audio model (supports both text and audio)
59
+ >>> audio_model = [ModelInputCapability.TEXT, ModelInputCapability.AUDIO]
60
+ """
61
+
62
+ TEXT = "text"
63
+ """Model can process and understand text input (supported by all models)"""
64
+
65
+ IMAGE = "image"
66
+ """Model can analyze and understand image input (vision models)"""
67
+
68
+ AUDIO = "audio"
69
+ """Model can process and analyze audio input"""
70
+
71
+ VIDEO = "video"
72
+ """Model can analyze and understand video input"""
73
+
74
+
75
+ class ModelOutputCapability(Enum):
76
+ """
77
+ Enumeration of output data types that models can generate.
78
+
79
+ These capabilities define what types of output a model can produce.
80
+ Currently, AbstractCore supports text generation and embedding generation.
81
+
82
+ Values:
83
+ TEXT: Model generates text responses (most common)
84
+ EMBEDDINGS: Model generates vector embeddings (embedding models)
85
+
86
+ Examples:
87
+ >>> # Regular chat/completion model
88
+ >>> text_model = [ModelOutputCapability.TEXT]
89
+ >>>
90
+ >>> # Embedding model
91
+ >>> embedding_model = [ModelOutputCapability.EMBEDDINGS]
92
+
93
+ Note:
94
+ Future versions may include IMAGE, AUDIO, VIDEO for generative models.
95
+ """
96
+
97
+ TEXT = "text"
98
+ """Model generates text responses (chat, completion, etc.)"""
99
+
100
+ EMBEDDINGS = "embeddings"
101
+ """Model generates vector embeddings for semantic search/similarity"""
102
+
103
+
104
+ def get_model_input_capabilities(model_name: str) -> List[ModelInputCapability]:
105
+ """
106
+ Determine what input capabilities a model supports.
107
+
108
+ Args:
109
+ model_name: Name of the model to check
110
+
111
+ Returns:
112
+ List of input capabilities the model supports
113
+
114
+ Examples:
115
+ >>> caps = get_model_input_capabilities("gpt-4-vision-preview")
116
+ >>> print(caps)
117
+ [<ModelInputCapability.TEXT: 'text'>, <ModelInputCapability.IMAGE: 'image'>]
118
+
119
+ >>> caps = get_model_input_capabilities("gpt-4")
120
+ >>> print(caps)
121
+ [<ModelInputCapability.TEXT: 'text'>]
122
+ """
123
+ try:
124
+ capabilities = get_model_capabilities(model_name)
125
+ except Exception:
126
+ # If we can't get capabilities, assume text-only
127
+ return [ModelInputCapability.TEXT]
128
+
129
+ input_caps = [ModelInputCapability.TEXT] # All models support text
130
+
131
+ if capabilities.get("vision_support", False):
132
+ input_caps.append(ModelInputCapability.IMAGE)
133
+
134
+ if capabilities.get("audio_support", False):
135
+ input_caps.append(ModelInputCapability.AUDIO)
136
+
137
+ if capabilities.get("video_support", False):
138
+ input_caps.append(ModelInputCapability.VIDEO)
139
+
140
+ return input_caps
141
+
142
+
143
+ def get_model_output_capabilities(model_name: str) -> List[ModelOutputCapability]:
144
+ """
145
+ Determine what output capabilities a model supports.
146
+
147
+ Args:
148
+ model_name: Name of the model to check
149
+
150
+ Returns:
151
+ List of output capabilities the model supports
152
+
153
+ Examples:
154
+ >>> caps = get_model_output_capabilities("gpt-4")
155
+ >>> print(caps)
156
+ [<ModelOutputCapability.TEXT: 'text'>]
157
+
158
+ >>> caps = get_model_output_capabilities("text-embedding-3-small")
159
+ >>> print(caps)
160
+ [<ModelOutputCapability.EMBEDDINGS: 'embeddings'>]
161
+ """
162
+ try:
163
+ capabilities = get_model_capabilities(model_name)
164
+ except Exception:
165
+ # If we can't get capabilities, assume text generation
166
+ return [ModelOutputCapability.TEXT]
167
+
168
+ # Check if it's explicitly marked as an embedding model
169
+ if capabilities.get("model_type") == "embedding":
170
+ return [ModelOutputCapability.EMBEDDINGS]
171
+
172
+ # Check for embedding model name patterns
173
+ model_lower = model_name.lower()
174
+ embedding_patterns = [
175
+ "embedding", "embed", "embeddings",
176
+ "text-embedding", "sentence-transformer",
177
+ "all-minilm", "nomic-embed", "granite-embedding",
178
+ "qwen3-embedding", "embeddinggemma"
179
+ ]
180
+
181
+ if any(pattern in model_lower for pattern in embedding_patterns):
182
+ return [ModelOutputCapability.EMBEDDINGS]
183
+
184
+ # Default to text generation
185
+ return [ModelOutputCapability.TEXT]
186
+
187
+
188
+ def model_matches_input_capabilities(
189
+ model_name: str,
190
+ required_capabilities: List[ModelInputCapability]
191
+ ) -> bool:
192
+ """
193
+ Check if a model supports all required input capabilities.
194
+
195
+ Args:
196
+ model_name: Name of the model to check
197
+ required_capabilities: List of required input capabilities
198
+
199
+ Returns:
200
+ True if model supports all required capabilities, False otherwise
201
+
202
+ Examples:
203
+ >>> # Check if model supports both text and image input
204
+ >>> required = [ModelInputCapability.TEXT, ModelInputCapability.IMAGE]
205
+ >>> model_matches_input_capabilities("gpt-4-vision-preview", required)
206
+ True
207
+
208
+ >>> model_matches_input_capabilities("gpt-4", required)
209
+ False
210
+ """
211
+ if not required_capabilities:
212
+ return True
213
+
214
+ model_caps = get_model_input_capabilities(model_name)
215
+ model_caps_set = set(model_caps)
216
+ required_set = set(required_capabilities)
217
+
218
+ return required_set.issubset(model_caps_set)
219
+
220
+
221
+ def model_matches_output_capabilities(
222
+ model_name: str,
223
+ required_capabilities: List[ModelOutputCapability]
224
+ ) -> bool:
225
+ """
226
+ Check if a model supports all required output capabilities.
227
+
228
+ Args:
229
+ model_name: Name of the model to check
230
+ required_capabilities: List of required output capabilities
231
+
232
+ Returns:
233
+ True if model supports all required capabilities, False otherwise
234
+
235
+ Examples:
236
+ >>> # Check if model generates text
237
+ >>> required = [ModelOutputCapability.TEXT]
238
+ >>> model_matches_output_capabilities("gpt-4", required)
239
+ True
240
+
241
+ >>> # Check if model generates embeddings
242
+ >>> required = [ModelOutputCapability.EMBEDDINGS]
243
+ >>> model_matches_output_capabilities("text-embedding-3-small", required)
244
+ True
245
+ >>> model_matches_output_capabilities("gpt-4", required)
246
+ False
247
+ """
248
+ if not required_capabilities:
249
+ return True
250
+
251
+ model_caps = get_model_output_capabilities(model_name)
252
+ model_caps_set = set(model_caps)
253
+ required_set = set(required_capabilities)
254
+
255
+ return required_set.issubset(model_caps_set)
256
+
257
+
258
+ def filter_models_by_capabilities(
259
+ models: List[str],
260
+ input_capabilities: Optional[List[ModelInputCapability]] = None,
261
+ output_capabilities: Optional[List[ModelOutputCapability]] = None
262
+ ) -> List[str]:
263
+ """
264
+ Filter a list of models based on input and output capability requirements.
265
+
266
+ Args:
267
+ models: List of model names to filter
268
+ input_capabilities: Required input capabilities (None = no filtering)
269
+ output_capabilities: Required output capabilities (None = no filtering)
270
+
271
+ Returns:
272
+ Filtered list of model names that match all requirements
273
+
274
+ Examples:
275
+ >>> models = ["gpt-4", "gpt-4-vision-preview", "text-embedding-3-small"]
276
+ >>>
277
+ >>> # Get vision models
278
+ >>> vision_models = filter_models_by_capabilities(
279
+ ... models,
280
+ ... input_capabilities=[ModelInputCapability.IMAGE]
281
+ ... )
282
+ >>> print(vision_models)
283
+ ['gpt-4-vision-preview']
284
+ >>>
285
+ >>> # Get embedding models
286
+ >>> embedding_models = filter_models_by_capabilities(
287
+ ... models,
288
+ ... output_capabilities=[ModelOutputCapability.EMBEDDINGS]
289
+ ... )
290
+ >>> print(embedding_models)
291
+ ['text-embedding-3-small']
292
+ >>>
293
+ >>> # Get text generation models
294
+ >>> text_models = filter_models_by_capabilities(
295
+ ... models,
296
+ ... output_capabilities=[ModelOutputCapability.TEXT]
297
+ ... )
298
+ >>> print(text_models)
299
+ ['gpt-4', 'gpt-4-vision-preview']
300
+ """
301
+ filtered_models = []
302
+
303
+ for model_name in models:
304
+ try:
305
+ # Check input capabilities
306
+ if input_capabilities and not model_matches_input_capabilities(model_name, input_capabilities):
307
+ continue
308
+
309
+ # Check output capabilities
310
+ if output_capabilities and not model_matches_output_capabilities(model_name, output_capabilities):
311
+ continue
312
+
313
+ filtered_models.append(model_name)
314
+ except Exception:
315
+ # If we can't get capabilities, skip this model
316
+ # (it likely doesn't have an entry in model_capabilities.json)
317
+ continue
318
+
319
+ return filtered_models
320
+
321
+
322
+ def get_capability_summary(model_name: str) -> Dict[str, Any]:
323
+ """
324
+ Get a comprehensive summary of a model's input and output capabilities.
325
+
326
+ Args:
327
+ model_name: Name of the model to analyze
328
+
329
+ Returns:
330
+ Dictionary containing input and output capabilities
331
+
332
+ Examples:
333
+ >>> summary = get_capability_summary("gpt-4-vision-preview")
334
+ >>> print(summary)
335
+ {
336
+ 'model_name': 'gpt-4-vision-preview',
337
+ 'input_capabilities': ['text', 'image'],
338
+ 'output_capabilities': ['text'],
339
+ 'is_multimodal': True,
340
+ 'is_embedding_model': False
341
+ }
342
+ """
343
+ input_caps = get_model_input_capabilities(model_name)
344
+ output_caps = get_model_output_capabilities(model_name)
345
+
346
+ return {
347
+ 'model_name': model_name,
348
+ 'input_capabilities': [cap.value for cap in input_caps],
349
+ 'output_capabilities': [cap.value for cap in output_caps],
350
+ 'is_multimodal': len(input_caps) > 1,
351
+ 'is_embedding_model': ModelOutputCapability.EMBEDDINGS in output_caps
352
+ }