abstractcore 2.5.2__py3-none-any.whl → 2.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. abstractcore/__init__.py +12 -0
  2. abstractcore/architectures/detection.py +250 -4
  3. abstractcore/assets/architecture_formats.json +14 -1
  4. abstractcore/assets/model_capabilities.json +533 -10
  5. abstractcore/compression/__init__.py +29 -0
  6. abstractcore/compression/analytics.py +420 -0
  7. abstractcore/compression/cache.py +250 -0
  8. abstractcore/compression/config.py +279 -0
  9. abstractcore/compression/exceptions.py +30 -0
  10. abstractcore/compression/glyph_processor.py +381 -0
  11. abstractcore/compression/optimizer.py +388 -0
  12. abstractcore/compression/orchestrator.py +380 -0
  13. abstractcore/compression/pil_text_renderer.py +818 -0
  14. abstractcore/compression/quality.py +226 -0
  15. abstractcore/compression/text_formatter.py +666 -0
  16. abstractcore/compression/vision_compressor.py +371 -0
  17. abstractcore/config/main.py +64 -0
  18. abstractcore/config/manager.py +100 -5
  19. abstractcore/core/session.py +61 -6
  20. abstractcore/events/__init__.py +1 -1
  21. abstractcore/media/auto_handler.py +312 -18
  22. abstractcore/media/handlers/local_handler.py +14 -2
  23. abstractcore/media/handlers/openai_handler.py +62 -3
  24. abstractcore/media/processors/__init__.py +11 -1
  25. abstractcore/media/processors/direct_pdf_processor.py +210 -0
  26. abstractcore/media/processors/glyph_pdf_processor.py +227 -0
  27. abstractcore/media/processors/image_processor.py +7 -1
  28. abstractcore/media/processors/text_processor.py +18 -3
  29. abstractcore/media/types.py +164 -7
  30. abstractcore/providers/__init__.py +18 -0
  31. abstractcore/providers/anthropic_provider.py +28 -2
  32. abstractcore/providers/base.py +278 -6
  33. abstractcore/providers/huggingface_provider.py +563 -23
  34. abstractcore/providers/lmstudio_provider.py +38 -2
  35. abstractcore/providers/mlx_provider.py +27 -2
  36. abstractcore/providers/model_capabilities.py +352 -0
  37. abstractcore/providers/ollama_provider.py +38 -4
  38. abstractcore/providers/openai_provider.py +28 -2
  39. abstractcore/providers/registry.py +85 -13
  40. abstractcore/server/app.py +91 -81
  41. abstractcore/utils/__init__.py +4 -1
  42. abstractcore/utils/trace_export.py +287 -0
  43. abstractcore/utils/version.py +1 -1
  44. abstractcore/utils/vlm_token_calculator.py +655 -0
  45. {abstractcore-2.5.2.dist-info → abstractcore-2.5.3.dist-info}/METADATA +107 -6
  46. {abstractcore-2.5.2.dist-info → abstractcore-2.5.3.dist-info}/RECORD +50 -33
  47. {abstractcore-2.5.2.dist-info → abstractcore-2.5.3.dist-info}/WHEEL +0 -0
  48. {abstractcore-2.5.2.dist-info → abstractcore-2.5.3.dist-info}/entry_points.txt +0 -0
  49. {abstractcore-2.5.2.dist-info → abstractcore-2.5.3.dist-info}/licenses/LICENSE +0 -0
  50. {abstractcore-2.5.2.dist-info → abstractcore-2.5.3.dist-info}/top_level.txt +0 -0
@@ -202,6 +202,15 @@ class LMStudioProvider(BaseProvider):
202
202
  "max_tokens": max_output_tokens, # LMStudio uses max_tokens for output tokens
203
203
  "top_p": kwargs.get("top_p", 0.9),
204
204
  }
205
+
206
+ # Add additional generation parameters if provided (OpenAI-compatible)
207
+ if "frequency_penalty" in kwargs:
208
+ payload["frequency_penalty"] = kwargs["frequency_penalty"]
209
+ if "presence_penalty" in kwargs:
210
+ payload["presence_penalty"] = kwargs["presence_penalty"]
211
+ if "repetition_penalty" in kwargs:
212
+ # Some models support repetition_penalty directly
213
+ payload["repetition_penalty"] = kwargs["repetition_penalty"]
205
214
 
206
215
  # Add seed if provided (LMStudio supports seed via OpenAI-compatible API)
207
216
  seed_value = kwargs.get("seed", self.seed)
@@ -426,8 +435,21 @@ class LMStudioProvider(BaseProvider):
426
435
  return handler
427
436
 
428
437
  def list_available_models(self, **kwargs) -> List[str]:
429
- """List available models from LMStudio server."""
438
+ """
439
+ List available models from LMStudio server.
440
+
441
+ Args:
442
+ **kwargs: Optional parameters including:
443
+ - base_url: LMStudio server URL
444
+ - input_capabilities: List of ModelInputCapability enums to filter by input capability
445
+ - output_capabilities: List of ModelOutputCapability enums to filter by output capability
446
+
447
+ Returns:
448
+ List of model names, optionally filtered by capabilities
449
+ """
430
450
  try:
451
+ from .model_capabilities import filter_models_by_capabilities
452
+
431
453
  # Use provided base_url or fall back to instance base_url
432
454
  base_url = kwargs.get('base_url', self.base_url)
433
455
 
@@ -435,7 +457,21 @@ class LMStudioProvider(BaseProvider):
435
457
  if response.status_code == 200:
436
458
  data = response.json()
437
459
  models = [model["id"] for model in data.get("data", [])]
438
- return sorted(models)
460
+ models = sorted(models)
461
+
462
+ # Apply new capability filtering if provided
463
+ input_capabilities = kwargs.get('input_capabilities')
464
+ output_capabilities = kwargs.get('output_capabilities')
465
+
466
+ if input_capabilities or output_capabilities:
467
+ models = filter_models_by_capabilities(
468
+ models,
469
+ input_capabilities=input_capabilities,
470
+ output_capabilities=output_capabilities
471
+ )
472
+
473
+
474
+ return models
439
475
  else:
440
476
  self.logger.warning(f"LMStudio API returned status {response.status_code}")
441
477
  return []
@@ -494,8 +494,19 @@ class MLXProvider(BaseProvider):
494
494
 
495
495
  @classmethod
496
496
  def list_available_models(cls, **kwargs) -> List[str]:
497
- """List available MLX models from HuggingFace cache."""
497
+ """
498
+ List available MLX models from HuggingFace cache.
499
+
500
+ Args:
501
+ **kwargs: Optional parameters including:
502
+ - input_capabilities: List of ModelInputCapability enums to filter by input capability
503
+ - output_capabilities: List of ModelOutputCapability enums to filter by output capability
504
+
505
+ Returns:
506
+ List of model names, optionally filtered by capabilities
507
+ """
498
508
  from pathlib import Path
509
+ from .model_capabilities import filter_models_by_capabilities
499
510
 
500
511
  try:
501
512
  hf_cache = Path.home() / ".cache" / "huggingface" / "hub"
@@ -513,7 +524,21 @@ class MLXProvider(BaseProvider):
513
524
  if "mlx" in model_name.lower():
514
525
  models.append(model_name)
515
526
 
516
- return sorted(models)
527
+ models = sorted(models)
528
+
529
+ # Apply new capability filtering if provided
530
+ input_capabilities = kwargs.get('input_capabilities')
531
+ output_capabilities = kwargs.get('output_capabilities')
532
+
533
+ if input_capabilities or output_capabilities:
534
+ models = filter_models_by_capabilities(
535
+ models,
536
+ input_capabilities=input_capabilities,
537
+ output_capabilities=output_capabilities
538
+ )
539
+
540
+
541
+ return models
517
542
 
518
543
  except Exception:
519
544
  return []
@@ -0,0 +1,352 @@
1
+ """
2
+ Model capability definitions for input and output filtering.
3
+
4
+ This module provides clear enums for filtering models based on what types of
5
+ input they can process and what types of output they can generate.
6
+
7
+ Key Concepts:
8
+ - Input Capabilities: What data types can the model accept and analyze?
9
+ - Output Capabilities: What data types can the model generate?
10
+
11
+ Examples:
12
+ >>> from abstractcore.providers.model_capabilities import ModelInputCapability, ModelOutputCapability
13
+ >>> from abstractcore.providers import OllamaProvider
14
+ >>>
15
+ >>> # Get models that can analyze images
16
+ >>> vision_models = OllamaProvider.list_available_models(
17
+ ... input_capabilities=[ModelInputCapability.IMAGE]
18
+ ... )
19
+ >>>
20
+ >>> # Get embedding models
21
+ >>> embedding_models = OllamaProvider.list_available_models(
22
+ ... output_capabilities=[ModelOutputCapability.EMBEDDINGS]
23
+ ... )
24
+ >>>
25
+ >>> # Get vision models that generate text (most common case)
26
+ >>> vision_text_models = OllamaProvider.list_available_models(
27
+ ... input_capabilities=[ModelInputCapability.TEXT, ModelInputCapability.IMAGE],
28
+ ... output_capabilities=[ModelOutputCapability.TEXT]
29
+ ... )
30
+ """
31
+
32
+ from enum import Enum
33
+ from typing import List, Set, Optional, Dict, Any
34
+ from ..architectures.detection import get_model_capabilities
35
+
36
+
37
+ class ModelInputCapability(Enum):
38
+ """
39
+ Enumeration of input data types that models can process and analyze.
40
+
41
+ These capabilities define what types of input data a model can accept
42
+ and understand. Most multimodal models support TEXT plus one or more
43
+ additional input types.
44
+
45
+ Values:
46
+ TEXT: Model can process text input (all models support this)
47
+ IMAGE: Model can analyze and understand images (vision models)
48
+ AUDIO: Model can process and analyze audio input
49
+ VIDEO: Model can analyze video content
50
+
51
+ Examples:
52
+ >>> # Text-only model
53
+ >>> text_only = [ModelInputCapability.TEXT]
54
+ >>>
55
+ >>> # Vision model (supports both text and images)
56
+ >>> vision_model = [ModelInputCapability.TEXT, ModelInputCapability.IMAGE]
57
+ >>>
58
+ >>> # Audio model (supports both text and audio)
59
+ >>> audio_model = [ModelInputCapability.TEXT, ModelInputCapability.AUDIO]
60
+ """
61
+
62
+ TEXT = "text"
63
+ """Model can process and understand text input (supported by all models)"""
64
+
65
+ IMAGE = "image"
66
+ """Model can analyze and understand image input (vision models)"""
67
+
68
+ AUDIO = "audio"
69
+ """Model can process and analyze audio input"""
70
+
71
+ VIDEO = "video"
72
+ """Model can analyze and understand video input"""
73
+
74
+
75
+ class ModelOutputCapability(Enum):
76
+ """
77
+ Enumeration of output data types that models can generate.
78
+
79
+ These capabilities define what types of output a model can produce.
80
+ Currently, AbstractCore supports text generation and embedding generation.
81
+
82
+ Values:
83
+ TEXT: Model generates text responses (most common)
84
+ EMBEDDINGS: Model generates vector embeddings (embedding models)
85
+
86
+ Examples:
87
+ >>> # Regular chat/completion model
88
+ >>> text_model = [ModelOutputCapability.TEXT]
89
+ >>>
90
+ >>> # Embedding model
91
+ >>> embedding_model = [ModelOutputCapability.EMBEDDINGS]
92
+
93
+ Note:
94
+ Future versions may include IMAGE, AUDIO, VIDEO for generative models.
95
+ """
96
+
97
+ TEXT = "text"
98
+ """Model generates text responses (chat, completion, etc.)"""
99
+
100
+ EMBEDDINGS = "embeddings"
101
+ """Model generates vector embeddings for semantic search/similarity"""
102
+
103
+
104
+ def get_model_input_capabilities(model_name: str) -> List[ModelInputCapability]:
105
+ """
106
+ Determine what input capabilities a model supports.
107
+
108
+ Args:
109
+ model_name: Name of the model to check
110
+
111
+ Returns:
112
+ List of input capabilities the model supports
113
+
114
+ Examples:
115
+ >>> caps = get_model_input_capabilities("gpt-4-vision-preview")
116
+ >>> print(caps)
117
+ [<ModelInputCapability.TEXT: 'text'>, <ModelInputCapability.IMAGE: 'image'>]
118
+
119
+ >>> caps = get_model_input_capabilities("gpt-4")
120
+ >>> print(caps)
121
+ [<ModelInputCapability.TEXT: 'text'>]
122
+ """
123
+ try:
124
+ capabilities = get_model_capabilities(model_name)
125
+ except Exception:
126
+ # If we can't get capabilities, assume text-only
127
+ return [ModelInputCapability.TEXT]
128
+
129
+ input_caps = [ModelInputCapability.TEXT] # All models support text
130
+
131
+ if capabilities.get("vision_support", False):
132
+ input_caps.append(ModelInputCapability.IMAGE)
133
+
134
+ if capabilities.get("audio_support", False):
135
+ input_caps.append(ModelInputCapability.AUDIO)
136
+
137
+ if capabilities.get("video_support", False):
138
+ input_caps.append(ModelInputCapability.VIDEO)
139
+
140
+ return input_caps
141
+
142
+
143
+ def get_model_output_capabilities(model_name: str) -> List[ModelOutputCapability]:
144
+ """
145
+ Determine what output capabilities a model supports.
146
+
147
+ Args:
148
+ model_name: Name of the model to check
149
+
150
+ Returns:
151
+ List of output capabilities the model supports
152
+
153
+ Examples:
154
+ >>> caps = get_model_output_capabilities("gpt-4")
155
+ >>> print(caps)
156
+ [<ModelOutputCapability.TEXT: 'text'>]
157
+
158
+ >>> caps = get_model_output_capabilities("text-embedding-3-small")
159
+ >>> print(caps)
160
+ [<ModelOutputCapability.EMBEDDINGS: 'embeddings'>]
161
+ """
162
+ try:
163
+ capabilities = get_model_capabilities(model_name)
164
+ except Exception:
165
+ # If we can't get capabilities, assume text generation
166
+ return [ModelOutputCapability.TEXT]
167
+
168
+ # Check if it's explicitly marked as an embedding model
169
+ if capabilities.get("model_type") == "embedding":
170
+ return [ModelOutputCapability.EMBEDDINGS]
171
+
172
+ # Check for embedding model name patterns
173
+ model_lower = model_name.lower()
174
+ embedding_patterns = [
175
+ "embedding", "embed", "embeddings",
176
+ "text-embedding", "sentence-transformer",
177
+ "all-minilm", "nomic-embed", "granite-embedding",
178
+ "qwen3-embedding", "embeddinggemma"
179
+ ]
180
+
181
+ if any(pattern in model_lower for pattern in embedding_patterns):
182
+ return [ModelOutputCapability.EMBEDDINGS]
183
+
184
+ # Default to text generation
185
+ return [ModelOutputCapability.TEXT]
186
+
187
+
188
+ def model_matches_input_capabilities(
189
+ model_name: str,
190
+ required_capabilities: List[ModelInputCapability]
191
+ ) -> bool:
192
+ """
193
+ Check if a model supports all required input capabilities.
194
+
195
+ Args:
196
+ model_name: Name of the model to check
197
+ required_capabilities: List of required input capabilities
198
+
199
+ Returns:
200
+ True if model supports all required capabilities, False otherwise
201
+
202
+ Examples:
203
+ >>> # Check if model supports both text and image input
204
+ >>> required = [ModelInputCapability.TEXT, ModelInputCapability.IMAGE]
205
+ >>> model_matches_input_capabilities("gpt-4-vision-preview", required)
206
+ True
207
+
208
+ >>> model_matches_input_capabilities("gpt-4", required)
209
+ False
210
+ """
211
+ if not required_capabilities:
212
+ return True
213
+
214
+ model_caps = get_model_input_capabilities(model_name)
215
+ model_caps_set = set(model_caps)
216
+ required_set = set(required_capabilities)
217
+
218
+ return required_set.issubset(model_caps_set)
219
+
220
+
221
+ def model_matches_output_capabilities(
222
+ model_name: str,
223
+ required_capabilities: List[ModelOutputCapability]
224
+ ) -> bool:
225
+ """
226
+ Check if a model supports all required output capabilities.
227
+
228
+ Args:
229
+ model_name: Name of the model to check
230
+ required_capabilities: List of required output capabilities
231
+
232
+ Returns:
233
+ True if model supports all required capabilities, False otherwise
234
+
235
+ Examples:
236
+ >>> # Check if model generates text
237
+ >>> required = [ModelOutputCapability.TEXT]
238
+ >>> model_matches_output_capabilities("gpt-4", required)
239
+ True
240
+
241
+ >>> # Check if model generates embeddings
242
+ >>> required = [ModelOutputCapability.EMBEDDINGS]
243
+ >>> model_matches_output_capabilities("text-embedding-3-small", required)
244
+ True
245
+ >>> model_matches_output_capabilities("gpt-4", required)
246
+ False
247
+ """
248
+ if not required_capabilities:
249
+ return True
250
+
251
+ model_caps = get_model_output_capabilities(model_name)
252
+ model_caps_set = set(model_caps)
253
+ required_set = set(required_capabilities)
254
+
255
+ return required_set.issubset(model_caps_set)
256
+
257
+
258
+ def filter_models_by_capabilities(
259
+ models: List[str],
260
+ input_capabilities: Optional[List[ModelInputCapability]] = None,
261
+ output_capabilities: Optional[List[ModelOutputCapability]] = None
262
+ ) -> List[str]:
263
+ """
264
+ Filter a list of models based on input and output capability requirements.
265
+
266
+ Args:
267
+ models: List of model names to filter
268
+ input_capabilities: Required input capabilities (None = no filtering)
269
+ output_capabilities: Required output capabilities (None = no filtering)
270
+
271
+ Returns:
272
+ Filtered list of model names that match all requirements
273
+
274
+ Examples:
275
+ >>> models = ["gpt-4", "gpt-4-vision-preview", "text-embedding-3-small"]
276
+ >>>
277
+ >>> # Get vision models
278
+ >>> vision_models = filter_models_by_capabilities(
279
+ ... models,
280
+ ... input_capabilities=[ModelInputCapability.IMAGE]
281
+ ... )
282
+ >>> print(vision_models)
283
+ ['gpt-4-vision-preview']
284
+ >>>
285
+ >>> # Get embedding models
286
+ >>> embedding_models = filter_models_by_capabilities(
287
+ ... models,
288
+ ... output_capabilities=[ModelOutputCapability.EMBEDDINGS]
289
+ ... )
290
+ >>> print(embedding_models)
291
+ ['text-embedding-3-small']
292
+ >>>
293
+ >>> # Get text generation models
294
+ >>> text_models = filter_models_by_capabilities(
295
+ ... models,
296
+ ... output_capabilities=[ModelOutputCapability.TEXT]
297
+ ... )
298
+ >>> print(text_models)
299
+ ['gpt-4', 'gpt-4-vision-preview']
300
+ """
301
+ filtered_models = []
302
+
303
+ for model_name in models:
304
+ try:
305
+ # Check input capabilities
306
+ if input_capabilities and not model_matches_input_capabilities(model_name, input_capabilities):
307
+ continue
308
+
309
+ # Check output capabilities
310
+ if output_capabilities and not model_matches_output_capabilities(model_name, output_capabilities):
311
+ continue
312
+
313
+ filtered_models.append(model_name)
314
+ except Exception:
315
+ # If we can't get capabilities, skip this model
316
+ # (it likely doesn't have an entry in model_capabilities.json)
317
+ continue
318
+
319
+ return filtered_models
320
+
321
+
322
+ def get_capability_summary(model_name: str) -> Dict[str, Any]:
323
+ """
324
+ Get a comprehensive summary of a model's input and output capabilities.
325
+
326
+ Args:
327
+ model_name: Name of the model to analyze
328
+
329
+ Returns:
330
+ Dictionary containing input and output capabilities
331
+
332
+ Examples:
333
+ >>> summary = get_capability_summary("gpt-4-vision-preview")
334
+ >>> print(summary)
335
+ {
336
+ 'model_name': 'gpt-4-vision-preview',
337
+ 'input_capabilities': ['text', 'image'],
338
+ 'output_capabilities': ['text'],
339
+ 'is_multimodal': True,
340
+ 'is_embedding_model': False
341
+ }
342
+ """
343
+ input_caps = get_model_input_capabilities(model_name)
344
+ output_caps = get_model_output_capabilities(model_name)
345
+
346
+ return {
347
+ 'model_name': model_name,
348
+ 'input_capabilities': [cap.value for cap in input_caps],
349
+ 'output_capabilities': [cap.value for cap in output_caps],
350
+ 'is_multimodal': len(input_caps) > 1,
351
+ 'is_embedding_model': ModelOutputCapability.EMBEDDINGS in output_caps
352
+ }
@@ -114,6 +114,7 @@ class OllamaProvider(BaseProvider):
114
114
  media: Optional[List['MediaContent']] = None,
115
115
  stream: bool = False,
116
116
  response_model: Optional[Type[BaseModel]] = None,
117
+ media_metadata: Optional[List[Dict[str, Any]]] = None,
117
118
  **kwargs) -> Union[GenerateResponse, Iterator[GenerateResponse]]:
118
119
  """Internal generation with Ollama"""
119
120
 
@@ -224,9 +225,9 @@ class OllamaProvider(BaseProvider):
224
225
  if stream:
225
226
  return self._stream_generate(endpoint, payload, tools, kwargs.get('tool_call_tags'))
226
227
  else:
227
- return self._single_generate(endpoint, payload, tools)
228
+ return self._single_generate(endpoint, payload, tools, media_metadata)
228
229
 
229
- def _single_generate(self, endpoint: str, payload: Dict[str, Any], tools: Optional[List[Dict[str, Any]]] = None) -> GenerateResponse:
230
+ def _single_generate(self, endpoint: str, payload: Dict[str, Any], tools: Optional[List[Dict[str, Any]]] = None, media_metadata: Optional[List[Dict[str, Any]]] = None) -> GenerateResponse:
230
231
  """Generate single response"""
231
232
  try:
232
233
  # Track generation time
@@ -262,6 +263,12 @@ class OllamaProvider(BaseProvider):
262
263
  },
263
264
  gen_time=gen_time
264
265
  )
266
+
267
+ # Attach media metadata if available
268
+ if media_metadata:
269
+ if not generate_response.metadata:
270
+ generate_response.metadata = {}
271
+ generate_response.metadata['media_metadata'] = media_metadata
265
272
 
266
273
  # Execute tools if enabled and tools are present
267
274
  if self.execute_tools and tools and self.tool_handler.supports_prompted and content:
@@ -446,8 +453,21 @@ class OllamaProvider(BaseProvider):
446
453
  self.client = httpx.Client(timeout=self._timeout)
447
454
 
448
455
  def list_available_models(self, **kwargs) -> List[str]:
449
- """List available models from Ollama server."""
456
+ """
457
+ List available models from Ollama server.
458
+
459
+ Args:
460
+ **kwargs: Optional parameters including:
461
+ - base_url: Ollama server URL
462
+ - input_capabilities: List of ModelInputCapability enums to filter by input capability
463
+ - output_capabilities: List of ModelOutputCapability enums to filter by output capability
464
+
465
+ Returns:
466
+ List of model names, optionally filtered by capabilities
467
+ """
450
468
  try:
469
+ from .model_capabilities import filter_models_by_capabilities
470
+
451
471
  # Use provided base_url or fall back to instance base_url
452
472
  base_url = kwargs.get('base_url', self.base_url)
453
473
 
@@ -455,7 +475,21 @@ class OllamaProvider(BaseProvider):
455
475
  if response.status_code == 200:
456
476
  data = response.json()
457
477
  models = [model["name"] for model in data.get("models", [])]
458
- return sorted(models)
478
+ models = sorted(models)
479
+
480
+ # Apply new capability filtering if provided
481
+ input_capabilities = kwargs.get('input_capabilities')
482
+ output_capabilities = kwargs.get('output_capabilities')
483
+
484
+ if input_capabilities or output_capabilities:
485
+ models = filter_models_by_capabilities(
486
+ models,
487
+ input_capabilities=input_capabilities,
488
+ output_capabilities=output_capabilities
489
+ )
490
+
491
+
492
+ return models
459
493
  else:
460
494
  self.logger.warning(f"Ollama API returned status {response.status_code}")
461
495
  return []
@@ -511,9 +511,21 @@ class OpenAIProvider(BaseProvider):
511
511
 
512
512
  @classmethod
513
513
  def list_available_models(cls, **kwargs) -> List[str]:
514
- """List available models from OpenAI API."""
514
+ """
515
+ List available models from OpenAI API.
516
+
517
+ Args:
518
+ **kwargs: Optional parameters including:
519
+ - api_key: OpenAI API key
520
+ - input_capabilities: List of ModelInputCapability enums to filter by input capability
521
+ - output_capabilities: List of ModelOutputCapability enums to filter by output capability
522
+
523
+ Returns:
524
+ List of model names, optionally filtered by capabilities
525
+ """
515
526
  try:
516
527
  import openai
528
+ from .model_capabilities import filter_models_by_capabilities
517
529
 
518
530
  # Get API key from kwargs or environment
519
531
  api_key = kwargs.get('api_key') or os.getenv("OPENAI_API_KEY")
@@ -542,7 +554,21 @@ class OpenAIProvider(BaseProvider):
542
554
  ]):
543
555
  chat_models.append(model_id)
544
556
 
545
- return sorted(chat_models, reverse=True) # Latest models first
557
+ chat_models = sorted(chat_models, reverse=True) # Latest models first
558
+
559
+ # Apply new capability filtering if provided
560
+ input_capabilities = kwargs.get('input_capabilities')
561
+ output_capabilities = kwargs.get('output_capabilities')
562
+
563
+ if input_capabilities or output_capabilities:
564
+ chat_models = filter_models_by_capabilities(
565
+ chat_models,
566
+ input_capabilities=input_capabilities,
567
+ output_capabilities=output_capabilities
568
+ )
569
+
570
+
571
+ return chat_models
546
572
 
547
573
  except Exception:
548
574
  return []