abstractcore 2.5.0__py3-none-any.whl → 2.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. abstractcore/__init__.py +12 -0
  2. abstractcore/apps/__main__.py +8 -1
  3. abstractcore/apps/deepsearch.py +644 -0
  4. abstractcore/apps/intent.py +614 -0
  5. abstractcore/architectures/detection.py +250 -4
  6. abstractcore/assets/architecture_formats.json +14 -1
  7. abstractcore/assets/model_capabilities.json +583 -44
  8. abstractcore/compression/__init__.py +29 -0
  9. abstractcore/compression/analytics.py +420 -0
  10. abstractcore/compression/cache.py +250 -0
  11. abstractcore/compression/config.py +279 -0
  12. abstractcore/compression/exceptions.py +30 -0
  13. abstractcore/compression/glyph_processor.py +381 -0
  14. abstractcore/compression/optimizer.py +388 -0
  15. abstractcore/compression/orchestrator.py +380 -0
  16. abstractcore/compression/pil_text_renderer.py +818 -0
  17. abstractcore/compression/quality.py +226 -0
  18. abstractcore/compression/text_formatter.py +666 -0
  19. abstractcore/compression/vision_compressor.py +371 -0
  20. abstractcore/config/main.py +66 -1
  21. abstractcore/config/manager.py +111 -5
  22. abstractcore/core/session.py +105 -5
  23. abstractcore/events/__init__.py +1 -1
  24. abstractcore/media/auto_handler.py +312 -18
  25. abstractcore/media/handlers/local_handler.py +14 -2
  26. abstractcore/media/handlers/openai_handler.py +62 -3
  27. abstractcore/media/processors/__init__.py +11 -1
  28. abstractcore/media/processors/direct_pdf_processor.py +210 -0
  29. abstractcore/media/processors/glyph_pdf_processor.py +227 -0
  30. abstractcore/media/processors/image_processor.py +7 -1
  31. abstractcore/media/processors/text_processor.py +18 -3
  32. abstractcore/media/types.py +164 -7
  33. abstractcore/processing/__init__.py +5 -1
  34. abstractcore/processing/basic_deepsearch.py +2173 -0
  35. abstractcore/processing/basic_intent.py +690 -0
  36. abstractcore/providers/__init__.py +18 -0
  37. abstractcore/providers/anthropic_provider.py +29 -2
  38. abstractcore/providers/base.py +279 -6
  39. abstractcore/providers/huggingface_provider.py +658 -27
  40. abstractcore/providers/lmstudio_provider.py +52 -2
  41. abstractcore/providers/mlx_provider.py +103 -4
  42. abstractcore/providers/model_capabilities.py +352 -0
  43. abstractcore/providers/ollama_provider.py +44 -6
  44. abstractcore/providers/openai_provider.py +29 -2
  45. abstractcore/providers/registry.py +91 -19
  46. abstractcore/server/app.py +91 -81
  47. abstractcore/structured/handler.py +161 -1
  48. abstractcore/tools/common_tools.py +98 -3
  49. abstractcore/utils/__init__.py +4 -1
  50. abstractcore/utils/cli.py +114 -1
  51. abstractcore/utils/trace_export.py +287 -0
  52. abstractcore/utils/version.py +1 -1
  53. abstractcore/utils/vlm_token_calculator.py +655 -0
  54. {abstractcore-2.5.0.dist-info → abstractcore-2.5.3.dist-info}/METADATA +140 -23
  55. abstractcore-2.5.3.dist-info/RECORD +107 -0
  56. {abstractcore-2.5.0.dist-info → abstractcore-2.5.3.dist-info}/entry_points.txt +4 -0
  57. abstractcore-2.5.0.dist-info/RECORD +0 -86
  58. {abstractcore-2.5.0.dist-info → abstractcore-2.5.3.dist-info}/WHEEL +0 -0
  59. {abstractcore-2.5.0.dist-info → abstractcore-2.5.3.dist-info}/licenses/LICENSE +0 -0
  60. {abstractcore-2.5.0.dist-info → abstractcore-2.5.3.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,16 @@ from .registry import (
22
22
  get_available_models_for_provider
23
23
  )
24
24
 
25
+ # Model capability filtering (new system)
26
+ from .model_capabilities import (
27
+ ModelInputCapability,
28
+ ModelOutputCapability,
29
+ get_model_input_capabilities,
30
+ get_model_output_capabilities,
31
+ filter_models_by_capabilities,
32
+ get_capability_summary
33
+ )
34
+
25
35
  __all__ = [
26
36
  # Provider classes
27
37
  'BaseProvider',
@@ -43,4 +53,12 @@ __all__ = [
43
53
  'get_all_providers_status',
44
54
  'create_provider',
45
55
  'get_available_models_for_provider',
56
+
57
+ # Model capability filtering (new system)
58
+ 'ModelInputCapability',
59
+ 'ModelOutputCapability',
60
+ 'get_model_input_capabilities',
61
+ 'get_model_output_capabilities',
62
+ 'filter_models_by_capabilities',
63
+ 'get_capability_summary',
46
64
  ]
@@ -32,6 +32,7 @@ class AnthropicProvider(BaseProvider):
32
32
 
33
33
  def __init__(self, model: str = "claude-3-haiku-20240307", api_key: Optional[str] = None, **kwargs):
34
34
  super().__init__(model, **kwargs)
35
+ self.provider = "anthropic"
35
36
 
36
37
  if not ANTHROPIC_AVAILABLE:
37
38
  raise ImportError("Anthropic package not installed. Install with: pip install anthropic")
@@ -454,9 +455,21 @@ class AnthropicProvider(BaseProvider):
454
455
  # Create new client with updated timeout
455
456
  self.client = anthropic.Anthropic(api_key=self.api_key, timeout=self._timeout)
456
457
  def list_available_models(self, **kwargs) -> List[str]:
457
- """List available models from Anthropic API."""
458
+ """
459
+ List available models from Anthropic API.
460
+
461
+ Args:
462
+ **kwargs: Optional parameters including:
463
+ - api_key: Anthropic API key
464
+ - input_capabilities: List of ModelInputCapability enums to filter by input capability
465
+ - output_capabilities: List of ModelOutputCapability enums to filter by output capability
466
+
467
+ Returns:
468
+ List of model names, optionally filtered by capabilities
469
+ """
458
470
  try:
459
471
  import httpx
472
+ from .model_capabilities import filter_models_by_capabilities
460
473
 
461
474
  # Use provided API key or instance API key
462
475
  api_key = kwargs.get('api_key', self.api_key)
@@ -480,7 +493,21 @@ class AnthropicProvider(BaseProvider):
480
493
  data = response.json()
481
494
  models = [model["id"] for model in data.get("data", [])]
482
495
  self.logger.debug(f"Retrieved {len(models)} models from Anthropic API")
483
- return sorted(models, reverse=True) # Latest models first
496
+ models = sorted(models, reverse=True) # Latest models first
497
+
498
+ # Apply new capability filtering if provided
499
+ input_capabilities = kwargs.get('input_capabilities')
500
+ output_capabilities = kwargs.get('output_capabilities')
501
+
502
+ if input_capabilities or output_capabilities:
503
+ models = filter_models_by_capabilities(
504
+ models,
505
+ input_capabilities=input_capabilities,
506
+ output_capabilities=output_capabilities
507
+ )
508
+
509
+
510
+ return models
484
511
  else:
485
512
  self.logger.warning(f"Anthropic API returned status {response.status_code}")
486
513
  return []
@@ -3,6 +3,8 @@ Base provider with integrated telemetry, events, and exception handling.
3
3
  """
4
4
 
5
5
  import time
6
+ import uuid
7
+ from collections import deque
6
8
  from typing import List, Dict, Any, Optional, Union, Iterator, Type
7
9
  from abc import ABC, abstractmethod
8
10
 
@@ -38,6 +40,7 @@ class BaseProvider(AbstractCoreInterface, ABC):
38
40
 
39
41
  def __init__(self, model: str, **kwargs):
40
42
  AbstractCoreInterface.__init__(self, model, **kwargs)
43
+ self.provider = None
41
44
 
42
45
  # Setup structured logging
43
46
  self.logger = get_logger(self.__class__.__name__)
@@ -66,6 +69,13 @@ class BaseProvider(AbstractCoreInterface, ABC):
66
69
 
67
70
  # Create provider key for circuit breaker tracking
68
71
  self.provider_key = f"{self.__class__.__name__}:{self.model}"
72
+
73
+ # Setup Glyph compression configuration
74
+ self.glyph_config = kwargs.get('glyph_config', None)
75
+
76
+ # Setup interaction tracing
77
+ self.enable_tracing = kwargs.get('enable_tracing', False)
78
+ self._traces = deque(maxlen=kwargs.get('max_traces', 100)) # Ring buffer for memory efficiency
69
79
 
70
80
  # Provider created successfully - no event emission needed
71
81
  # (The simplified event system focuses on generation and tool events only)
@@ -172,6 +182,97 @@ class BaseProvider(AbstractCoreInterface, ABC):
172
182
  result_info = f" (result length: {len(str(result))})" if result else ""
173
183
  self.logger.info(f"Tool call completed: {tool_name}{result_info}")
174
184
 
185
+ def _capture_trace(self, prompt: str, messages: Optional[List[Dict[str, str]]],
186
+ system_prompt: Optional[str], tools: Optional[List[Dict[str, Any]]],
187
+ response: GenerateResponse, kwargs: Dict[str, Any]) -> str:
188
+ """
189
+ Capture interaction trace for observability.
190
+
191
+ Args:
192
+ prompt: Input prompt
193
+ messages: Conversation history
194
+ system_prompt: System prompt
195
+ tools: Available tools
196
+ response: Generated response
197
+ kwargs: Additional generation parameters
198
+
199
+ Returns:
200
+ Trace ID (UUID string)
201
+ """
202
+ trace_id = str(uuid.uuid4())
203
+
204
+ # Extract generation parameters
205
+ temperature = kwargs.get('temperature', self.temperature)
206
+ max_tokens = kwargs.get('max_tokens', self.max_tokens)
207
+ max_output_tokens = kwargs.get('max_output_tokens', self.max_output_tokens)
208
+ seed = kwargs.get('seed', self.seed)
209
+ top_p = kwargs.get('top_p', getattr(self, 'top_p', None))
210
+ top_k = kwargs.get('top_k', getattr(self, 'top_k', None))
211
+
212
+ # Build parameters dict
213
+ parameters = {
214
+ 'temperature': temperature,
215
+ 'max_tokens': max_tokens,
216
+ 'max_output_tokens': max_output_tokens,
217
+ }
218
+ if seed is not None:
219
+ parameters['seed'] = seed
220
+ if top_p is not None:
221
+ parameters['top_p'] = top_p
222
+ if top_k is not None:
223
+ parameters['top_k'] = top_k
224
+
225
+ # Create trace record
226
+ trace = {
227
+ 'trace_id': trace_id,
228
+ 'timestamp': datetime.now().isoformat(),
229
+ 'provider': self.__class__.__name__,
230
+ 'model': self.model,
231
+ 'system_prompt': system_prompt,
232
+ 'prompt': prompt,
233
+ 'messages': messages,
234
+ 'tools': tools,
235
+ 'parameters': parameters,
236
+ 'response': {
237
+ 'content': response.content,
238
+ 'raw_response': None, # Omit raw_response to save memory and avoid logging sensitive data
239
+ 'tool_calls': response.tool_calls,
240
+ 'finish_reason': response.finish_reason,
241
+ 'usage': response.usage,
242
+ 'generation_time_ms': response.gen_time,
243
+ },
244
+ 'metadata': kwargs.get('trace_metadata', {})
245
+ }
246
+
247
+ # Store trace in ring buffer
248
+ self._traces.append(trace)
249
+
250
+ return trace_id
251
+
252
+ def get_traces(self, trace_id: Optional[str] = None, last_n: Optional[int] = None) -> Union[Dict[str, Any], List[Dict[str, Any]]]:
253
+ """
254
+ Retrieve interaction traces.
255
+
256
+ Args:
257
+ trace_id: Optional specific trace ID to retrieve
258
+ last_n: Optional number of most recent traces to retrieve
259
+
260
+ Returns:
261
+ Single trace dict if trace_id provided, list of traces otherwise
262
+ """
263
+ if trace_id:
264
+ # Find specific trace by ID
265
+ for trace in self._traces:
266
+ if trace['trace_id'] == trace_id:
267
+ return trace
268
+ return None
269
+
270
+ if last_n:
271
+ # Return last N traces
272
+ return list(self._traces)[-last_n:] if len(self._traces) >= last_n else list(self._traces)
273
+
274
+ # Return all traces
275
+ return list(self._traces)
175
276
 
176
277
  def _handle_api_error(self, error: Exception) -> Exception:
177
278
  """
@@ -210,6 +311,7 @@ class BaseProvider(AbstractCoreInterface, ABC):
210
311
  retry_strategy=None, # Custom retry strategy for structured output
211
312
  tool_call_tags: Optional[str] = None, # Tool call tag rewriting
212
313
  execute_tools: Optional[bool] = None, # Tool execution control
314
+ glyph_compression: Optional[str] = None, # Glyph compression preference
213
315
  **kwargs) -> Union[GenerateResponse, Iterator[GenerateResponse], BaseModel]:
214
316
  """
215
317
  Generate with integrated telemetry and error handling.
@@ -226,6 +328,7 @@ class BaseProvider(AbstractCoreInterface, ABC):
226
328
  retry_strategy: Optional retry strategy for structured output validation
227
329
  tool_call_tags: Optional tool call tag format for rewriting
228
330
  execute_tools: Whether to execute tools automatically (True) or let agent handle execution (False)
331
+ glyph_compression: Glyph compression preference ("auto", "always", "never")
229
332
  """
230
333
  # Handle structured output request
231
334
  if response_model is not None:
@@ -268,8 +371,17 @@ class BaseProvider(AbstractCoreInterface, ABC):
268
371
 
269
372
  # Process media content if provided
270
373
  processed_media = None
374
+ media_metadata = None
271
375
  if media:
272
- processed_media = self._process_media_content(media)
376
+ compression_pref = glyph_compression or kwargs.get('glyph_compression', 'auto')
377
+ processed_media = self._process_media_content(media, compression_pref)
378
+
379
+ # Extract metadata from processed media for response
380
+ if processed_media:
381
+ media_metadata = []
382
+ for media_content in processed_media:
383
+ if hasattr(media_content, 'metadata') and media_content.metadata:
384
+ media_metadata.append(media_content.metadata)
273
385
 
274
386
  # Convert tools to ToolDefinition objects first (outside retry loop)
275
387
  converted_tools = None
@@ -326,6 +438,7 @@ class BaseProvider(AbstractCoreInterface, ABC):
326
438
  stream=stream,
327
439
  execute_tools=should_execute_tools,
328
440
  tool_call_tags=tool_call_tags,
441
+ media_metadata=media_metadata,
329
442
  **kwargs
330
443
  )
331
444
 
@@ -379,6 +492,26 @@ class BaseProvider(AbstractCoreInterface, ABC):
379
492
  # Apply default qwen3 rewriting for non-streaming responses
380
493
  response = self._apply_non_streaming_tag_rewriting(response, tool_call_tags)
381
494
 
495
+ # Add visual token calculation if media metadata is available
496
+ if media_metadata and response:
497
+ self.logger.debug(f"Enhancing response with visual tokens from {len(media_metadata)} media items")
498
+ response = self._enhance_response_with_visual_tokens(response, media_metadata)
499
+
500
+ # Capture interaction trace if enabled
501
+ if self.enable_tracing and response:
502
+ trace_id = self._capture_trace(
503
+ prompt=prompt,
504
+ messages=messages,
505
+ system_prompt=system_prompt,
506
+ tools=converted_tools,
507
+ response=response,
508
+ kwargs=kwargs
509
+ )
510
+ # Attach trace_id to response metadata
511
+ if not response.metadata:
512
+ response.metadata = {}
513
+ response.metadata['trace_id'] = trace_id
514
+
382
515
  self._track_generation(prompt, response, start_time, success=True, stream=False)
383
516
  return response
384
517
 
@@ -410,6 +543,7 @@ class BaseProvider(AbstractCoreInterface, ABC):
410
543
  stream: bool = False,
411
544
  response_model: Optional[Type[BaseModel]] = None,
412
545
  execute_tools: Optional[bool] = None,
546
+ media_metadata: Optional[List[Dict[str, Any]]] = None,
413
547
  **kwargs) -> Union[GenerateResponse, Iterator[GenerateResponse]]:
414
548
  """
415
549
  Internal generation method to be implemented by subclasses.
@@ -428,6 +562,102 @@ class BaseProvider(AbstractCoreInterface, ABC):
428
562
  """
429
563
  raise NotImplementedError("Subclasses must implement _generate_internal")
430
564
 
565
+ def _enhance_response_with_visual_tokens(self, response: GenerateResponse, media_metadata: List[Dict[str, Any]]) -> GenerateResponse:
566
+ """
567
+ Enhance the response with visual token calculations for Glyph compression.
568
+ This method is called automatically by BaseProvider for all providers.
569
+ """
570
+ try:
571
+ # Calculate visual tokens using VLM token calculator
572
+ provider_name = self.provider or self.__class__.__name__.lower().replace('provider', '')
573
+ self.logger.debug(f"Calculating visual tokens for provider={provider_name}, model={self.model}")
574
+
575
+ visual_tokens = self._calculate_visual_tokens(media_metadata, provider_name, self.model)
576
+ self.logger.debug(f"Calculated visual tokens: {visual_tokens}")
577
+
578
+ if visual_tokens > 0:
579
+ # Ensure response has metadata
580
+ if not response.metadata:
581
+ response.metadata = {}
582
+
583
+ # Add visual token information to metadata
584
+ response.metadata['visual_tokens'] = visual_tokens
585
+
586
+ # Ensure response has usage dict
587
+ if not response.usage:
588
+ response.usage = {}
589
+
590
+ # Add visual tokens to usage
591
+ response.usage['visual_tokens'] = visual_tokens
592
+
593
+ # Update total tokens to include visual tokens
594
+ original_total = response.usage.get('total_tokens', 0)
595
+ response.usage['total_tokens'] = original_total + visual_tokens
596
+
597
+ self.logger.info(f"Enhanced response with {visual_tokens} visual tokens (new total: {response.usage['total_tokens']})")
598
+ else:
599
+ self.logger.debug("No visual tokens calculated - skipping enhancement")
600
+
601
+ except Exception as e:
602
+ self.logger.warning(f"Failed to enhance response with visual tokens: {e}")
603
+
604
+ return response
605
+
606
+ def _calculate_visual_tokens(self, media_metadata: List[Dict[str, Any]], provider: str, model: str) -> int:
607
+ """Calculate visual tokens from media metadata using VLM token calculator."""
608
+ try:
609
+ from ..utils.vlm_token_calculator import VLMTokenCalculator
610
+ from pathlib import Path
611
+
612
+ calculator = VLMTokenCalculator()
613
+ total_visual_tokens = 0
614
+
615
+ self.logger.debug(f"Processing {len(media_metadata)} media metadata items")
616
+
617
+ for i, metadata in enumerate(media_metadata):
618
+ self.logger.debug(f"Metadata {i}: processing_method={metadata.get('processing_method')}")
619
+
620
+ # Check if this is Glyph compression
621
+ if metadata.get('processing_method') == 'direct_pdf_conversion':
622
+ glyph_cache_dir = metadata.get('glyph_cache_dir')
623
+ total_images = metadata.get('total_images', 0)
624
+
625
+ self.logger.debug(f"Glyph metadata found: cache_dir={glyph_cache_dir}, total_images={total_images}")
626
+
627
+ if glyph_cache_dir and Path(glyph_cache_dir).exists():
628
+ # Get actual image paths
629
+ cache_dir = Path(glyph_cache_dir)
630
+ image_paths = list(cache_dir.glob("image_*.png"))
631
+
632
+ self.logger.debug(f"Found {len(image_paths)} images in cache directory")
633
+
634
+ if image_paths:
635
+ # Calculate tokens for all images
636
+ token_analysis = calculator.calculate_tokens_for_images(
637
+ image_paths=image_paths,
638
+ provider=provider,
639
+ model=model
640
+ )
641
+ total_visual_tokens += token_analysis['total_tokens']
642
+
643
+ self.logger.debug(f"Calculated {token_analysis['total_tokens']} visual tokens for {len(image_paths)} Glyph images")
644
+ else:
645
+ # Fallback: estimate based on total_images
646
+ base_tokens = calculator.PROVIDER_CONFIGS.get(provider, {}).get('base_tokens', 512)
647
+ estimated_tokens = total_images * base_tokens
648
+ total_visual_tokens += estimated_tokens
649
+
650
+ self.logger.debug(f"Estimated {estimated_tokens} visual tokens for {total_images} Glyph images (fallback)")
651
+ else:
652
+ self.logger.debug(f"Cache directory not found or doesn't exist: {glyph_cache_dir}")
653
+
654
+ self.logger.debug(f"Total visual tokens calculated: {total_visual_tokens}")
655
+ return total_visual_tokens
656
+
657
+ except Exception as e:
658
+ self.logger.warning(f"Failed to calculate visual tokens: {e}")
659
+ return 0
660
+
431
661
  def _initialize_token_limits(self):
432
662
  """Initialize default token limits based on model capabilities"""
433
663
  # Set default max_tokens if not provided
@@ -804,12 +1034,14 @@ class BaseProvider(AbstractCoreInterface, ABC):
804
1034
  """Rough estimation of token count for given text"""
805
1035
  return super().estimate_tokens(text)
806
1036
 
807
- def _process_media_content(self, media: List[Union[str, Dict[str, Any], 'MediaContent']]) -> List['MediaContent']:
1037
+ def _process_media_content(self, media: List[Union[str, Dict[str, Any], 'MediaContent']],
1038
+ glyph_compression: str = "auto") -> List['MediaContent']:
808
1039
  """
809
1040
  Process media content from various input formats into standardized MediaContent objects.
810
1041
 
811
1042
  Args:
812
1043
  media: List of media inputs (file paths, MediaContent objects, or dicts)
1044
+ glyph_compression: Glyph compression preference (auto, always, never)
813
1045
 
814
1046
  Returns:
815
1047
  List of processed MediaContent objects
@@ -837,8 +1069,16 @@ class BaseProvider(AbstractCoreInterface, ABC):
837
1069
  try:
838
1070
  if isinstance(media_item, str):
839
1071
  # File path - process with auto media handler
840
- handler = AutoMediaHandler()
841
- result = handler.process_file(media_item)
1072
+ handler = AutoMediaHandler(
1073
+ enable_glyph_compression=True,
1074
+ glyph_config=getattr(self, 'glyph_config', None)
1075
+ )
1076
+ result = handler.process_file(
1077
+ media_item,
1078
+ provider=self.provider,
1079
+ model=self.model,
1080
+ glyph_compression=glyph_compression
1081
+ )
842
1082
  if result.success:
843
1083
  processed_media.append(result.media_content)
844
1084
  else:
@@ -880,14 +1120,47 @@ class BaseProvider(AbstractCoreInterface, ABC):
880
1120
  The server will use this method to aggregate models across all providers.
881
1121
 
882
1122
  Args:
883
- **kwargs: Provider-specific parameters (e.g., api_key, base_url)
1123
+ **kwargs: Provider-specific parameters including:
1124
+ - api_key: API key for authentication (if required)
1125
+ - base_url: Base URL for API endpoint (if applicable)
1126
+ - input_capabilities: Optional list of ModelInputCapability enums to filter by input capability
1127
+ (e.g., [ModelInputCapability.IMAGE] for vision models)
1128
+ - output_capabilities: Optional list of ModelOutputCapability enums to filter by output capability
1129
+ (e.g., [ModelOutputCapability.EMBEDDINGS] for embedding models)
884
1130
 
885
1131
  Returns:
886
- List of model names available for this provider
1132
+ List of model names available for this provider, optionally filtered by capabilities
1133
+
1134
+ Examples:
1135
+ >>> from abstractcore.providers import OpenAIProvider
1136
+ >>> from abstractcore.providers.model_capabilities import ModelInputCapability, ModelOutputCapability
1137
+ >>>
1138
+ >>> # Get all models
1139
+ >>> all_models = OpenAIProvider.list_available_models(api_key="...")
1140
+ >>>
1141
+ >>> # Get models that can analyze images
1142
+ >>> vision_models = OpenAIProvider.list_available_models(
1143
+ ... api_key="...",
1144
+ ... input_capabilities=[ModelInputCapability.IMAGE]
1145
+ ... )
1146
+ >>>
1147
+ >>> # Get embedding models
1148
+ >>> embedding_models = OpenAIProvider.list_available_models(
1149
+ ... api_key="...",
1150
+ ... output_capabilities=[ModelOutputCapability.EMBEDDINGS]
1151
+ ... )
1152
+ >>>
1153
+ >>> # Get vision models that generate text (most common case)
1154
+ >>> vision_text_models = OpenAIProvider.list_available_models(
1155
+ ... api_key="...",
1156
+ ... input_capabilities=[ModelInputCapability.TEXT, ModelInputCapability.IMAGE],
1157
+ ... output_capabilities=[ModelOutputCapability.TEXT]
1158
+ ... )
887
1159
 
888
1160
  Note:
889
1161
  This is an abstract method that MUST be implemented by all provider subclasses.
890
1162
  Each provider should implement its own discovery logic (API calls, local scanning, etc.).
1163
+ Providers should apply the capability filters if provided in kwargs.
891
1164
  """
892
1165
  pass
893
1166