abstractcore 2.4.2__py3-none-any.whl → 2.4.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- abstractcore/apps/app_config_utils.py +19 -0
- abstractcore/apps/summarizer.py +85 -56
- abstractcore/architectures/detection.py +15 -4
- abstractcore/assets/architecture_formats.json +1 -1
- abstractcore/assets/model_capabilities.json +420 -11
- abstractcore/core/interface.py +2 -0
- abstractcore/core/session.py +4 -0
- abstractcore/embeddings/manager.py +54 -16
- abstractcore/media/__init__.py +116 -148
- abstractcore/media/auto_handler.py +363 -0
- abstractcore/media/base.py +456 -0
- abstractcore/media/capabilities.py +335 -0
- abstractcore/media/types.py +300 -0
- abstractcore/media/vision_fallback.py +260 -0
- abstractcore/providers/anthropic_provider.py +18 -1
- abstractcore/providers/base.py +187 -0
- abstractcore/providers/huggingface_provider.py +111 -12
- abstractcore/providers/lmstudio_provider.py +88 -5
- abstractcore/providers/mlx_provider.py +33 -1
- abstractcore/providers/ollama_provider.py +37 -3
- abstractcore/providers/openai_provider.py +18 -1
- abstractcore/server/app.py +1390 -104
- abstractcore/tools/common_tools.py +12 -8
- abstractcore/utils/__init__.py +9 -5
- abstractcore/utils/cli.py +199 -17
- abstractcore/utils/message_preprocessor.py +182 -0
- abstractcore/utils/structured_logging.py +117 -16
- abstractcore/utils/version.py +1 -1
- {abstractcore-2.4.2.dist-info → abstractcore-2.4.4.dist-info}/METADATA +214 -20
- {abstractcore-2.4.2.dist-info → abstractcore-2.4.4.dist-info}/RECORD +34 -27
- {abstractcore-2.4.2.dist-info → abstractcore-2.4.4.dist-info}/entry_points.txt +1 -0
- {abstractcore-2.4.2.dist-info → abstractcore-2.4.4.dist-info}/WHEEL +0 -0
- {abstractcore-2.4.2.dist-info → abstractcore-2.4.4.dist-info}/licenses/LICENSE +0 -0
- {abstractcore-2.4.2.dist-info → abstractcore-2.4.4.dist-info}/top_level.txt +0 -0
abstractcore/server/app.py
CHANGED
|
@@ -1,31 +1,51 @@
|
|
|
1
1
|
"""
|
|
2
|
-
AbstractCore Server -
|
|
2
|
+
AbstractCore Server - Universal LLM Gateway with Media Processing
|
|
3
3
|
|
|
4
4
|
A focused FastAPI server that provides OpenAI-compatible endpoints with support for
|
|
5
|
-
multiple agent formats
|
|
5
|
+
multiple agent formats, tool calling, and comprehensive media processing capabilities.
|
|
6
6
|
|
|
7
7
|
Key Features:
|
|
8
8
|
- Universal tool call syntax conversion (OpenAI, Codex, Qwen3, LLaMA3, custom)
|
|
9
9
|
- Auto-detection of target agent format
|
|
10
|
+
- Media processing for images, documents, and data files
|
|
11
|
+
- OpenAI Vision API compatible format support
|
|
12
|
+
- Streaming responses with media attachments
|
|
10
13
|
- Clean delegation to AbstractCore
|
|
11
14
|
- Proper ReAct loop support
|
|
12
15
|
- Comprehensive model listing from AbstractCore providers
|
|
16
|
+
|
|
17
|
+
Media Support:
|
|
18
|
+
- Images: PNG, JPEG, GIF, WEBP, BMP, TIFF
|
|
19
|
+
- Documents: PDF, DOCX, XLSX, PPTX
|
|
20
|
+
- Data: CSV, TSV, JSON, XML, TXT, MD
|
|
21
|
+
- Size limits: 10MB per file, 32MB total per request
|
|
22
|
+
- Both base64 data URLs and HTTP URLs supported
|
|
13
23
|
"""
|
|
14
24
|
|
|
15
25
|
import os
|
|
16
26
|
import json
|
|
17
27
|
import time
|
|
18
28
|
import uuid
|
|
19
|
-
|
|
29
|
+
import base64
|
|
30
|
+
import tempfile
|
|
31
|
+
import urllib.request
|
|
32
|
+
import urllib.parse
|
|
33
|
+
import argparse
|
|
34
|
+
import sys
|
|
35
|
+
import logging
|
|
36
|
+
from typing import List, Dict, Any, Optional, Literal, Union, Iterator, Tuple, Annotated
|
|
20
37
|
from enum import Enum
|
|
21
|
-
from fastapi import FastAPI, HTTPException, Request, Query
|
|
22
|
-
from fastapi.responses import StreamingResponse
|
|
38
|
+
from fastapi import FastAPI, HTTPException, Request, Query, Body
|
|
39
|
+
from fastapi.responses import StreamingResponse, JSONResponse
|
|
23
40
|
from fastapi.middleware.cors import CORSMiddleware
|
|
24
|
-
from
|
|
41
|
+
from fastapi.exceptions import RequestValidationError
|
|
42
|
+
from pydantic import BaseModel, Field, ValidationError
|
|
43
|
+
from starlette.exceptions import HTTPException as StarletteHTTPException
|
|
25
44
|
|
|
26
45
|
from ..core.factory import create_llm
|
|
27
46
|
from ..utils.structured_logging import get_logger, configure_logging
|
|
28
47
|
from ..utils.version import __version__
|
|
48
|
+
from ..utils.message_preprocessor import MessagePreprocessor
|
|
29
49
|
# Removed simple_model_discovery import - now using provider methods directly
|
|
30
50
|
from ..tools.syntax_rewriter import (
|
|
31
51
|
ToolCallSyntaxRewriter,
|
|
@@ -40,21 +60,52 @@ from ..tools.syntax_rewriter import (
|
|
|
40
60
|
# Configuration
|
|
41
61
|
# ============================================================================
|
|
42
62
|
|
|
43
|
-
#
|
|
63
|
+
# Initialize with default logging configuration (can be overridden later)
|
|
44
64
|
debug_mode = os.getenv("ABSTRACTCORE_DEBUG", "false").lower() == "true"
|
|
65
|
+
|
|
66
|
+
# Initial logging setup (will be reconfigured if --debug is used)
|
|
67
|
+
# Check environment variable for debug mode
|
|
68
|
+
initial_console_level = logging.DEBUG if debug_mode else logging.INFO
|
|
45
69
|
configure_logging(
|
|
46
|
-
console_level=
|
|
47
|
-
file_level=
|
|
70
|
+
console_level=initial_console_level,
|
|
71
|
+
file_level=logging.DEBUG,
|
|
48
72
|
log_dir="logs",
|
|
49
73
|
verbatim_enabled=True,
|
|
50
74
|
console_json=False,
|
|
51
75
|
file_json=True
|
|
52
76
|
)
|
|
53
77
|
|
|
54
|
-
#
|
|
78
|
+
# Get initial logger
|
|
79
|
+
logger = get_logger("server")
|
|
80
|
+
|
|
81
|
+
# Log initial startup with debug mode status
|
|
82
|
+
logger.info("🚀 AbstractCore Server Initializing", version=__version__, debug_mode=debug_mode)
|
|
83
|
+
|
|
84
|
+
def reconfigure_for_debug():
|
|
85
|
+
"""Reconfigure logging for debug mode when --debug flag is used."""
|
|
86
|
+
global debug_mode, logger
|
|
87
|
+
|
|
88
|
+
debug_mode = True
|
|
89
|
+
|
|
90
|
+
# Reconfigure with debug levels
|
|
91
|
+
configure_logging(
|
|
92
|
+
console_level=logging.DEBUG,
|
|
93
|
+
file_level=logging.DEBUG,
|
|
94
|
+
log_dir="logs",
|
|
95
|
+
verbatim_enabled=True,
|
|
96
|
+
console_json=False,
|
|
97
|
+
file_json=True
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Update logger instance
|
|
101
|
+
logger = get_logger("server")
|
|
102
|
+
|
|
103
|
+
return logger
|
|
104
|
+
|
|
105
|
+
# Create FastAPI app (will be initialized after argument parsing)
|
|
55
106
|
app = FastAPI(
|
|
56
107
|
title="AbstractCore Server",
|
|
57
|
-
description="Universal LLM Gateway with Multi-Agent Tool Call Syntax Support",
|
|
108
|
+
description="Universal LLM Gateway with Multi-Agent Tool Call Syntax Support and Media Processing",
|
|
58
109
|
version=__version__
|
|
59
110
|
)
|
|
60
111
|
|
|
@@ -66,9 +117,145 @@ app.add_middleware(
|
|
|
66
117
|
allow_headers=["*"],
|
|
67
118
|
)
|
|
68
119
|
|
|
69
|
-
#
|
|
70
|
-
|
|
71
|
-
|
|
120
|
+
# ============================================================================
|
|
121
|
+
# Enhanced Error Handling and Logging Middleware
|
|
122
|
+
# ============================================================================
|
|
123
|
+
|
|
124
|
+
@app.middleware("http")
|
|
125
|
+
async def debug_logging_middleware(request: Request, call_next):
|
|
126
|
+
"""Enhanced logging middleware for debug mode."""
|
|
127
|
+
start_time = time.time()
|
|
128
|
+
|
|
129
|
+
# Log request details in debug mode
|
|
130
|
+
if debug_mode:
|
|
131
|
+
logger.debug(
|
|
132
|
+
"📥 HTTP Request",
|
|
133
|
+
method=request.method,
|
|
134
|
+
url=str(request.url),
|
|
135
|
+
headers=dict(request.headers),
|
|
136
|
+
client=request.client.host if request.client else "unknown"
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
response = await call_next(request)
|
|
140
|
+
|
|
141
|
+
process_time = time.time() - start_time
|
|
142
|
+
|
|
143
|
+
# Log response details
|
|
144
|
+
log_data = {
|
|
145
|
+
"method": request.method,
|
|
146
|
+
"url": str(request.url),
|
|
147
|
+
"status_code": response.status_code,
|
|
148
|
+
"process_time_ms": round(process_time * 1000, 2)
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
if response.status_code >= 400:
|
|
152
|
+
logger.error("❌ HTTP Error Response", **log_data)
|
|
153
|
+
elif debug_mode:
|
|
154
|
+
logger.debug("📤 HTTP Response", **log_data)
|
|
155
|
+
else:
|
|
156
|
+
logger.info("✅ HTTP Request", **log_data)
|
|
157
|
+
|
|
158
|
+
return response
|
|
159
|
+
|
|
160
|
+
@app.exception_handler(RequestValidationError)
|
|
161
|
+
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
|
162
|
+
"""Enhanced handler for 422 validation errors with detailed logging."""
|
|
163
|
+
error_details = []
|
|
164
|
+
for error in exc.errors():
|
|
165
|
+
error_details.append({
|
|
166
|
+
"field": " -> ".join(str(loc) for loc in error["loc"]),
|
|
167
|
+
"message": error["msg"],
|
|
168
|
+
"type": error["type"],
|
|
169
|
+
"input": error.get("input")
|
|
170
|
+
})
|
|
171
|
+
|
|
172
|
+
# Log detailed validation error information
|
|
173
|
+
logger.error(
|
|
174
|
+
"🔴 Request Validation Error (422)",
|
|
175
|
+
method=request.method,
|
|
176
|
+
url=str(request.url),
|
|
177
|
+
error_count=len(error_details),
|
|
178
|
+
errors=error_details,
|
|
179
|
+
client=request.client.host if request.client else "unknown"
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
# In debug mode, also try to log the request body if possible
|
|
183
|
+
if debug_mode:
|
|
184
|
+
try:
|
|
185
|
+
# Try to get the request body for debugging
|
|
186
|
+
body = await request.body()
|
|
187
|
+
if body:
|
|
188
|
+
try:
|
|
189
|
+
import json
|
|
190
|
+
body_json = json.loads(body)
|
|
191
|
+
logger.debug(
|
|
192
|
+
"📋 Request Body (Validation Error)",
|
|
193
|
+
body=body_json
|
|
194
|
+
)
|
|
195
|
+
except json.JSONDecodeError:
|
|
196
|
+
logger.debug(
|
|
197
|
+
"📋 Request Body (Validation Error)",
|
|
198
|
+
body_text=body.decode('utf-8', errors='replace')[:1000] # Limit to 1000 chars
|
|
199
|
+
)
|
|
200
|
+
except Exception as e:
|
|
201
|
+
logger.debug(f"Could not read request body for debugging: {e}")
|
|
202
|
+
|
|
203
|
+
# Return detailed error response
|
|
204
|
+
return JSONResponse(
|
|
205
|
+
status_code=422,
|
|
206
|
+
content={
|
|
207
|
+
"error": {
|
|
208
|
+
"message": "Request validation failed",
|
|
209
|
+
"type": "validation_error",
|
|
210
|
+
"details": error_details
|
|
211
|
+
}
|
|
212
|
+
}
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
@app.exception_handler(StarletteHTTPException)
|
|
216
|
+
async def http_exception_handler(request: Request, exc: StarletteHTTPException):
|
|
217
|
+
"""Enhanced handler for HTTP exceptions with detailed logging."""
|
|
218
|
+
logger.error(
|
|
219
|
+
"🔴 HTTP Exception",
|
|
220
|
+
method=request.method,
|
|
221
|
+
url=str(request.url),
|
|
222
|
+
status_code=exc.status_code,
|
|
223
|
+
detail=str(exc.detail),
|
|
224
|
+
client=request.client.host if request.client else "unknown"
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
return JSONResponse(
|
|
228
|
+
status_code=exc.status_code,
|
|
229
|
+
content={
|
|
230
|
+
"error": {
|
|
231
|
+
"message": str(exc.detail),
|
|
232
|
+
"type": "http_error"
|
|
233
|
+
}
|
|
234
|
+
}
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
@app.exception_handler(Exception)
|
|
238
|
+
async def general_exception_handler(request: Request, exc: Exception):
|
|
239
|
+
"""Handler for unexpected exceptions with detailed logging."""
|
|
240
|
+
logger.error(
|
|
241
|
+
"💥 Unexpected Server Error",
|
|
242
|
+
method=request.method,
|
|
243
|
+
url=str(request.url),
|
|
244
|
+
exception_type=type(exc).__name__,
|
|
245
|
+
exception_message=str(exc),
|
|
246
|
+
client=request.client.host if request.client else "unknown",
|
|
247
|
+
exc_info=True # This will include the full stack trace
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
return JSONResponse(
|
|
251
|
+
status_code=500,
|
|
252
|
+
content={
|
|
253
|
+
"error": {
|
|
254
|
+
"message": "Internal server error",
|
|
255
|
+
"type": "server_error"
|
|
256
|
+
}
|
|
257
|
+
}
|
|
258
|
+
)
|
|
72
259
|
|
|
73
260
|
# ============================================================================
|
|
74
261
|
# Model Type Detection
|
|
@@ -121,19 +308,91 @@ def get_models_from_provider(provider_name: str) -> List[str]:
|
|
|
121
308
|
logger.debug(f"Failed to get models from provider {provider_name}: {e}")
|
|
122
309
|
return []
|
|
123
310
|
|
|
311
|
+
# ============================================================================
|
|
312
|
+
# OpenAI Responses API Models (100% Compatible)
|
|
313
|
+
# ============================================================================
|
|
314
|
+
|
|
315
|
+
class OpenAIInputContent(BaseModel):
|
|
316
|
+
"""OpenAI Responses API content item"""
|
|
317
|
+
type: Literal["input_text", "input_file"] = Field(
|
|
318
|
+
description="Content type - 'input_text' for text or 'input_file' for files"
|
|
319
|
+
)
|
|
320
|
+
text: Optional[str] = Field(
|
|
321
|
+
default=None,
|
|
322
|
+
description="Text content (required when type='input_text')"
|
|
323
|
+
)
|
|
324
|
+
file_url: Optional[str] = Field(
|
|
325
|
+
default=None,
|
|
326
|
+
description="Direct file URL (required when type='input_file')"
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
class OpenAIResponsesInput(BaseModel):
|
|
330
|
+
"""OpenAI Responses API input message"""
|
|
331
|
+
role: Literal["user"] = Field(
|
|
332
|
+
description="Message role (OpenAI responses only supports 'user')"
|
|
333
|
+
)
|
|
334
|
+
content: List[OpenAIInputContent] = Field(
|
|
335
|
+
description="Array of input content items"
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
class OpenAIResponsesRequest(BaseModel):
|
|
339
|
+
"""OpenAI Responses API request format (100% compatible)"""
|
|
340
|
+
model: str = Field(
|
|
341
|
+
description="Model identifier",
|
|
342
|
+
example="gpt-4o"
|
|
343
|
+
)
|
|
344
|
+
input: List[OpenAIResponsesInput] = Field(
|
|
345
|
+
description="Array of input messages"
|
|
346
|
+
)
|
|
347
|
+
max_tokens: Optional[int] = Field(
|
|
348
|
+
default=None,
|
|
349
|
+
description="Maximum tokens to generate"
|
|
350
|
+
)
|
|
351
|
+
temperature: Optional[float] = Field(
|
|
352
|
+
default=None,
|
|
353
|
+
description="Sampling temperature"
|
|
354
|
+
)
|
|
355
|
+
top_p: Optional[float] = Field(
|
|
356
|
+
default=None,
|
|
357
|
+
description="Top-p sampling"
|
|
358
|
+
)
|
|
359
|
+
stream: Optional[bool] = Field(
|
|
360
|
+
default=False,
|
|
361
|
+
description="Enable streaming (false by default, set to true for real-time responses)"
|
|
362
|
+
)
|
|
363
|
+
|
|
124
364
|
# ============================================================================
|
|
125
365
|
# Models
|
|
126
366
|
# ============================================================================
|
|
127
367
|
|
|
368
|
+
class ContentItem(BaseModel):
|
|
369
|
+
"""Individual content item within a message (OpenAI Vision API format with file support)"""
|
|
370
|
+
type: Literal["text", "image_url", "file"] = Field(
|
|
371
|
+
description="Content type - 'text' for text content, 'image_url' for images, or 'file' for file attachments"
|
|
372
|
+
)
|
|
373
|
+
text: Optional[str] = Field(
|
|
374
|
+
default=None,
|
|
375
|
+
description="Text content (required when type='text')"
|
|
376
|
+
)
|
|
377
|
+
image_url: Optional[Dict[str, Any]] = Field(
|
|
378
|
+
default=None,
|
|
379
|
+
description="Image URL object (required when type='image_url'). Should contain 'url' field with base64 data URL or HTTP(S) URL"
|
|
380
|
+
)
|
|
381
|
+
file_url: Optional[Dict[str, Any]] = Field(
|
|
382
|
+
default=None,
|
|
383
|
+
description="File URL object (required when type='file'). Should contain 'url' field with HTTP(S) URL, local path, or base64 data URL"
|
|
384
|
+
)
|
|
385
|
+
|
|
128
386
|
class ChatMessage(BaseModel):
|
|
129
|
-
"""OpenAI-compatible message format"""
|
|
387
|
+
"""Enhanced OpenAI-compatible message format with media support"""
|
|
130
388
|
role: Literal["system", "user", "assistant", "tool"] = Field(
|
|
131
389
|
description="The role of the message author. One of 'system', 'user', 'assistant', or 'tool'.",
|
|
132
390
|
example="user"
|
|
133
391
|
)
|
|
134
|
-
content: Optional[str] = Field(
|
|
392
|
+
content: Optional[Union[str, List[ContentItem]]] = Field(
|
|
135
393
|
default=None,
|
|
136
|
-
description="
|
|
394
|
+
description="Message content - can be a string or array of content objects for multimodal messages. "
|
|
395
|
+
"For multimodal messages, use array format with text, image_url, and file objects.",
|
|
137
396
|
example="What is the capital of France?"
|
|
138
397
|
)
|
|
139
398
|
tool_call_id: Optional[str] = Field(
|
|
@@ -260,21 +519,209 @@ class ChatCompletionRequest(BaseModel):
|
|
|
260
519
|
|
|
261
520
|
class Config:
|
|
262
521
|
schema_extra = {
|
|
263
|
-
"
|
|
264
|
-
"
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
"
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
522
|
+
"examples": {
|
|
523
|
+
"basic_text": {
|
|
524
|
+
"summary": "Basic Text Chat",
|
|
525
|
+
"description": "Simple text-based conversation",
|
|
526
|
+
"value": {
|
|
527
|
+
"model": "openai/gpt-4",
|
|
528
|
+
"messages": [
|
|
529
|
+
{
|
|
530
|
+
"role": "system",
|
|
531
|
+
"content": "You are a helpful assistant."
|
|
532
|
+
},
|
|
533
|
+
{
|
|
534
|
+
"role": "user",
|
|
535
|
+
"content": "What is the capital of France?"
|
|
536
|
+
}
|
|
537
|
+
],
|
|
538
|
+
"temperature": 0.7,
|
|
539
|
+
"max_tokens": 150,
|
|
540
|
+
"stream": False
|
|
541
|
+
}
|
|
542
|
+
},
|
|
543
|
+
"vision_image": {
|
|
544
|
+
"summary": "Image Analysis",
|
|
545
|
+
"description": "Analyze images using vision-capable models with OpenAI Vision API format",
|
|
546
|
+
"value": {
|
|
547
|
+
"model": "ollama/qwen2.5vl:7b",
|
|
548
|
+
"messages": [
|
|
549
|
+
{
|
|
550
|
+
"role": "user",
|
|
551
|
+
"content": [
|
|
552
|
+
{
|
|
553
|
+
"type": "text",
|
|
554
|
+
"text": "What's in this image?"
|
|
555
|
+
},
|
|
556
|
+
{
|
|
557
|
+
"type": "image_url",
|
|
558
|
+
"image_url": {
|
|
559
|
+
"url": ""
|
|
560
|
+
}
|
|
561
|
+
}
|
|
562
|
+
]
|
|
563
|
+
}
|
|
564
|
+
],
|
|
565
|
+
"temperature": 0.7,
|
|
566
|
+
"max_tokens": 200
|
|
567
|
+
}
|
|
568
|
+
},
|
|
569
|
+
"document_analysis": {
|
|
570
|
+
"summary": "Document Analysis",
|
|
571
|
+
"description": "Process documents (PDF, CSV, Excel, etc.) with file attachments",
|
|
572
|
+
"value": {
|
|
573
|
+
"model": "lmstudio/qwen/qwen3-next-80b",
|
|
574
|
+
"messages": [
|
|
575
|
+
{
|
|
576
|
+
"role": "user",
|
|
577
|
+
"content": [
|
|
578
|
+
{
|
|
579
|
+
"type": "text",
|
|
580
|
+
"text": "Analyze this CSV file and calculate the total sales"
|
|
581
|
+
},
|
|
582
|
+
{
|
|
583
|
+
"type": "image_url",
|
|
584
|
+
"image_url": {
|
|
585
|
+
"url": "data:text/csv;base64,RGF0ZSxQcm9kdWN0LFNhbGVzCjIwMjQtMDEtMDEsUHJvZHVjdCBBLDEwMDAwCjIwMjQtMDEtMDIsUHJvZHVjdCBCLDE1MDAwCjIwMjQtMDEtMDMsUHJvZHVjdCBDLDI1MDAw"
|
|
586
|
+
}
|
|
587
|
+
}
|
|
588
|
+
]
|
|
589
|
+
}
|
|
590
|
+
],
|
|
591
|
+
"temperature": 0.3,
|
|
592
|
+
"max_tokens": 300
|
|
593
|
+
}
|
|
594
|
+
},
|
|
595
|
+
"mixed_media": {
|
|
596
|
+
"summary": "Mixed Media Analysis",
|
|
597
|
+
"description": "Process multiple file types in a single request",
|
|
598
|
+
"value": {
|
|
599
|
+
"model": "ollama/qwen2.5vl:7b",
|
|
600
|
+
"messages": [
|
|
601
|
+
{
|
|
602
|
+
"role": "user",
|
|
603
|
+
"content": [
|
|
604
|
+
{
|
|
605
|
+
"type": "text",
|
|
606
|
+
"text": "Compare this chart image with the data in this PDF report"
|
|
607
|
+
},
|
|
608
|
+
{
|
|
609
|
+
"type": "image_url",
|
|
610
|
+
"image_url": {
|
|
611
|
+
"url": ""
|
|
612
|
+
}
|
|
613
|
+
},
|
|
614
|
+
{
|
|
615
|
+
"type": "image_url",
|
|
616
|
+
"image_url": {
|
|
617
|
+
"url": "data:application/pdf;base64,JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMiAwIFIKPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUgL1BhZ2VzCi9LaWRzIFszIDAgUl0KL0NvdW50IDEKPJ4KZW5kb2JqCjMgMCBvYmoKPDwKL1R5cGUgL1BhZ2UKL1BhcmVudCAyIDAgUgovTWVkaWFCb3ggWzAgMCA2MTIgNzkyXQo+PgplbmRvYmoKeHJlZgowIDQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDA5IDAwMDAwIG4gCjAwMDAwMDAwNTggMDAwMDAgbiAKMDAwMDAwMDExNSAwMDAwMCBuIAp0cmFpbGVyCjw8Ci9TaXplIDQKL1Jvb3QgMSAwIFIKPj4Kc3RhcnR4cmVmCjE5NQolJUVPRgo="
|
|
618
|
+
}
|
|
619
|
+
}
|
|
620
|
+
]
|
|
621
|
+
}
|
|
622
|
+
],
|
|
623
|
+
"temperature": 0.5,
|
|
624
|
+
"max_tokens": 500,
|
|
625
|
+
"stream": False
|
|
626
|
+
}
|
|
627
|
+
},
|
|
628
|
+
"tools_with_media": {
|
|
629
|
+
"summary": "Tools + Media",
|
|
630
|
+
"description": "Combine tool usage with file attachments for complex workflows",
|
|
631
|
+
"value": {
|
|
632
|
+
"model": "openai/gpt-4",
|
|
633
|
+
"messages": [
|
|
634
|
+
{
|
|
635
|
+
"role": "user",
|
|
636
|
+
"content": [
|
|
637
|
+
{
|
|
638
|
+
"type": "text",
|
|
639
|
+
"text": "Analyze this financial data and create a summary chart"
|
|
640
|
+
},
|
|
641
|
+
{
|
|
642
|
+
"type": "image_url",
|
|
643
|
+
"image_url": {
|
|
644
|
+
"url": "data:text/csv;base64,Q29tcGFueSxRMSxRMixRMyxRNApBY21lIEluYywyMDAsMjUwLDMwMCwzNTAKVGVjaCBDb3JwLDE1MCwyMDAsMjUwLDMwMApCaXogTHRkLDEwMCwxMjAsMTQwLDE2MA=="
|
|
645
|
+
}
|
|
646
|
+
}
|
|
647
|
+
]
|
|
648
|
+
}
|
|
649
|
+
],
|
|
650
|
+
"temperature": 0.7,
|
|
651
|
+
"max_tokens": 2048,
|
|
652
|
+
"stream": False,
|
|
653
|
+
"tools": [
|
|
654
|
+
{
|
|
655
|
+
"type": "function",
|
|
656
|
+
"function": {
|
|
657
|
+
"name": "create_chart",
|
|
658
|
+
"description": "Create a chart from data",
|
|
659
|
+
"parameters": {
|
|
660
|
+
"type": "object",
|
|
661
|
+
"properties": {
|
|
662
|
+
"chart_type": {"type": "string"},
|
|
663
|
+
"data": {"type": "array"}
|
|
664
|
+
}
|
|
665
|
+
}
|
|
666
|
+
}
|
|
667
|
+
}
|
|
668
|
+
],
|
|
669
|
+
"tool_choice": "auto"
|
|
273
670
|
}
|
|
274
|
-
|
|
275
|
-
"
|
|
276
|
-
|
|
277
|
-
|
|
671
|
+
},
|
|
672
|
+
"complete_request": {
|
|
673
|
+
"summary": "Complete Request with Media",
|
|
674
|
+
"description": "Full example showing all possible fields with file attachment",
|
|
675
|
+
"value": {
|
|
676
|
+
"model": "openai/gpt-4",
|
|
677
|
+
"messages": [
|
|
678
|
+
{
|
|
679
|
+
"role": "user",
|
|
680
|
+
"content": [
|
|
681
|
+
{
|
|
682
|
+
"type": "text",
|
|
683
|
+
"text": "Analyze this CSV file and provide insights"
|
|
684
|
+
},
|
|
685
|
+
{
|
|
686
|
+
"type": "image_url",
|
|
687
|
+
"image_url": {
|
|
688
|
+
"url": "data:text/csv;base64,RGF0ZSxQcm9kdWN0LFNhbGVzCjIwMjQtMDEtMDEsUHJvZHVjdCBBLDEwMDAwCjIwMjQtMDEtMDIsUHJvZHVjdCBCLDE1MDAwCjIwMjQtMDEtMDMsUHJvZHVjdCBDLDI1MDAw"
|
|
689
|
+
}
|
|
690
|
+
}
|
|
691
|
+
],
|
|
692
|
+
"tool_call_id": None,
|
|
693
|
+
"tool_calls": None,
|
|
694
|
+
"name": "DataAnalyst"
|
|
695
|
+
}
|
|
696
|
+
],
|
|
697
|
+
"temperature": 0.7,
|
|
698
|
+
"max_tokens": 2048,
|
|
699
|
+
"top_p": 1,
|
|
700
|
+
"stream": False,
|
|
701
|
+
"tools": [
|
|
702
|
+
{
|
|
703
|
+
"type": "function",
|
|
704
|
+
"function": {
|
|
705
|
+
"name": "analyze_data",
|
|
706
|
+
"description": "Analyze data and generate insights",
|
|
707
|
+
"parameters": {
|
|
708
|
+
"type": "object",
|
|
709
|
+
"properties": {
|
|
710
|
+
"analysis_type": {"type": "string"},
|
|
711
|
+
"metrics": {"type": "array"}
|
|
712
|
+
}
|
|
713
|
+
}
|
|
714
|
+
}
|
|
715
|
+
}
|
|
716
|
+
],
|
|
717
|
+
"tool_choice": "auto",
|
|
718
|
+
"stop": ["END"],
|
|
719
|
+
"seed": 12345,
|
|
720
|
+
"frequency_penalty": 0.0,
|
|
721
|
+
"presence_penalty": 0.0,
|
|
722
|
+
"agent_format": "auto"
|
|
723
|
+
}
|
|
724
|
+
}
|
|
278
725
|
}
|
|
279
726
|
}
|
|
280
727
|
|
|
@@ -324,6 +771,117 @@ class EmbeddingRequest(BaseModel):
|
|
|
324
771
|
}
|
|
325
772
|
}
|
|
326
773
|
|
|
774
|
+
# ============================================================================
|
|
775
|
+
# Union Request Model for /v1/responses endpoint
|
|
776
|
+
# ============================================================================
|
|
777
|
+
|
|
778
|
+
class ResponsesAPIRequest(BaseModel):
|
|
779
|
+
"""
|
|
780
|
+
Union request model for /v1/responses endpoint supporting both OpenAI and legacy formats.
|
|
781
|
+
|
|
782
|
+
The endpoint automatically detects the format based on the presence of 'input' vs 'messages' field.
|
|
783
|
+
"""
|
|
784
|
+
class Config:
|
|
785
|
+
schema_extra = {
|
|
786
|
+
"oneOf": [
|
|
787
|
+
{
|
|
788
|
+
"title": "OpenAI Responses API Format",
|
|
789
|
+
"description": "OpenAI-compatible responses format with input_file support",
|
|
790
|
+
"$ref": "#/components/schemas/OpenAIResponsesRequest"
|
|
791
|
+
},
|
|
792
|
+
{
|
|
793
|
+
"title": "Legacy Format (ChatCompletionRequest)",
|
|
794
|
+
"description": "Backward-compatible format using messages array",
|
|
795
|
+
"$ref": "#/components/schemas/ChatCompletionRequest"
|
|
796
|
+
}
|
|
797
|
+
],
|
|
798
|
+
"examples": {
|
|
799
|
+
"openai_format": {
|
|
800
|
+
"summary": "OpenAI Responses API Format",
|
|
801
|
+
"description": "Use input array with input_text and input_file objects",
|
|
802
|
+
"value": {
|
|
803
|
+
"model": "gpt-4o",
|
|
804
|
+
"input": [
|
|
805
|
+
{
|
|
806
|
+
"role": "user",
|
|
807
|
+
"content": [
|
|
808
|
+
{"type": "input_text", "text": "Analyze this document"},
|
|
809
|
+
{"type": "input_file", "file_url": "https://example.com/doc.pdf"}
|
|
810
|
+
]
|
|
811
|
+
}
|
|
812
|
+
],
|
|
813
|
+
"stream": False
|
|
814
|
+
}
|
|
815
|
+
},
|
|
816
|
+
"legacy_format": {
|
|
817
|
+
"summary": "Legacy Format (Backward Compatible)",
|
|
818
|
+
"description": "Use messages array like standard chat completions",
|
|
819
|
+
"value": {
|
|
820
|
+
"model": "openai/gpt-4",
|
|
821
|
+
"messages": [
|
|
822
|
+
{"role": "user", "content": "Tell me a story"}
|
|
823
|
+
],
|
|
824
|
+
"stream": False
|
|
825
|
+
}
|
|
826
|
+
}
|
|
827
|
+
}
|
|
828
|
+
}
|
|
829
|
+
|
|
830
|
+
# ============================================================================
|
|
831
|
+
# OpenAI Responses API Compatibility
|
|
832
|
+
# ============================================================================
|
|
833
|
+
|
|
834
|
+
def convert_openai_responses_to_chat_completion(openai_request: OpenAIResponsesRequest) -> ChatCompletionRequest:
|
|
835
|
+
"""
|
|
836
|
+
Convert OpenAI Responses API format to internal ChatCompletionRequest format.
|
|
837
|
+
|
|
838
|
+
Transforms:
|
|
839
|
+
- input -> messages
|
|
840
|
+
- input_text -> text
|
|
841
|
+
- input_file -> file with file_url
|
|
842
|
+
|
|
843
|
+
Args:
|
|
844
|
+
openai_request: OpenAI responses API request
|
|
845
|
+
|
|
846
|
+
Returns:
|
|
847
|
+
ChatCompletionRequest compatible with our internal processing
|
|
848
|
+
"""
|
|
849
|
+
# Convert input messages to chat messages
|
|
850
|
+
messages = []
|
|
851
|
+
|
|
852
|
+
for input_msg in openai_request.input:
|
|
853
|
+
# Build content array as list of dicts (not ContentItem objects)
|
|
854
|
+
content_items = []
|
|
855
|
+
|
|
856
|
+
for content in input_msg.content:
|
|
857
|
+
if content.type == "input_text":
|
|
858
|
+
content_items.append({
|
|
859
|
+
"type": "text",
|
|
860
|
+
"text": content.text
|
|
861
|
+
})
|
|
862
|
+
elif content.type == "input_file":
|
|
863
|
+
content_items.append({
|
|
864
|
+
"type": "file",
|
|
865
|
+
"file_url": {"url": content.file_url} # Convert to our format
|
|
866
|
+
})
|
|
867
|
+
|
|
868
|
+
# Create chat message with list content (not ContentItem objects)
|
|
869
|
+
message_dict = {
|
|
870
|
+
"role": input_msg.role,
|
|
871
|
+
"content": content_items
|
|
872
|
+
}
|
|
873
|
+
messages.append(ChatMessage(**message_dict))
|
|
874
|
+
|
|
875
|
+
# Build ChatCompletionRequest
|
|
876
|
+
return ChatCompletionRequest(
|
|
877
|
+
model=openai_request.model,
|
|
878
|
+
messages=messages,
|
|
879
|
+
max_tokens=openai_request.max_tokens,
|
|
880
|
+
temperature=openai_request.temperature,
|
|
881
|
+
top_p=openai_request.top_p,
|
|
882
|
+
stream=openai_request.stream
|
|
883
|
+
)
|
|
884
|
+
|
|
327
885
|
# ============================================================================
|
|
328
886
|
# Helper Functions
|
|
329
887
|
# ============================================================================
|
|
@@ -588,31 +1146,101 @@ async def list_providers():
|
|
|
588
1146
|
}
|
|
589
1147
|
|
|
590
1148
|
@app.post("/v1/responses")
|
|
591
|
-
async def create_response(
|
|
1149
|
+
async def create_response(
|
|
1150
|
+
http_request: Request,
|
|
1151
|
+
request_body: Annotated[
|
|
1152
|
+
Dict[str, Any],
|
|
1153
|
+
Body(
|
|
1154
|
+
...,
|
|
1155
|
+
examples={
|
|
1156
|
+
"openai_format": {
|
|
1157
|
+
"summary": "OpenAI Responses API Format",
|
|
1158
|
+
"description": "Use input array with input_text and input_file objects",
|
|
1159
|
+
"value": {
|
|
1160
|
+
"model": "gpt-4o",
|
|
1161
|
+
"input": [
|
|
1162
|
+
{
|
|
1163
|
+
"role": "user",
|
|
1164
|
+
"content": [
|
|
1165
|
+
{"type": "input_text", "text": "Analyze this document"},
|
|
1166
|
+
{"type": "input_file", "file_url": "https://example.com/doc.pdf"}
|
|
1167
|
+
]
|
|
1168
|
+
}
|
|
1169
|
+
],
|
|
1170
|
+
"stream": False
|
|
1171
|
+
}
|
|
1172
|
+
},
|
|
1173
|
+
"legacy_format": {
|
|
1174
|
+
"summary": "Legacy Format (Backward Compatible)",
|
|
1175
|
+
"description": "Use messages array like standard chat completions",
|
|
1176
|
+
"value": {
|
|
1177
|
+
"model": "openai/gpt-4",
|
|
1178
|
+
"messages": [
|
|
1179
|
+
{"role": "user", "content": "Tell me a story"}
|
|
1180
|
+
],
|
|
1181
|
+
"stream": False
|
|
1182
|
+
}
|
|
1183
|
+
},
|
|
1184
|
+
"file_analysis": {
|
|
1185
|
+
"summary": "Document Analysis",
|
|
1186
|
+
"description": "Analyze files using OpenAI format",
|
|
1187
|
+
"value": {
|
|
1188
|
+
"model": "openai/gpt-4",
|
|
1189
|
+
"input": [
|
|
1190
|
+
{
|
|
1191
|
+
"role": "user",
|
|
1192
|
+
"content": [
|
|
1193
|
+
{"type": "input_text", "text": "What's the key information in this CSV?"},
|
|
1194
|
+
{"type": "input_file", "file_url": "data:text/csv;base64,RGF0ZSxQcm9kdWN0LFNhbGVzCjIwMjQtMDEtMDEsUHJvZHVjdCBBLDEwMDAwCjIwMjQtMDEtMDIsUHJvZHVjdCBCLDE1MDAwCjIwMjQtMDEtMDMsUHJvZHVjdCBDLDI1MDAw"}
|
|
1195
|
+
]
|
|
1196
|
+
}
|
|
1197
|
+
]
|
|
1198
|
+
}
|
|
1199
|
+
},
|
|
1200
|
+
"streaming_example": {
|
|
1201
|
+
"summary": "Streaming Response",
|
|
1202
|
+
"description": "Enable streaming for real-time responses",
|
|
1203
|
+
"value": {
|
|
1204
|
+
"model": "lmstudio/qwen/qwen3-next-80b",
|
|
1205
|
+
"input": [
|
|
1206
|
+
{
|
|
1207
|
+
"role": "user",
|
|
1208
|
+
"content": [
|
|
1209
|
+
{"type": "input_text", "text": "Analyze the letter and provide a summary of the key points."},
|
|
1210
|
+
{"type": "input_file", "file_url": "https://www.berkshirehathaway.com/letters/2024ltr.pdf"}
|
|
1211
|
+
]
|
|
1212
|
+
}
|
|
1213
|
+
],
|
|
1214
|
+
"stream": True
|
|
1215
|
+
}
|
|
1216
|
+
}
|
|
1217
|
+
}
|
|
1218
|
+
)
|
|
1219
|
+
]
|
|
1220
|
+
):
|
|
592
1221
|
"""
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
**
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
|
|
603
|
-
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
|
|
610
|
-
|
|
611
|
-
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
|
|
615
|
-
**Example:**
|
|
1222
|
+
OpenAI Responses API (100% Compatible) + Backward Compatibility
|
|
1223
|
+
|
|
1224
|
+
Supports both OpenAI's responses format and our legacy format for seamless migration.
|
|
1225
|
+
Streaming can be enabled by setting "stream": true for real-time interaction.
|
|
1226
|
+
|
|
1227
|
+
**OpenAI Format (input_file support):**
|
|
1228
|
+
```json
|
|
1229
|
+
{
|
|
1230
|
+
"model": "gpt-4o",
|
|
1231
|
+
"input": [
|
|
1232
|
+
{
|
|
1233
|
+
"role": "user",
|
|
1234
|
+
"content": [
|
|
1235
|
+
{"type": "input_text", "text": "Analyze this document"},
|
|
1236
|
+
{"type": "input_file", "file_url": "https://example.com/doc.pdf"}
|
|
1237
|
+
]
|
|
1238
|
+
}
|
|
1239
|
+
]
|
|
1240
|
+
}
|
|
1241
|
+
```
|
|
1242
|
+
|
|
1243
|
+
**Legacy Format (backward compatibility):**
|
|
616
1244
|
```json
|
|
617
1245
|
{
|
|
618
1246
|
"model": "openai/gpt-4",
|
|
@@ -621,24 +1249,65 @@ async def create_response(request: ChatCompletionRequest, http_request: Request)
|
|
|
621
1249
|
]
|
|
622
1250
|
}
|
|
623
1251
|
```
|
|
624
|
-
|
|
625
|
-
**
|
|
1252
|
+
|
|
1253
|
+
**Key Features:**
|
|
1254
|
+
- **100% OpenAI Compatible**: Supports input_file with file_url
|
|
1255
|
+
- **Universal File Support**: PDF, DOCX, XLSX, CSV, images, and more
|
|
1256
|
+
- **Multi-Provider**: Works with all providers (OpenAI, Anthropic, Ollama, etc.)
|
|
1257
|
+
- **Optional Streaming**: Set "stream": true for real-time responses
|
|
1258
|
+
- **Backward Compatible**: Existing clients continue to work
|
|
1259
|
+
|
|
1260
|
+
**Returns:** Chat completion object, or server-sent events stream if streaming is enabled.
|
|
626
1261
|
"""
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
1262
|
+
try:
|
|
1263
|
+
# Use the parsed request body directly
|
|
1264
|
+
request_data = request_body
|
|
630
1265
|
|
|
631
|
-
|
|
1266
|
+
# Detect OpenAI responses format vs legacy format
|
|
1267
|
+
if "input" in request_data:
|
|
1268
|
+
# OpenAI Responses API format
|
|
1269
|
+
logger.info("📡 OpenAI Responses API format detected")
|
|
632
1270
|
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
provider=provider,
|
|
636
|
-
model=model,
|
|
637
|
-
messages=len(request.messages),
|
|
638
|
-
has_tools=bool(request.tools)
|
|
639
|
-
)
|
|
1271
|
+
# Parse as OpenAI format
|
|
1272
|
+
openai_request = OpenAIResponsesRequest(**request_data)
|
|
640
1273
|
|
|
641
|
-
|
|
1274
|
+
# Convert to internal format
|
|
1275
|
+
chat_request = convert_openai_responses_to_chat_completion(openai_request)
|
|
1276
|
+
|
|
1277
|
+
elif "messages" in request_data:
|
|
1278
|
+
# Legacy format (backward compatibility)
|
|
1279
|
+
logger.info("📡 Legacy responses format detected")
|
|
1280
|
+
|
|
1281
|
+
# Parse as ChatCompletionRequest
|
|
1282
|
+
chat_request = ChatCompletionRequest(**request_data)
|
|
1283
|
+
|
|
1284
|
+
else:
|
|
1285
|
+
raise HTTPException(
|
|
1286
|
+
status_code=400,
|
|
1287
|
+
detail={"error": {"message": "Request must contain either 'input' (OpenAI format) or 'messages' (legacy format)", "type": "invalid_request"}}
|
|
1288
|
+
)
|
|
1289
|
+
|
|
1290
|
+
# Respect user's streaming preference (defaults to False)
|
|
1291
|
+
|
|
1292
|
+
# Process using our standard pipeline
|
|
1293
|
+
provider, model = parse_model_string(chat_request.model)
|
|
1294
|
+
|
|
1295
|
+
logger.info(
|
|
1296
|
+
"📡 Responses API Request",
|
|
1297
|
+
provider=provider,
|
|
1298
|
+
model=model,
|
|
1299
|
+
format="openai" if "input" in request_data else "legacy",
|
|
1300
|
+
messages=len(chat_request.messages)
|
|
1301
|
+
)
|
|
1302
|
+
|
|
1303
|
+
return await process_chat_completion(provider, model, chat_request, http_request)
|
|
1304
|
+
|
|
1305
|
+
except Exception as e:
|
|
1306
|
+
logger.error(f"Responses API error: {e}")
|
|
1307
|
+
raise HTTPException(
|
|
1308
|
+
status_code=400,
|
|
1309
|
+
detail={"error": {"message": str(e), "type": "processing_error"}}
|
|
1310
|
+
)
|
|
642
1311
|
|
|
643
1312
|
@app.post("/v1/embeddings")
|
|
644
1313
|
async def create_embeddings(request: EmbeddingRequest):
|
|
@@ -755,25 +1424,491 @@ async def create_embeddings(request: EmbeddingRequest):
|
|
|
755
1424
|
detail={"error": {"message": str(e), "type": "embedding_error"}}
|
|
756
1425
|
)
|
|
757
1426
|
|
|
1427
|
+
# ============================================================================
|
|
1428
|
+
# Media Processing Utilities
|
|
1429
|
+
# ============================================================================
|
|
1430
|
+
|
|
1431
|
+
def handle_base64_image(data_url: str) -> str:
|
|
1432
|
+
"""
|
|
1433
|
+
Process base64 data URL and save to temporary file.
|
|
1434
|
+
|
|
1435
|
+
Args:
|
|
1436
|
+
data_url: Base64 data URL (e.g., "data:image/jpeg;base64,..." or "data:application/pdf;base64,...")
|
|
1437
|
+
|
|
1438
|
+
Returns:
|
|
1439
|
+
Path to temporary file
|
|
1440
|
+
"""
|
|
1441
|
+
try:
|
|
1442
|
+
# Parse data URL
|
|
1443
|
+
if not data_url.startswith("data:"):
|
|
1444
|
+
raise ValueError("Invalid data URL format")
|
|
1445
|
+
|
|
1446
|
+
# Extract media type and base64 data
|
|
1447
|
+
header, data = data_url.split(",", 1)
|
|
1448
|
+
media_type = header.split(";")[0].split(":")[1]
|
|
1449
|
+
|
|
1450
|
+
# Determine file extension for all supported media types
|
|
1451
|
+
ext_map = {
|
|
1452
|
+
# Images
|
|
1453
|
+
"image/jpeg": ".jpg",
|
|
1454
|
+
"image/jpg": ".jpg",
|
|
1455
|
+
"image/png": ".png",
|
|
1456
|
+
"image/gif": ".gif",
|
|
1457
|
+
"image/webp": ".webp",
|
|
1458
|
+
"image/bmp": ".bmp",
|
|
1459
|
+
"image/tiff": ".tiff",
|
|
1460
|
+
# Documents
|
|
1461
|
+
"application/pdf": ".pdf",
|
|
1462
|
+
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
|
1463
|
+
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": ".xlsx",
|
|
1464
|
+
"application/vnd.openxmlformats-officedocument.presentationml.presentation": ".pptx",
|
|
1465
|
+
# Data files
|
|
1466
|
+
"text/csv": ".csv",
|
|
1467
|
+
"text/tab-separated-values": ".tsv",
|
|
1468
|
+
"application/json": ".json",
|
|
1469
|
+
"application/xml": ".xml",
|
|
1470
|
+
"text/xml": ".xml",
|
|
1471
|
+
"text/plain": ".txt",
|
|
1472
|
+
"text/markdown": ".md",
|
|
1473
|
+
# Generic fallback
|
|
1474
|
+
"application/octet-stream": ".bin"
|
|
1475
|
+
}
|
|
1476
|
+
extension = ext_map.get(media_type, ".bin")
|
|
1477
|
+
|
|
1478
|
+
# Decode base64 data
|
|
1479
|
+
file_data = base64.b64decode(data)
|
|
1480
|
+
|
|
1481
|
+
# Save to temporary file with request-specific prefix for better isolation
|
|
1482
|
+
import hashlib
|
|
1483
|
+
data_hash = hashlib.md5(data[:100].encode() if len(data) > 100 else data.encode()).hexdigest()[:8]
|
|
1484
|
+
request_id = uuid.uuid4().hex[:8]
|
|
1485
|
+
prefix = f"abstractcore_b64_{data_hash}_{request_id}_"
|
|
1486
|
+
|
|
1487
|
+
with tempfile.NamedTemporaryFile(delete=False, suffix=extension, prefix=prefix) as temp_file:
|
|
1488
|
+
temp_file.write(file_data)
|
|
1489
|
+
temp_file_path = temp_file.name
|
|
1490
|
+
|
|
1491
|
+
# Log the temporary file creation for debugging
|
|
1492
|
+
logger.debug(f"Processed base64 media to temporary file: {temp_file_path} (size: {len(file_data)} bytes)")
|
|
1493
|
+
return temp_file_path
|
|
1494
|
+
|
|
1495
|
+
except Exception as e:
|
|
1496
|
+
logger.error(f"Failed to process base64 media: {e}")
|
|
1497
|
+
raise HTTPException(
|
|
1498
|
+
status_code=400,
|
|
1499
|
+
detail={"error": {"message": f"Invalid base64 media data: {e}", "type": "media_error"}}
|
|
1500
|
+
)
|
|
1501
|
+
|
|
1502
|
+
def download_file_temporarily(url: str) -> str:
|
|
1503
|
+
"""
|
|
1504
|
+
Download file from URL to temporary file (supports images, documents, data files).
|
|
1505
|
+
|
|
1506
|
+
Args:
|
|
1507
|
+
url: HTTP(S) URL to file
|
|
1508
|
+
|
|
1509
|
+
Returns:
|
|
1510
|
+
Path to temporary file
|
|
1511
|
+
"""
|
|
1512
|
+
try:
|
|
1513
|
+
# Validate URL
|
|
1514
|
+
parsed = urllib.parse.urlparse(url)
|
|
1515
|
+
if parsed.scheme not in ("http", "https"):
|
|
1516
|
+
raise ValueError("Only HTTP and HTTPS URLs are allowed")
|
|
1517
|
+
|
|
1518
|
+
# Create request with browser-like headers to avoid 403 Forbidden errors
|
|
1519
|
+
request = urllib.request.Request(url)
|
|
1520
|
+
request.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36')
|
|
1521
|
+
# Generic accept header for all file types
|
|
1522
|
+
request.add_header('Accept', '*/*')
|
|
1523
|
+
request.add_header('Accept-Language', 'en-US,en;q=0.9')
|
|
1524
|
+
request.add_header('Accept-Encoding', 'gzip, deflate, br')
|
|
1525
|
+
request.add_header('Connection', 'keep-alive')
|
|
1526
|
+
request.add_header('Upgrade-Insecure-Requests', '1')
|
|
1527
|
+
request.add_header('Sec-Fetch-Dest', 'document') # More generic than 'image'
|
|
1528
|
+
request.add_header('Sec-Fetch-Mode', 'no-cors')
|
|
1529
|
+
request.add_header('Sec-Fetch-Site', 'cross-site')
|
|
1530
|
+
|
|
1531
|
+
# Download with size limit (10MB)
|
|
1532
|
+
response = urllib.request.urlopen(request, timeout=30)
|
|
1533
|
+
if response.getheader('content-length'):
|
|
1534
|
+
size = int(response.getheader('content-length'))
|
|
1535
|
+
if size > 10 * 1024 * 1024: # 10MB limit
|
|
1536
|
+
raise ValueError("File too large (max 10MB)")
|
|
1537
|
+
|
|
1538
|
+
# Read data with size check
|
|
1539
|
+
data = b""
|
|
1540
|
+
while True:
|
|
1541
|
+
chunk = response.read(8192)
|
|
1542
|
+
if not chunk:
|
|
1543
|
+
break
|
|
1544
|
+
data += chunk
|
|
1545
|
+
if len(data) > 10 * 1024 * 1024: # 10MB limit
|
|
1546
|
+
raise ValueError("File too large (max 10MB)")
|
|
1547
|
+
|
|
1548
|
+
# Determine extension from content-type or URL
|
|
1549
|
+
content_type = response.getheader('content-type', '').lower()
|
|
1550
|
+
ext_map = {
|
|
1551
|
+
# Images
|
|
1552
|
+
"image/jpeg": ".jpg",
|
|
1553
|
+
"image/jpg": ".jpg",
|
|
1554
|
+
"image/png": ".png",
|
|
1555
|
+
"image/gif": ".gif",
|
|
1556
|
+
"image/webp": ".webp",
|
|
1557
|
+
"image/bmp": ".bmp",
|
|
1558
|
+
"image/tiff": ".tiff",
|
|
1559
|
+
# Documents
|
|
1560
|
+
"application/pdf": ".pdf",
|
|
1561
|
+
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
|
1562
|
+
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": ".xlsx",
|
|
1563
|
+
"application/vnd.openxmlformats-officedocument.presentationml.presentation": ".pptx",
|
|
1564
|
+
# Data files
|
|
1565
|
+
"text/csv": ".csv",
|
|
1566
|
+
"text/tab-separated-values": ".tsv",
|
|
1567
|
+
"application/json": ".json",
|
|
1568
|
+
"application/xml": ".xml",
|
|
1569
|
+
"text/xml": ".xml",
|
|
1570
|
+
"text/plain": ".txt",
|
|
1571
|
+
"text/markdown": ".md",
|
|
1572
|
+
# Generic fallback
|
|
1573
|
+
"application/octet-stream": ".bin"
|
|
1574
|
+
}
|
|
1575
|
+
|
|
1576
|
+
# Try to get extension from content-type first, then URL
|
|
1577
|
+
extension = ext_map.get(content_type)
|
|
1578
|
+
if not extension:
|
|
1579
|
+
# Try to get extension from URL
|
|
1580
|
+
url_path = parsed.path.lower()
|
|
1581
|
+
if url_path.endswith('.pdf'):
|
|
1582
|
+
extension = '.pdf'
|
|
1583
|
+
elif url_path.endswith('.jpg') or url_path.endswith('.jpeg'):
|
|
1584
|
+
extension = '.jpg'
|
|
1585
|
+
elif url_path.endswith('.png'):
|
|
1586
|
+
extension = '.png'
|
|
1587
|
+
elif url_path.endswith('.docx'):
|
|
1588
|
+
extension = '.docx'
|
|
1589
|
+
elif url_path.endswith('.xlsx'):
|
|
1590
|
+
extension = '.xlsx'
|
|
1591
|
+
elif url_path.endswith('.csv'):
|
|
1592
|
+
extension = '.csv'
|
|
1593
|
+
else:
|
|
1594
|
+
extension = '.bin' # Generic fallback
|
|
1595
|
+
|
|
1596
|
+
# Save to temporary file with request-specific prefix for better isolation
|
|
1597
|
+
import hashlib
|
|
1598
|
+
url_hash = hashlib.md5(url.encode()).hexdigest()[:8]
|
|
1599
|
+
request_id = uuid.uuid4().hex[:8]
|
|
1600
|
+
prefix = f"abstractcore_file_{url_hash}_{request_id}_"
|
|
1601
|
+
|
|
1602
|
+
with tempfile.NamedTemporaryFile(delete=False, suffix=extension, prefix=prefix) as temp_file:
|
|
1603
|
+
temp_file.write(data)
|
|
1604
|
+
temp_file_path = temp_file.name
|
|
1605
|
+
|
|
1606
|
+
# Log the temporary file creation for debugging
|
|
1607
|
+
logger.info(f"Downloaded file to temporary file: {temp_file_path} (size: {len(data)} bytes, type: {content_type})")
|
|
1608
|
+
return temp_file_path
|
|
1609
|
+
|
|
1610
|
+
except Exception as e:
|
|
1611
|
+
logger.error(f"Failed to download file from URL {url}: {e}")
|
|
1612
|
+
raise HTTPException(
|
|
1613
|
+
status_code=400,
|
|
1614
|
+
detail={"error": {"message": f"Failed to download file: {e}", "type": "media_error"}}
|
|
1615
|
+
)
|
|
1616
|
+
|
|
1617
|
+
def download_image_temporarily(url: str) -> str:
|
|
1618
|
+
"""
|
|
1619
|
+
Download image from URL to temporary file (backward compatibility wrapper).
|
|
1620
|
+
|
|
1621
|
+
Args:
|
|
1622
|
+
url: HTTP(S) URL to image
|
|
1623
|
+
|
|
1624
|
+
Returns:
|
|
1625
|
+
Path to temporary file
|
|
1626
|
+
"""
|
|
1627
|
+
return download_file_temporarily(url)
|
|
1628
|
+
|
|
1629
|
+
def process_image_url_object(image_url_obj: Dict[str, Any]) -> Optional[str]:
|
|
1630
|
+
"""
|
|
1631
|
+
Process OpenAI image_url object and return local file path.
|
|
1632
|
+
|
|
1633
|
+
Args:
|
|
1634
|
+
image_url_obj: Image URL object with 'url' field
|
|
1635
|
+
|
|
1636
|
+
Returns:
|
|
1637
|
+
Local file path or None if processing failed
|
|
1638
|
+
"""
|
|
1639
|
+
try:
|
|
1640
|
+
url = image_url_obj.get("url", "")
|
|
1641
|
+
if not url:
|
|
1642
|
+
return None
|
|
1643
|
+
|
|
1644
|
+
if url.startswith("data:"):
|
|
1645
|
+
# Base64 encoded image
|
|
1646
|
+
return handle_base64_image(url)
|
|
1647
|
+
elif url.startswith(("http://", "https://")):
|
|
1648
|
+
# Download from URL
|
|
1649
|
+
return download_image_temporarily(url)
|
|
1650
|
+
else:
|
|
1651
|
+
# Assume local file path
|
|
1652
|
+
if os.path.exists(url):
|
|
1653
|
+
return url
|
|
1654
|
+
else:
|
|
1655
|
+
logger.warning(f"Local file not found: {url}")
|
|
1656
|
+
return None
|
|
1657
|
+
|
|
1658
|
+
except Exception as e:
|
|
1659
|
+
logger.error(f"Failed to process image URL object: {e}")
|
|
1660
|
+
return None
|
|
1661
|
+
|
|
1662
|
+
def process_file_url_object(file_url_obj: Dict[str, Any]) -> Optional[str]:
|
|
1663
|
+
"""
|
|
1664
|
+
Process OpenAI file_url object and return local file path.
|
|
1665
|
+
|
|
1666
|
+
Simplified format (consistent with image_url):
|
|
1667
|
+
{"url": "https://example.com/file.pdf"} or
|
|
1668
|
+
{"url": "/local/path/file.pdf"} or
|
|
1669
|
+
{"url": "data:application/pdf;base64,..."}
|
|
1670
|
+
|
|
1671
|
+
Args:
|
|
1672
|
+
file_url_obj: File URL object with 'url' field (same as image_url)
|
|
1673
|
+
|
|
1674
|
+
Returns:
|
|
1675
|
+
Local file path or None if processing failed
|
|
1676
|
+
"""
|
|
1677
|
+
try:
|
|
1678
|
+
# Reuse existing image URL processing logic - works perfectly for any file type
|
|
1679
|
+
return process_image_url_object(file_url_obj)
|
|
1680
|
+
|
|
1681
|
+
except Exception as e:
|
|
1682
|
+
logger.error(f"Failed to process file URL object: {e}")
|
|
1683
|
+
return None
|
|
1684
|
+
|
|
1685
|
+
def process_message_content(message: ChatMessage) -> Tuple[str, List[str]]:
|
|
1686
|
+
"""
|
|
1687
|
+
Extract media files from message content and return clean text + media list.
|
|
1688
|
+
|
|
1689
|
+
Supports both OpenAI formats:
|
|
1690
|
+
- content as string: "Analyze this @image.jpg"
|
|
1691
|
+
- content as array: [{"type": "text", "text": "..."}, {"type": "image_url", "image_url": {...}}, {"type": "file", "file_url": {...}}]
|
|
1692
|
+
|
|
1693
|
+
Args:
|
|
1694
|
+
message: ChatMessage with content to process
|
|
1695
|
+
|
|
1696
|
+
Returns:
|
|
1697
|
+
Tuple of (clean_text, media_file_paths)
|
|
1698
|
+
"""
|
|
1699
|
+
if message.content is None:
|
|
1700
|
+
return "", []
|
|
1701
|
+
|
|
1702
|
+
if isinstance(message.content, str):
|
|
1703
|
+
# Legacy format: extract @filename references
|
|
1704
|
+
clean_text, media_files = MessagePreprocessor.parse_file_attachments(
|
|
1705
|
+
message.content,
|
|
1706
|
+
validate_existence=True,
|
|
1707
|
+
verbose=False
|
|
1708
|
+
)
|
|
1709
|
+
return clean_text, media_files
|
|
1710
|
+
|
|
1711
|
+
elif isinstance(message.content, list):
|
|
1712
|
+
# OpenAI array format: extract image_url objects
|
|
1713
|
+
text_parts = []
|
|
1714
|
+
media_files = []
|
|
1715
|
+
|
|
1716
|
+
for item in message.content:
|
|
1717
|
+
if isinstance(item, dict):
|
|
1718
|
+
item_type = item.get("type")
|
|
1719
|
+
if item_type == "text" and item.get("text"):
|
|
1720
|
+
text_parts.append(item["text"])
|
|
1721
|
+
elif item_type == "image_url" and item.get("image_url"):
|
|
1722
|
+
media_file = process_image_url_object(item["image_url"])
|
|
1723
|
+
if media_file:
|
|
1724
|
+
media_files.append(media_file)
|
|
1725
|
+
elif item_type == "file" and item.get("file_url"):
|
|
1726
|
+
media_file = process_file_url_object(item["file_url"])
|
|
1727
|
+
if media_file:
|
|
1728
|
+
media_files.append(media_file)
|
|
1729
|
+
elif hasattr(item, 'type'):
|
|
1730
|
+
# Pydantic ContentItem object
|
|
1731
|
+
if item.type == "text" and item.text:
|
|
1732
|
+
text_parts.append(item.text)
|
|
1733
|
+
elif item.type == "image_url" and item.image_url:
|
|
1734
|
+
media_file = process_image_url_object(item.image_url)
|
|
1735
|
+
if media_file:
|
|
1736
|
+
media_files.append(media_file)
|
|
1737
|
+
elif item.type == "file" and item.file_url:
|
|
1738
|
+
media_file = process_file_url_object(item.file_url)
|
|
1739
|
+
if media_file:
|
|
1740
|
+
media_files.append(media_file)
|
|
1741
|
+
|
|
1742
|
+
return " ".join(text_parts), media_files
|
|
1743
|
+
|
|
1744
|
+
return str(message.content), []
|
|
1745
|
+
|
|
1746
|
+
def adapt_prompt_for_media_types(text: str, media_files: List[str]) -> str:
|
|
1747
|
+
"""
|
|
1748
|
+
Intelligently adapt prompts based on attached media file types.
|
|
1749
|
+
|
|
1750
|
+
Fixes common mismatches like "What is in this image?" when sending documents.
|
|
1751
|
+
|
|
1752
|
+
Args:
|
|
1753
|
+
text: Original text content
|
|
1754
|
+
media_files: List of media file paths
|
|
1755
|
+
|
|
1756
|
+
Returns:
|
|
1757
|
+
Adapted text content
|
|
1758
|
+
"""
|
|
1759
|
+
if not media_files or not text:
|
|
1760
|
+
return text
|
|
1761
|
+
|
|
1762
|
+
# Analyze media file types
|
|
1763
|
+
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.webp', '.bmp', '.tiff'}
|
|
1764
|
+
document_extensions = {'.pdf', '.docx', '.xlsx', '.pptx'}
|
|
1765
|
+
data_extensions = {'.csv', '.tsv', '.json', '.xml'}
|
|
1766
|
+
text_extensions = {'.txt', '.md'}
|
|
1767
|
+
|
|
1768
|
+
has_images = False
|
|
1769
|
+
has_documents = False
|
|
1770
|
+
has_data = False
|
|
1771
|
+
has_text = False
|
|
1772
|
+
|
|
1773
|
+
for file_path in media_files:
|
|
1774
|
+
ext = os.path.splitext(file_path)[1].lower()
|
|
1775
|
+
if ext in image_extensions:
|
|
1776
|
+
has_images = True
|
|
1777
|
+
elif ext in document_extensions:
|
|
1778
|
+
has_documents = True
|
|
1779
|
+
elif ext in data_extensions:
|
|
1780
|
+
has_data = True
|
|
1781
|
+
elif ext in text_extensions:
|
|
1782
|
+
has_text = True
|
|
1783
|
+
|
|
1784
|
+
# Common prompt adaptations
|
|
1785
|
+
adapted_text = text
|
|
1786
|
+
|
|
1787
|
+
# Fix "What is in this image?" when not dealing with images
|
|
1788
|
+
if "what is in this image" in text.lower():
|
|
1789
|
+
if has_documents and not has_images:
|
|
1790
|
+
adapted_text = text.replace("What is in this image?", "What is in this document?")
|
|
1791
|
+
adapted_text = adapted_text.replace("what is in this image?", "what is in this document?")
|
|
1792
|
+
adapted_text = adapted_text.replace("What is in this image", "What is in this document")
|
|
1793
|
+
adapted_text = adapted_text.replace("what is in this image", "what is in this document")
|
|
1794
|
+
elif has_data and not has_images:
|
|
1795
|
+
adapted_text = text.replace("What is in this image?", "What data is in this file?")
|
|
1796
|
+
adapted_text = adapted_text.replace("what is in this image?", "what data is in this file?")
|
|
1797
|
+
adapted_text = adapted_text.replace("What is in this image", "What data is in this file")
|
|
1798
|
+
adapted_text = adapted_text.replace("what is in this image", "what data is in this file")
|
|
1799
|
+
elif has_text and not has_images:
|
|
1800
|
+
adapted_text = text.replace("What is in this image?", "What is in this text file?")
|
|
1801
|
+
adapted_text = adapted_text.replace("what is in this image?", "what is in this text file?")
|
|
1802
|
+
adapted_text = adapted_text.replace("What is in this image", "What is in this text file")
|
|
1803
|
+
adapted_text = adapted_text.replace("what is in this image", "what is in this text file")
|
|
1804
|
+
|
|
1805
|
+
# Fix "What is in this document?" when dealing with images
|
|
1806
|
+
elif "what is in this document" in text.lower() and has_images and not (has_documents or has_data or has_text):
|
|
1807
|
+
adapted_text = text.replace("What is in this document?", "What is in this image?")
|
|
1808
|
+
adapted_text = adapted_text.replace("what is in this document?", "what is in this image?")
|
|
1809
|
+
adapted_text = adapted_text.replace("What is in this document", "What is in this image")
|
|
1810
|
+
adapted_text = adapted_text.replace("what is in this document", "what is in this image")
|
|
1811
|
+
|
|
1812
|
+
# Handle mixed content with specific naming
|
|
1813
|
+
if adapted_text != text:
|
|
1814
|
+
# Count media types for better description
|
|
1815
|
+
total_files = len(media_files)
|
|
1816
|
+
if total_files > 1:
|
|
1817
|
+
types = []
|
|
1818
|
+
if has_images:
|
|
1819
|
+
types.append("image(s)")
|
|
1820
|
+
if has_documents:
|
|
1821
|
+
types.append("document(s)")
|
|
1822
|
+
if has_data:
|
|
1823
|
+
types.append("data file(s)")
|
|
1824
|
+
if has_text:
|
|
1825
|
+
types.append("text file(s)")
|
|
1826
|
+
|
|
1827
|
+
if len(types) > 1:
|
|
1828
|
+
adapted_text = adapted_text.replace("this document", f"these {' and '.join(types)}")
|
|
1829
|
+
adapted_text = adapted_text.replace("this image", f"these {' and '.join(types)}")
|
|
1830
|
+
adapted_text = adapted_text.replace("this file", f"these {' and '.join(types)}")
|
|
1831
|
+
|
|
1832
|
+
if adapted_text != text:
|
|
1833
|
+
logger.info(f"Adapted prompt for media types: '{text}' → '{adapted_text}'")
|
|
1834
|
+
|
|
1835
|
+
return adapted_text
|
|
1836
|
+
|
|
1837
|
+
def validate_media_files(files: List[str]) -> None:
|
|
1838
|
+
"""
|
|
1839
|
+
Validate media files for security and size limits.
|
|
1840
|
+
|
|
1841
|
+
Args:
|
|
1842
|
+
files: List of file paths to validate
|
|
1843
|
+
|
|
1844
|
+
Raises:
|
|
1845
|
+
HTTPException: If validation fails
|
|
1846
|
+
"""
|
|
1847
|
+
ALLOWED_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.gif', '.webp', '.bmp', '.tiff',
|
|
1848
|
+
'.pdf', '.docx', '.xlsx', '.pptx', '.csv', '.tsv', '.txt', '.md',
|
|
1849
|
+
'.json', '.xml'}
|
|
1850
|
+
|
|
1851
|
+
total_size = 0
|
|
1852
|
+
max_total_size = 32 * 1024 * 1024 # 32MB total limit
|
|
1853
|
+
|
|
1854
|
+
for file_path in files:
|
|
1855
|
+
if not os.path.exists(file_path):
|
|
1856
|
+
raise HTTPException(
|
|
1857
|
+
status_code=400,
|
|
1858
|
+
detail={"error": {"message": f"File not found: {file_path}", "type": "file_not_found"}}
|
|
1859
|
+
)
|
|
1860
|
+
|
|
1861
|
+
# Check extension
|
|
1862
|
+
ext = os.path.splitext(file_path)[1].lower()
|
|
1863
|
+
if ext not in ALLOWED_EXTENSIONS:
|
|
1864
|
+
raise HTTPException(
|
|
1865
|
+
status_code=400,
|
|
1866
|
+
detail={"error": {"message": f"File type {ext} not allowed", "type": "invalid_file_type"}}
|
|
1867
|
+
)
|
|
1868
|
+
|
|
1869
|
+
# Check individual file size (10MB per file)
|
|
1870
|
+
file_size = os.path.getsize(file_path)
|
|
1871
|
+
if file_size > 10 * 1024 * 1024:
|
|
1872
|
+
raise HTTPException(
|
|
1873
|
+
status_code=400,
|
|
1874
|
+
detail={"error": {"message": f"File too large: {file_path} (max 10MB per file)", "type": "file_too_large"}}
|
|
1875
|
+
)
|
|
1876
|
+
|
|
1877
|
+
total_size += file_size
|
|
1878
|
+
|
|
1879
|
+
# Check total size across all files
|
|
1880
|
+
if total_size > max_total_size:
|
|
1881
|
+
raise HTTPException(
|
|
1882
|
+
status_code=400,
|
|
1883
|
+
detail={"error": {"message": "Total file size exceeds 32MB limit", "type": "total_size_exceeded"}}
|
|
1884
|
+
)
|
|
1885
|
+
|
|
758
1886
|
@app.post("/v1/chat/completions")
|
|
759
1887
|
async def chat_completions(request: ChatCompletionRequest, http_request: Request):
|
|
760
1888
|
"""
|
|
761
|
-
Create a model response for the given chat conversation.
|
|
762
|
-
|
|
763
|
-
Given a list of messages comprising a conversation, the model will return a response.
|
|
764
|
-
This endpoint supports streaming, tool calling, and multiple providers.
|
|
765
|
-
|
|
1889
|
+
Create a model response for the given chat conversation with optional media attachments.
|
|
1890
|
+
|
|
1891
|
+
Given a list of messages comprising a conversation, the model will return a response.
|
|
1892
|
+
This endpoint supports streaming, tool calling, media attachments, and multiple providers.
|
|
1893
|
+
|
|
766
1894
|
**Key Features:**
|
|
767
1895
|
- Multi-provider support (OpenAI, Anthropic, Ollama, LMStudio, etc.)
|
|
768
1896
|
- Streaming responses with server-sent events
|
|
769
1897
|
- Tool/function calling with automatic syntax conversion
|
|
770
|
-
-
|
|
1898
|
+
- Media attachments (images, documents, data files)
|
|
1899
|
+
- OpenAI Vision API compatible format
|
|
771
1900
|
|
|
772
1901
|
**Provider Format:** Use `provider/model` format in the model field:
|
|
773
1902
|
- `openai/gpt-4` - OpenAI GPT-4
|
|
774
1903
|
- `ollama/llama3:latest` - Ollama LLaMA 3
|
|
775
1904
|
- `anthropic/claude-3-opus-20240229` - Anthropic Claude 3 Opus
|
|
776
|
-
|
|
1905
|
+
|
|
1906
|
+
**Media Attachments:** Support for OpenAI Vision API compatible format:
|
|
1907
|
+
- String content: "Analyze this @image.jpg" (AbstractCore @filename syntax)
|
|
1908
|
+
- Array content: [{"type": "text", "text": "..."}, {"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,..."}}]
|
|
1909
|
+
- Supported formats: Images (PNG, JPEG, GIF, WEBP), Documents (PDF, DOCX, XLSX, PPTX), Data (CSV, TSV, TXT, MD)
|
|
1910
|
+
- Size limits: 10MB per file, 32MB total per request
|
|
1911
|
+
|
|
777
1912
|
**To see available models:** `GET /v1/models?type=text-generation`
|
|
778
1913
|
|
|
779
1914
|
**Returns:** A chat completion object, or a stream of chat completion chunks if streaming is enabled.
|
|
@@ -833,11 +1968,40 @@ async def process_chat_completion(
|
|
|
833
1968
|
user_agent=http_request.headers.get("user-agent", "")[:50]
|
|
834
1969
|
)
|
|
835
1970
|
|
|
1971
|
+
# Process media from messages
|
|
1972
|
+
all_media_files = []
|
|
1973
|
+
processed_messages = []
|
|
1974
|
+
|
|
1975
|
+
for message in request.messages:
|
|
1976
|
+
clean_text, media_files = process_message_content(message)
|
|
1977
|
+
all_media_files.extend(media_files)
|
|
1978
|
+
|
|
1979
|
+
# Adapt prompt based on media file types to avoid confusion
|
|
1980
|
+
if media_files:
|
|
1981
|
+
adapted_text = adapt_prompt_for_media_types(clean_text, media_files)
|
|
1982
|
+
else:
|
|
1983
|
+
adapted_text = clean_text
|
|
1984
|
+
|
|
1985
|
+
# Create processed message with adapted text
|
|
1986
|
+
processed_message = message.model_copy()
|
|
1987
|
+
processed_message.content = adapted_text
|
|
1988
|
+
processed_messages.append(processed_message)
|
|
1989
|
+
|
|
1990
|
+
# Validate media files if any were found
|
|
1991
|
+
if all_media_files:
|
|
1992
|
+
validate_media_files(all_media_files)
|
|
1993
|
+
logger.info(
|
|
1994
|
+
"📎 Media Files Processed",
|
|
1995
|
+
request_id=request_id,
|
|
1996
|
+
file_count=len(all_media_files),
|
|
1997
|
+
files=[os.path.basename(f) for f in all_media_files[:5]] # Log first 5 filenames
|
|
1998
|
+
)
|
|
1999
|
+
|
|
836
2000
|
# Create LLM instance
|
|
837
2001
|
llm = create_llm(provider, model=model)
|
|
838
2002
|
|
|
839
2003
|
# Convert messages
|
|
840
|
-
messages = convert_to_abstractcore_messages(
|
|
2004
|
+
messages = convert_to_abstractcore_messages(processed_messages)
|
|
841
2005
|
|
|
842
2006
|
# Create syntax rewriter
|
|
843
2007
|
syntax_rewriter = create_syntax_rewriter(target_format, f"{provider}/{model}")
|
|
@@ -846,6 +2010,7 @@ async def process_chat_completion(
|
|
|
846
2010
|
gen_kwargs = {
|
|
847
2011
|
"prompt": "", # Empty when using messages
|
|
848
2012
|
"messages": messages,
|
|
2013
|
+
"media": all_media_files if all_media_files else None, # Add media files
|
|
849
2014
|
"temperature": request.temperature,
|
|
850
2015
|
"max_tokens": request.max_tokens,
|
|
851
2016
|
"stream": request.stream,
|
|
@@ -865,19 +2030,53 @@ async def process_chat_completion(
|
|
|
865
2030
|
gen_kwargs["presence_penalty"] = request.presence_penalty
|
|
866
2031
|
|
|
867
2032
|
# Generate response
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
|
|
874
|
-
|
|
875
|
-
|
|
876
|
-
else:
|
|
877
|
-
response = llm.generate(**gen_kwargs)
|
|
878
|
-
return convert_to_openai_response(
|
|
879
|
-
response, provider, model, syntax_rewriter, request_id
|
|
2033
|
+
# Only cleanup files created by this request (with our specific prefixes)
|
|
2034
|
+
temp_files_to_cleanup = [
|
|
2035
|
+
f for f in all_media_files
|
|
2036
|
+
if f.startswith("/tmp/") and (
|
|
2037
|
+
"abstractcore_img_" in f or
|
|
2038
|
+
"abstractcore_file_" in f or
|
|
2039
|
+
"abstractcore_b64_" in f or
|
|
2040
|
+
"temp" in f
|
|
880
2041
|
)
|
|
2042
|
+
]
|
|
2043
|
+
|
|
2044
|
+
try:
|
|
2045
|
+
if request.stream:
|
|
2046
|
+
return StreamingResponse(
|
|
2047
|
+
generate_streaming_response(
|
|
2048
|
+
llm, gen_kwargs, provider, model, syntax_rewriter, request_id, temp_files_to_cleanup
|
|
2049
|
+
),
|
|
2050
|
+
media_type="text/event-stream",
|
|
2051
|
+
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"}
|
|
2052
|
+
)
|
|
2053
|
+
else:
|
|
2054
|
+
response = llm.generate(**gen_kwargs)
|
|
2055
|
+
return convert_to_openai_response(
|
|
2056
|
+
response, provider, model, syntax_rewriter, request_id
|
|
2057
|
+
)
|
|
2058
|
+
finally:
|
|
2059
|
+
# Cleanup temporary files (base64 and downloaded images) with delay to avoid race conditions
|
|
2060
|
+
import threading
|
|
2061
|
+
|
|
2062
|
+
def delayed_cleanup():
|
|
2063
|
+
"""Cleanup temporary files after a short delay to avoid race conditions"""
|
|
2064
|
+
time.sleep(1) # Short delay to ensure generation is complete
|
|
2065
|
+
for temp_file in temp_files_to_cleanup:
|
|
2066
|
+
try:
|
|
2067
|
+
if os.path.exists(temp_file):
|
|
2068
|
+
# Additional check: only delete files created by this session
|
|
2069
|
+
if ("abstractcore_img_" in temp_file or "abstractcore_file_" in temp_file or "abstractcore_b64_" in temp_file):
|
|
2070
|
+
os.unlink(temp_file)
|
|
2071
|
+
logger.debug(f"Cleaned up temporary file: {temp_file}")
|
|
2072
|
+
else:
|
|
2073
|
+
logger.debug(f"Skipped cleanup of non-AbstractCore file: {temp_file}")
|
|
2074
|
+
except Exception as e:
|
|
2075
|
+
logger.warning(f"Failed to cleanup temporary file {temp_file}: {e}")
|
|
2076
|
+
|
|
2077
|
+
# Run cleanup in background thread to avoid blocking response
|
|
2078
|
+
cleanup_thread = threading.Thread(target=delayed_cleanup, daemon=True)
|
|
2079
|
+
cleanup_thread.start()
|
|
881
2080
|
|
|
882
2081
|
except Exception as e:
|
|
883
2082
|
logger.error(
|
|
@@ -897,7 +2096,8 @@ def generate_streaming_response(
|
|
|
897
2096
|
provider: str,
|
|
898
2097
|
model: str,
|
|
899
2098
|
syntax_rewriter: ToolCallSyntaxRewriter,
|
|
900
|
-
request_id: str
|
|
2099
|
+
request_id: str,
|
|
2100
|
+
temp_files_to_cleanup: List[str] = None
|
|
901
2101
|
) -> Iterator[str]:
|
|
902
2102
|
"""Generate OpenAI-compatible streaming response with syntax rewriting."""
|
|
903
2103
|
try:
|
|
@@ -983,6 +2183,29 @@ def generate_streaming_response(
|
|
|
983
2183
|
has_tool_calls=has_tool_calls
|
|
984
2184
|
)
|
|
985
2185
|
|
|
2186
|
+
# Cleanup temporary files for streaming with delay to avoid race conditions
|
|
2187
|
+
if temp_files_to_cleanup:
|
|
2188
|
+
import threading
|
|
2189
|
+
|
|
2190
|
+
def delayed_streaming_cleanup():
|
|
2191
|
+
"""Cleanup temporary files after streaming completes"""
|
|
2192
|
+
time.sleep(2) # Longer delay for streaming to ensure all chunks are sent
|
|
2193
|
+
for temp_file in temp_files_to_cleanup:
|
|
2194
|
+
try:
|
|
2195
|
+
if os.path.exists(temp_file):
|
|
2196
|
+
# Additional check: only delete files created by this session
|
|
2197
|
+
if ("abstractcore_img_" in temp_file or "abstractcore_file_" in temp_file or "abstractcore_b64_" in temp_file):
|
|
2198
|
+
os.unlink(temp_file)
|
|
2199
|
+
logger.debug(f"Cleaned up temporary file during streaming: {temp_file}")
|
|
2200
|
+
else:
|
|
2201
|
+
logger.debug(f"Skipped cleanup of non-AbstractCore streaming file: {temp_file}")
|
|
2202
|
+
except Exception as cleanup_error:
|
|
2203
|
+
logger.warning(f"Failed to cleanup temporary file {temp_file}: {cleanup_error}")
|
|
2204
|
+
|
|
2205
|
+
# Run cleanup in background thread
|
|
2206
|
+
cleanup_thread = threading.Thread(target=delayed_streaming_cleanup, daemon=True)
|
|
2207
|
+
cleanup_thread.start()
|
|
2208
|
+
|
|
986
2209
|
except Exception as e:
|
|
987
2210
|
logger.error(
|
|
988
2211
|
"❌ Streaming failed",
|
|
@@ -1072,25 +2295,88 @@ def run_server(host: str = "0.0.0.0", port: int = 8000):
|
|
|
1072
2295
|
uvicorn.run(app, host=host, port=port)
|
|
1073
2296
|
|
|
1074
2297
|
# ============================================================================
|
|
1075
|
-
#
|
|
2298
|
+
# Server Runner Function
|
|
1076
2299
|
# ============================================================================
|
|
1077
2300
|
|
|
1078
|
-
|
|
1079
|
-
|
|
2301
|
+
def run_server_with_args():
|
|
2302
|
+
"""Run the server with argument parsing for CLI usage."""
|
|
2303
|
+
parser = argparse.ArgumentParser(
|
|
2304
|
+
description="AbstractCore Server - Universal LLM Gateway with Media Processing",
|
|
2305
|
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
2306
|
+
epilog="""
|
|
2307
|
+
Examples:
|
|
2308
|
+
python -m abstractcore.server.app # Start server with defaults
|
|
2309
|
+
python -m abstractcore.server.app --debug # Start with debug logging
|
|
2310
|
+
python -m abstractcore.server.app --host 127.0.0.1 --port 8080 # Custom host/port
|
|
2311
|
+
python -m abstractcore.server.app --debug --port 8080 # Debug on custom port
|
|
2312
|
+
|
|
2313
|
+
Environment Variables:
|
|
2314
|
+
ABSTRACTCORE_DEBUG=true # Enable debug mode (equivalent to --debug)
|
|
2315
|
+
HOST=127.0.0.1 # Server host (overridden by --host)
|
|
2316
|
+
PORT=8080 # Server port (overridden by --port)
|
|
2317
|
+
|
|
2318
|
+
Debug Mode:
|
|
2319
|
+
The --debug flag enables verbose logging and better error reporting, including:
|
|
2320
|
+
- Detailed HTTP request/response logging
|
|
2321
|
+
- Full error traces for 422 Unprocessable Entity errors
|
|
2322
|
+
- Media processing diagnostics
|
|
2323
|
+
- Provider initialization details
|
|
2324
|
+
"""
|
|
2325
|
+
)
|
|
2326
|
+
|
|
2327
|
+
parser.add_argument(
|
|
2328
|
+
'--debug',
|
|
2329
|
+
action='store_true',
|
|
2330
|
+
help='Enable debug logging and show detailed diagnostics (overrides centralized config)'
|
|
2331
|
+
)
|
|
2332
|
+
parser.add_argument(
|
|
2333
|
+
'--host',
|
|
2334
|
+
default=os.getenv("HOST", "0.0.0.0"),
|
|
2335
|
+
help='Host to bind the server to (default: 0.0.0.0)'
|
|
2336
|
+
)
|
|
2337
|
+
parser.add_argument(
|
|
2338
|
+
'--port',
|
|
2339
|
+
type=int,
|
|
2340
|
+
default=int(os.getenv("PORT", "8000")),
|
|
2341
|
+
help='Port to bind the server to (default: 8000)'
|
|
2342
|
+
)
|
|
1080
2343
|
|
|
1081
|
-
|
|
1082
|
-
|
|
2344
|
+
args = parser.parse_args()
|
|
2345
|
+
|
|
2346
|
+
# Reconfigure logging if debug mode is requested (--debug overrides config defaults)
|
|
2347
|
+
if args.debug:
|
|
2348
|
+
reconfigure_for_debug()
|
|
2349
|
+
print("🐛 Debug mode enabled - detailed logging active")
|
|
1083
2350
|
|
|
1084
2351
|
logger.info(
|
|
1085
2352
|
"🚀 Starting AbstractCore Server",
|
|
1086
|
-
host=host,
|
|
1087
|
-
port=port,
|
|
1088
|
-
debug=debug_mode
|
|
2353
|
+
host=args.host,
|
|
2354
|
+
port=args.port,
|
|
2355
|
+
debug=debug_mode,
|
|
2356
|
+
version=__version__
|
|
1089
2357
|
)
|
|
1090
2358
|
|
|
1091
|
-
uvicorn
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
2359
|
+
# Enhanced uvicorn configuration for debug mode
|
|
2360
|
+
uvicorn_config = {
|
|
2361
|
+
"app": app,
|
|
2362
|
+
"host": args.host,
|
|
2363
|
+
"port": args.port,
|
|
2364
|
+
"log_level": "debug" if debug_mode else "info"
|
|
2365
|
+
}
|
|
2366
|
+
|
|
2367
|
+
# In debug mode, enable more detailed uvicorn logging
|
|
2368
|
+
if debug_mode:
|
|
2369
|
+
uvicorn_config.update({
|
|
2370
|
+
"access_log": True,
|
|
2371
|
+
"use_colors": True,
|
|
2372
|
+
})
|
|
2373
|
+
|
|
2374
|
+
import uvicorn
|
|
2375
|
+
uvicorn.run(**uvicorn_config)
|
|
2376
|
+
|
|
2377
|
+
# ============================================================================
|
|
2378
|
+
# Startup
|
|
2379
|
+
# ============================================================================
|
|
2380
|
+
|
|
2381
|
+
if __name__ == "__main__":
|
|
2382
|
+
run_server_with_args()
|