Topsis-KhushiMehta-102303769 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
@@ -0,0 +1,81 @@
1
+
2
+ import sys
3
+ import os
4
+ import pandas as pd
5
+ import numpy as np
6
+
7
+ def topsis(input_file, weights, impacts, output_file):
8
+
9
+ # File check
10
+ if not os.path.exists(input_file):
11
+ raise Exception("Input file not found")
12
+
13
+ # INPUT (CSV or XLSX)
14
+ if input_file.endswith(".csv"):
15
+ df = pd.read_csv(input_file)
16
+ elif input_file.endswith(".xlsx"):
17
+ df = pd.read_excel(input_file)
18
+ else:
19
+ raise Exception("Input file must be .csv or .xlsx")
20
+
21
+ if df.shape[1] < 3:
22
+ raise Exception("Input file must contain 3 or more columns")
23
+
24
+ data = df.iloc[:, 1:]
25
+
26
+ # Numeric validation
27
+ if not np.all(data.map(np.isreal)):
28
+ raise Exception("Columns from 2nd to last must be numeric")
29
+
30
+ weights = list(map(float, weights.split(",")))
31
+ impacts = impacts.split(",")
32
+
33
+ if len(weights) != data.shape[1] or len(impacts) != data.shape[1]:
34
+ raise Exception("Weights, impacts and columns count mismatch")
35
+
36
+ for i in impacts:
37
+ if i not in ['+', '-']:
38
+ raise Exception("Impacts must be + or -")
39
+
40
+ # Normalization
41
+ norm = np.sqrt((data ** 2).sum())
42
+ norm_data = data / norm
43
+
44
+ # Weighted
45
+ weighted = norm_data * weights
46
+
47
+ # Ideal best & worst
48
+ ideal_best = []
49
+ ideal_worst = []
50
+
51
+ for i in range(len(impacts)):
52
+ if impacts[i] == '+':
53
+ ideal_best.append(weighted.iloc[:, i].max())
54
+ ideal_worst.append(weighted.iloc[:, i].min())
55
+ else:
56
+ ideal_best.append(weighted.iloc[:, i].min())
57
+ ideal_worst.append(weighted.iloc[:, i].max())
58
+
59
+ # Distance
60
+ d_best = np.sqrt(((weighted - ideal_best) ** 2).sum(axis=1))
61
+ d_worst = np.sqrt(((weighted - ideal_worst) ** 2).sum(axis=1))
62
+
63
+ score = d_worst / (d_best + d_worst)
64
+
65
+ df["Topsis Score"] = score
66
+ df["Rank"] = score.rank(ascending=False)
67
+
68
+
69
+ if not output_file.endswith(".csv"):
70
+ raise Exception("Output file must be .csv")
71
+
72
+ df.to_csv(output_file, index=False)
73
+
74
+ def main():
75
+ if len(sys.argv) != 5:
76
+ print("Usage: topsis <input.(csv/xlsx)> <weights> <impacts> <output.csv>")
77
+ sys.exit(1)
78
+
79
+ _, input_file, weights, impacts, output_file = sys.argv
80
+ topsis(input_file, weights, impacts, output_file)
81
+
@@ -0,0 +1,11 @@
1
+ Metadata-Version: 2.4
2
+ Name: Topsis-KhushiMehta-102303769
3
+ Version: 1.0.0
4
+ Summary: TOPSIS decision making method
5
+ Author: Khushi
6
+ Requires-Dist: pandas
7
+ Requires-Dist: numpy
8
+ Requires-Dist: openpyxl
9
+ Dynamic: author
10
+ Dynamic: requires-dist
11
+ Dynamic: summary
@@ -0,0 +1,7 @@
1
+ topsis_khushi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ topsis_khushi/topsis.py,sha256=jv_QK4J1-FbyXR7P21ETthcI6H_QeMePsPU3GNYy8Qw,2323
3
+ topsis_khushimehta_102303769-1.0.0.dist-info/METADATA,sha256=I7Cd5zvyw7RdkqccB8M7oY9nsPxhOSg3w7B2n0vm63s,260
4
+ topsis_khushimehta_102303769-1.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
5
+ topsis_khushimehta_102303769-1.0.0.dist-info/entry_points.txt,sha256=6TNBgjObW6hWlkxNwuUtngovpEAYX3lwsTjID_AMYn0,53
6
+ topsis_khushimehta_102303769-1.0.0.dist-info/top_level.txt,sha256=2ji7LC_9LHtRbKaVBVu0FEQUydFifsgKmb3-rOwxriI,14
7
+ topsis_khushimehta_102303769-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ topsis = topsis_khushi.topsis:main
@@ -0,0 +1 @@
1
+ topsis_khushi