TonieToolbox 0.5.1__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,3 +1,4 @@
1
+ #!/usr/bin/python3
1
2
  """
2
3
  Audio conversion functionality for the TonieToolbox package
3
4
  """
@@ -7,27 +8,36 @@ import glob
7
8
  import subprocess
8
9
  import tempfile
9
10
  from .dependency_manager import get_ffmpeg_binary, get_opus_binary
11
+ from .constants import SUPPORTED_EXTENSIONS
10
12
  from .logger import get_logger
11
13
 
12
- logger = get_logger('audio_conversion')
14
+ logger = get_logger(__name__)
13
15
 
14
16
 
15
- def get_opus_tempfile(ffmpeg_binary=None, opus_binary=None, filename=None, bitrate=48, vbr=True, keep_temp=False, auto_download=False, no_mono_conversion=False):
17
+ def get_opus_tempfile(
18
+ ffmpeg_binary: str = None,
19
+ opus_binary: str = None,
20
+ filename: str = None,
21
+ bitrate: int = 48,
22
+ vbr: bool = True,
23
+ keep_temp: bool = False,
24
+ auto_download: bool = False,
25
+ no_mono_conversion: bool = False
26
+ ) -> tuple[tempfile.SpooledTemporaryFile | None, str | None]:
16
27
  """
17
28
  Convert an audio file to Opus format and return a temporary file handle.
18
29
 
19
30
  Args:
20
- ffmpeg_binary: Path to the ffmpeg binary. If None, will be auto-detected or downloaded.
21
- opus_binary: Path to the opusenc binary. If None, will be auto-detected or downloaded.
22
- filename: Path to the input audio file
23
- bitrate: Bitrate for the Opus encoding in kbps
24
- vbr: Whether to use variable bitrate encoding
25
- keep_temp: Whether to keep the temporary files for testing
26
- auto_download: Whether to automatically download dependencies if not found
27
- no_mono_conversion: Whether to skip mono to stereo conversion
28
-
31
+ ffmpeg_binary (str | None): Path to the ffmpeg binary. If None, will be auto-detected or downloaded.
32
+ opus_binary (str | None): Path to the opusenc binary. If None, will be auto-detected or downloaded.
33
+ filename (str | None): Path to the input audio file
34
+ bitrate (int): Bitrate for the Opus encoding in kbps
35
+ vbr (bool): Whether to use variable bitrate encoding
36
+ keep_temp (bool): Whether to keep the temporary files for testing
37
+ auto_download (bool): Whether to automatically download dependencies if not found
38
+ no_mono_conversion (bool): Whether to skip mono to stereo conversion
29
39
  Returns:
30
- tuple: (file handle, temp_file_path) or (file handle, None) if keep_temp is False
40
+ tuple[tempfile.SpooledTemporaryFile | None, str | None]: (file handle, temp_file_path) or (file handle, None) if keep_temp is False
31
41
  """
32
42
  logger.trace("Entering get_opus_tempfile(ffmpeg_binary=%s, opus_binary=%s, filename=%s, bitrate=%d, vbr=%s, keep_temp=%s, auto_download=%s, no_mono_conversion=%s)",
33
43
  ffmpeg_binary, opus_binary, filename, bitrate, vbr, keep_temp, auto_download, no_mono_conversion)
@@ -198,24 +208,20 @@ def get_opus_tempfile(ffmpeg_binary=None, opus_binary=None, filename=None, bitra
198
208
  return tmp_file, None
199
209
 
200
210
 
201
- def filter_directories(glob_list):
211
+ def filter_directories(glob_list: list[str]) -> list[str]:
202
212
  """
203
213
  Filter a list of glob results to include only audio files that can be handled by ffmpeg.
204
214
 
205
215
  Args:
206
- glob_list: List of path names from glob.glob()
207
-
216
+ glob_list (list[str]): List of path names from glob.glob()
208
217
  Returns:
209
- list: Filtered list containing only supported audio files
218
+ list[str]: Filtered list containing only supported audio files
210
219
  """
211
220
  logger.trace("Entering filter_directories() with %d items", len(glob_list))
212
221
  logger.debug("Filtering %d glob results for supported audio files", len(glob_list))
213
222
 
214
- # Common audio file extensions supported by ffmpeg
215
- supported_extensions = [
216
- '.wav', '.mp3', '.aac', '.m4a', '.flac', '.ogg', '.opus',
217
- '.ape', '.wma', '.aiff', '.mp2', '.mp4', '.webm', '.mka'
218
- ]
223
+ supported_extensions = SUPPORTED_EXTENSIONS
224
+ logger.debug("Supported audio file extensions: %s", supported_extensions)
219
225
 
220
226
  filtered = []
221
227
  for name in glob_list:
@@ -232,17 +238,16 @@ def filter_directories(glob_list):
232
238
  return filtered
233
239
 
234
240
 
235
- def get_input_files(input_filename):
241
+ def get_input_files(input_filename: str) -> list[str]:
236
242
  """
237
243
  Get a list of input files to process.
238
244
 
239
245
  Supports direct file paths, directory paths, glob patterns, and .lst files.
240
246
 
241
247
  Args:
242
- input_filename: Input file pattern or list file path
243
-
248
+ input_filename (str): Input file pattern or list file path
244
249
  Returns:
245
- list: List of input file paths
250
+ list[str]: List of input file paths
246
251
  """
247
252
  logger.trace("Entering get_input_files(input_filename=%s)", input_filename)
248
253
  logger.debug("Getting input files for pattern: %s", input_filename)
@@ -320,14 +325,13 @@ def get_input_files(input_filename):
320
325
  return input_files
321
326
 
322
327
 
323
- def append_to_filename(output_filename, tag):
328
+ def append_to_filename(output_filename: str, tag: str) -> str:
324
329
  """
325
330
  Append a tag to a filename, preserving the extension.
326
331
 
327
332
  Args:
328
- output_filename: Original filename
329
- tag: Tag to append (typically an 8-character hex value)
330
-
333
+ output_filename (str): Original filename
334
+ tag (str): Tag to append (typically an 8-character hex value)
331
335
  Returns:
332
336
  str: Modified filename with tag
333
337
  """
TonieToolbox/constants.py CHANGED
@@ -1,13 +1,14 @@
1
+ #!/usr/bin/python3
1
2
  """
2
3
  Constants used throughout the TonieToolbox package
3
4
  """
4
- SAMPLE_RATE_KHZ = 48
5
- ONLY_CONVERT_FRAMEPACKING = -1
6
- OTHER_PACKET_NEEDED = -2
7
- DO_NOTHING = -3
8
- TOO_MANY_SEGMENTS = -4
9
- TIMESTAMP_DEDUCT = 0x50000000
10
- OPUS_TAGS = [
5
+ SAMPLE_RATE_KHZ: int = 48
6
+ ONLY_CONVERT_FRAMEPACKING: int = -1
7
+ OTHER_PACKET_NEEDED: int = -2
8
+ DO_NOTHING: int = -3
9
+ TOO_MANY_SEGMENTS: int = -4
10
+ TIMESTAMP_DEDUCT: int = 0x50000000
11
+ OPUS_TAGS: list[bytearray] = [
11
12
  bytearray(
12
13
  b"\x4F\x70\x75\x73\x54\x61\x67\x73\x0D\x00\x00\x00\x4C\x61\x76\x66\x35\x38\x2E\x32\x30\x2E\x31\x30\x30\x03\x00\x00\x00\x26\x00\x00\x00\x65\x6E\x63\x6F\x64\x65\x72\x3D\x6F\x70\x75\x73\x65\x6E\x63\x20\x66\x72\x6F\x6D\x20\x6F\x70\x75\x73\x2D\x74\x6F\x6F\x6C\x73\x20\x30\x2E\x31\x2E\x31\x30\x2A\x00\x00\x00\x65\x6E\x63\x6F\x64\x65\x72\x5F\x6F\x70\x74\x69\x6F\x6E\x73\x3D\x2D\x2D\x71\x75\x69\x65\x74\x20\x2D\x2D\x62\x69\x74\x72\x61\x74\x65\x20\x39\x36\x20\x2D\x2D\x76\x62\x72\x3B\x01\x00\x00\x70\x61\x64\x3D\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30"),
13
14
  bytearray(
@@ -15,7 +16,7 @@ OPUS_TAGS = [
15
16
  ]
16
17
 
17
18
  # Mapping of language tags to ISO codes
18
- LANGUAGE_MAPPING = {
19
+ LANGUAGE_MAPPING: dict[str, str] = {
19
20
  # Common language names to ISO codes
20
21
  'deutsch': 'de-de',
21
22
  'german': 'de-de',
@@ -39,7 +40,7 @@ LANGUAGE_MAPPING = {
39
40
  }
40
41
 
41
42
  # Mapping of genre tags to tonie categories
42
- GENRE_MAPPING = {
43
+ GENRE_MAPPING: dict[str, str] = {
43
44
  # Standard Tonie category names from tonies.json
44
45
  'hörspiel': 'Hörspiele & Hörbücher',
45
46
  'hörbuch': 'Hörspiele & Hörbücher',
@@ -87,4 +88,126 @@ GENRE_MAPPING = {
87
88
 
88
89
  # Default to standard format for custom
89
90
  'custom': 'Hörspiele & Hörbücher',
90
- }
91
+ }
92
+
93
+ # Supported file extensions for audio files
94
+ SUPPORTED_EXTENSIONS = [
95
+ '.wav', '.mp3', '.aac', '.m4a', '.flac', '.ogg', '.opus',
96
+ '.ape', '.wma', '.aiff', '.mp2', '.mp4', '.webm', '.mka'
97
+ ]
98
+
99
+ UTI_MAPPINGS = {
100
+ 'mp3': 'public.mp3',
101
+ 'wav': 'public.wav',
102
+ 'flac': 'org.xiph.flac',
103
+ 'ogg': 'org.xiph.ogg',
104
+ 'opus': 'public.opus',
105
+ 'aac': 'public.aac-audio',
106
+ 'm4a': 'public.m4a-audio',
107
+ 'wma': 'com.microsoft.windows-media-wma',
108
+ 'aiff': 'public.aiff-audio',
109
+ 'mp2': 'public.mp2',
110
+ 'mp4': 'public.mpeg-4-audio',
111
+ 'mka': 'public.audio',
112
+ 'webm': 'public.webm-audio',
113
+ 'ape': 'public.audio',
114
+ 'taf': 'public.audio'
115
+ }
116
+
117
+ ARTWORK_NAMES = [
118
+ 'cover', 'folder', 'album', 'front', 'artwork', 'image',
119
+ 'albumart', 'albumartwork', 'booklet'
120
+ ]
121
+ ARTWORK_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']
122
+
123
+
124
+ TAG_VALUE_REPLACEMENTS = {
125
+ "Die drei ???": "Die drei Fragezeichen",
126
+ "Die Drei ???": "Die drei Fragezeichen",
127
+ "DIE DREI ???": "Die drei Fragezeichen",
128
+ "Die drei !!!": "Die drei Ausrufezeichen",
129
+ "Die Drei !!!": "Die drei Ausrufezeichen",
130
+ "DIE DREI !!!": "Die drei Ausrufezeichen",
131
+ "TKKG™": "TKKG",
132
+ "Die drei ??? Kids": "Die drei Fragezeichen Kids",
133
+ "Die Drei ??? Kids": "Die drei Fragezeichen Kids",
134
+ "Bibi & Tina": "Bibi und Tina",
135
+ "Benjamin Blümchen™": "Benjamin Blümchen",
136
+ "???": "Fragezeichen",
137
+ "!!!": "Ausrufezeichen",
138
+ }
139
+
140
+ TAG_MAPPINGS = {
141
+ # ID3 (MP3) tags
142
+ 'TIT2': 'title',
143
+ 'TALB': 'album',
144
+ 'TPE1': 'artist',
145
+ 'TPE2': 'albumartist',
146
+ 'TCOM': 'composer',
147
+ 'TRCK': 'tracknumber',
148
+ 'TPOS': 'discnumber',
149
+ 'TDRC': 'date',
150
+ 'TCON': 'genre',
151
+ 'TPUB': 'publisher',
152
+ 'TCOP': 'copyright',
153
+ 'COMM': 'comment',
154
+
155
+ # Vorbis tags (FLAC, OGG)
156
+ 'title': 'title',
157
+ 'album': 'album',
158
+ 'artist': 'artist',
159
+ 'albumartist': 'albumartist',
160
+ 'composer': 'composer',
161
+ 'tracknumber': 'tracknumber',
162
+ 'discnumber': 'discnumber',
163
+ 'date': 'date',
164
+ 'genre': 'genre',
165
+ 'publisher': 'publisher',
166
+ 'copyright': 'copyright',
167
+ 'comment': 'comment',
168
+
169
+ # MP4 (M4A, AAC) tags
170
+ '©nam': 'title',
171
+ '©alb': 'album',
172
+ '©ART': 'artist',
173
+ 'aART': 'albumartist',
174
+ '©wrt': 'composer',
175
+ 'trkn': 'tracknumber',
176
+ 'disk': 'discnumber',
177
+ '©day': 'date',
178
+ '©gen': 'genre',
179
+ '©pub': 'publisher',
180
+ 'cprt': 'copyright',
181
+ '©cmt': 'comment',
182
+
183
+ # Additional tags some files might have
184
+ 'album_artist': 'albumartist',
185
+ 'track': 'tracknumber',
186
+ 'track_number': 'tracknumber',
187
+ 'disc': 'discnumber',
188
+ 'disc_number': 'discnumber',
189
+ 'year': 'date',
190
+ 'albuminterpret': 'albumartist', # German tag name
191
+ 'interpret': 'artist', # German tag name
192
+
193
+ }
194
+
195
+ CONFIG_TEMPLATE = {
196
+ "metadata": {
197
+ "description": "TonieToolbox configuration",
198
+ "config_version": "1.0"
199
+ },
200
+ "log_level": "silent", # Options: trace, debug, info, warning, error, critical, silent
201
+ "log_to_file": False, # True if you want to log to a file ~\.tonietoolbox\logs
202
+ "upload": {
203
+ "url": [""], # https://teddycloud.example.com
204
+ "ignore_ssl_verify": False, # True if you want to ignore SSL certificate verification
205
+ "username": "", # Basic Auth username
206
+ "password": "", # Basic Auth password
207
+ "client_cert_path": "", # Path to client certificate file
208
+ "client_cert_key_path": "" # Path to client certificate key file
209
+ }
210
+ }
211
+
212
+ ICON_BASE64="AAABAAEAAAAAAAEAIACkSwAAFgAAAIlQTkcNChoKAAAADUlIRFIAAAEAAAABAAgGAAAAXHKoZgAAAAFvck5UAc+id5oAAEteSURBVHja7V0HeFRV076Q3U0IXQQbVkqyJSQQQu9NekiHVHqHhGxJoUWaqAgqCqKiIoqICCoiKqAU6aKf7dPf3hVEUOlIdv6Zs/fGkC/knt1ka848z/tsSEKy2T3znukjSUIqLTqDVQrWWyQtPjIY8yRtuEWnMVivQ8Tg57IQ8xBrETsRnyB+RvyFuIgAhB1xHnES8T3iA8RbiKfk/0s/o6NWb7lJZ7DUrkm/Q/59+DukGs3NUlCYRbwZQoR4QrSGXMR0hEPxa5qYQtZDRCMmIVYjjiB+RZyRFRxchF3+GccQHyNeRMxFDEXcjgRQS2eylRBCUFiupAk3izdJiJCqV3yLpDHmyspGSmcJwY+jEHnyjU1KerkSyu4MiBS+RmxE5Gj11raIujoHGaFlYpNubD1HqoXWghAhQipj5httUjDdsvioM6CC6a0NUcniEM/L5rzdQ0pfkZVA5PM6kYHGYDEGG/K0+DwdboLejBAughAhzklEvlRbPwMVv8S/J8VPQ+yQb2DwQRQjvkM8iRiMJNCAiItiBTUjzFKQSRCBECGqojGSb29jQT6tyRrClMlgfQNxzkcVvzz8LbsmoykoGdLS4R7U1BcgIQjXQIiQ/5Xm06RgOcoeGmam29+AHz+GOOVHil8WlG3Yh5iAFsF1wRTH0FM8w8ziGkKECEEJIj+5xXQloh4ip98+9mPFL4tLiL3MjdGb67G/U08kVyDefCHVW7RoEmv0eSx6jrdkU1SOhxCnq1oJNWUQJKPs591MBOTGbEZ0CwrPCaKMhkY/FV8DkT4UUh39fTz4GjSFdcYZdPO3lv3mKlF2Uu6aehvUQOjw47omCzSKMMP1rXLhRsRNkbnQFHEjonErMzTEr9U2Wtj/p/9D/zdI7zZioDqFRYibtYb8kloCIUKqz81vtKIvbJFuarmKDn//ypr8GqbwjsdrUJlNbbIhofMksPUeC8sHjIT1QzPgrbhUOJQ0HN5PToGPUpLhU8QH+PHuhBGwZVgarB2SAUv7jwRzr7GQiP+3ddvpcAOSRSgSQ01GClVKBnbZLRikM9o0jACumyppwkVsQEjAm/2O3H6osbAGEkGyXIbrkiLRLU23/XWoqAM7ToH5fUfDG6joP6QmwunMeLCPHAYwKlbGsCsxssy/5e8rxs+fzoyDX9MS4AgSxtODMyGn5zjo2m4asyB0pcimCojgBOIujd5yLasdMNrY6yNESIDe/BZ2+9cyFZHyp8rmsNOKQwoYYrRCG7ylC/uMYbf4qYz4f5UaH0n5i10EI46R/xLDP/jx7+kJsD9xONx35yjo32EKIx2NTEKVJAOqYtxCbpBO73h9CEKEBJbPT4dbb5akZsvJ7E9xRfnptifFbx8zDR5E0/5bvOmLZUWtjMJzk4JMLkQ27yLpFPYew1wFh5tQaSL4FBGri7DWZFZSBJFAkTg4QvxfqHFGo7dKIZH5dLsNcNbsVwJ7LVrnwKJ+o5mJD/ItXewFKGRwGR+/x+fy2KAs6NNhKtQzVZoIjrEeA4OtFlkBwfh6UY2EECH+K3iAtREWhwXgaNX91NlbnyL0I7pOhPeSUpjSeUvxy4PiKpCL8PyQDOjfcQrUkYnARRI4i7hXo7c1oPSopj0SZ3i+OEdC/FNCIgpYYw8e6lvk3nyngny3RM5g0Xnm44/yHcW/mlVwIj0eVg/KZG6KTiYwF0jgH8TjOjbfwCLd3LRICtaLuIAQvwv6yT3zeksoPq5yVvmjoqfD63Fp7Na3j/Rd5S8vgPgdugZFfcfAbVEzSoqOXEgVrkd34CaKCdSJnC7pIkTRkBC/Uf48RgCSNEaSB3acc8bs79l+KkvDgZ8ofnmuAWUP3k0cDkM7TYZa6Ma4aA28iJZAU60eX8trc9GlEiXEQvxA6vbb5JjeY7S2w0P8jTMBvzs7TIH/Dk/2aZOfmwjwbziengAL+41mFYhBrsUGXsTX8Qad0SLVbj1Nkm4rEgdMiA/f/vqS2XkN8HGTMzd/7w5T4bMAUf6y1sDrw1Khfcx0V0qMyR1Yowm3NiJS1ZmEKyDEV6VHEevnr+EY6EGm/wVe5Y9pO52V6gaS8peNDRC5De8yidUzaJwvGHoYSaCuhg1KEWXDQnxQdC0cfe94WMN4U36k/HdEzYAd8akBqfzluQTUc0B1A0HOzxiYrTGZtaKJSIjvSVSO3OhjDcLDuYTX529gMsPjA7MCWvHLugRnMuPg3jtHsS5FJ0ngT8SokOYFjoGpop1YiK9InWazmP+PSt1BHtzJdain9hgPZ1Eh7NWEABSX4EJWHKxE4qMmIydJ4Ed8jfuwdmL9DCk0TDQQCfG2UMWfkc3y0/Hm/KlarmPMNPhqRJLfpvsqSwIUHHxyUKYrJHAQX+8WNEdRaiVcASFelmBTyXALuv1/4zH9qXd/w9D0gPf71UjgUtYweGJQFuswdJIE1uoMtnqOjIsICgrxorCBl2E06sr6AG/gb1S3CcwXto+svgRQmgQeHjCSTSfSOBcUNEthU2qw6UpiD4EQr0T+5ZJfPLgGeXOOqvLfHjWDTeipzrd/WRI4nxUH8/qOZs1PTpDAT4ju5ArUajlDHEYh3jD/bZLUgsZdW/N5NvbQ4c7rPRb+yRKKXzY78FdGPEzqMZ41EjnhCmzXGGzXK4tLhQjxiNBE36AWBYrv3wjxLs/t37x1Dnzo0YKfWCjOugp8kAR+Sk2EwZ0mOxMPoM1Es6UIa02NIw0rDqcQ90X7a7UqLJlmq2NjvvIp8j9c3oqjSgA0Y++SO29/UuzMoVCcMcTx73HJUDw5DYqnZkDxtEx8zHT8e3yK4+v0ffT9PkIIRIxUEdkqOtuZ3gFyBbrSe1IjQhCAkKoO8oWjid88p2Q9t05vrolm6u20AsvRtsoX+adR3DROq8pvf6b0qMij46E4eyQULyoA+5pHwf7Gy2A/uBfs//0I7F//H8D33wB88yXYP/sY7O8dAPtbW8C+dhUULyyA4ulZUDwqzifIgCyBF4ZmQGPngoKvaI2s/4JNYBIipPL+vSFXqqWfonT2STqDmXr7uyOWIf4rb77hHubZKWYa/JSWWHUEQMpKSps7FuyP3g/2t7c5lPzMaYDiYuASu93x/d9+BfZtm6H47plQPGG4V4lAKRSiuYPB/ARAfRdjQyJsUlC4qBAUUpkbHxVfFzaBNZ1ojJTjN9fHwxWP2CCPs3Zpfj8t6RjTbQL8KM/1c9mnJ+UclwTF86xgf30zwE/fA/xzCapEkAzsRw+C/aG7oXiiTAResgJ+SUuAfh2mODNi7APEHWytesRMcZCFOCtFkraVRW7ppRn+ljp4oBIQW6tiPbdizsZ3ngxfu1IBqCj+PbPBvu8dgD9Pgdvk/DmwH97ncA/IyvCCNUCWEjVJ0SYjJ4KCC4IjzDXZEtKmIjUohDeqb8qTarYqYKZ+kJ4aeiw98DBtdNe+vmFIAj/wWgKkfKSEdOPv3Qlw+m/wmJz8A+wb10LxlHR8Hp63BqhceG5fp1yB7xBRbLJwa7GSXAiPyS8vpNCFsyDfbYjFri7ucAZUDXgyI77iakC69cnHf+UFgD9OgFfk8mWwH9kPxYVTPW4JEEESUXZpN80ZV2B5zXCrhgUDxWhxIVdX/DwpqNl4R2TfZKE+81jEAU+sziYrgJZqLO43uvy0ICnamESwP3g3wBefOYJ13pZvv4TiRYWeJ4FRjqyAE6XCvzj6MmxSaJsicdCFlGPy422vCTezmf0ag432081HnPSE8peuC6BZedvLDgOhWz9nNNi3bnJE6H1JfvkJiu+d61ESsLOdhfGQ1nWiM7UBK9Bi0LDqwOjx4sALKXXzU5AvjObL5VP5aDgelpfksVOVu9X1FgcMFqd2/dFyT5qUYx8pK9WCPIBPP/SNW788+fVnFoj0ZEyACJL2IN7EHxCk4qBoZt2FiWnCQkpufivCsX9Orh47VDlTnpTeDLVMhXB9zDJo0+dlaNltDeiMeU65AqsGZgKMQRJYtQzg+K/g8/L9N1A8Z4bHSECpDZjWc5wzxUFLNYYZQVrRLiyEKb/RUSVWvwPN7mN7+j6vzG1Pjw1aLwBTz/UwIP59yMr8HSaOPQ+jRp5kn9MZbfxFQh1y4Oc1awDOngG/kU/+A8UzxnjMHSAr4GhyCuum5LQCqDtT76jeFNWB1dvspxlyRosU2oK17w50Zl5/WcUnxW4cfS/E9NsCySO+hfFjzsKkcRdh0tgLjAAmjbsAI7NOQBhaAtxWQKt8eGrjIfA3sb/5KhSPTfIYCVDAdEYvbiuAujPza0SaJV24GB1WbSVI7wj4sY09BmtvxFeumPr0SIrfacB2SEv/BZX9HFN2UvqyoM+npv8EN7Z7sMRaqNAKCDPD0Imr4e8zF/yLAahgaOX9HrUCjiSllKwd43jvjqC1dwPrETCJuoDqJ9FFkmTIk3RG1i/eBg/Cf1y59etFFjH/fkTaTw4FH1u+4pclgYHx/4E6reaoBgbpd9zQuQgOffi931kB1EdQbBnvERKgWMDFrDiY0mM8LwFQj0AaTW0KalUo9KG6SXBYjqRzdPHdhHjL2VtfZ7DBrR1XwtCkT2ACM/XVFb80xo85A616bcCfx5cZuPfxt/2PAMAO9lc3OKoVPWQF7EoYweYIcroCG/D7aoldAtXN9Fe6+EzszX/YWeWvHTELovu+yoJ7zir+v1bARUgY/hXUj5qnagXUQDcgfurTcPbcRf/jgBPHoXh2jkeah5S6gOQuk3irA38tSQkaRCyg2pj+NY0Wqa6BTezNcqaZh8zxhq0XQu+h+9kNzmPuq1kBhh7PqcYCgsItEHbnYvjup5Pgj0KFS560AjYMzWAbhjitgNmSIVsQQHWRWmHZiulPaaBPnFH+Jm3vgyGJH1dK6ctaAZQmpFoBtd99bfvZ8M7Br6pMKS9c/Af+uVzsGQY49gsU50/2SG2Ao104ETrEcPcIvItuWCOHG5AkFCSgU356Kwv66SJsOnQBHnFG+a9ruwTikj932eQvlwDQgsjIPMYyCBVZAXST1WqVB6srmQ6kAsIP/vsTzHv4LciwPgcT5rwIazYfgd9PurnGoLgY7Gsf89gMAXIFaJKwE2vFejOXsN1soSSBLJqWVmVuXx/eAR7s9m2zGIYlf1alyq9g3OgzEN59LQTpzarpwPkrtldCB+2w9uX3oGW/u5lLQXEFQmhkPgyZsBr+89nP7nUDPjoKxRNHeCQj4EgJDoemkdwpwcWSYVwNsVMwkE1/Uy5b0Y2oLffzcwX86kYWQf+49yvt71fkBnTo/4Z6ILClGbIXvoy3uGt9AG/u/Ryadp3HiORKgnOQS+/MlfDDL24cJPLXKSiem+vBYGAcJHSmYCBX1eVhRGORDQhggSckNh8e3+R+stmnejCCjfmsuGfC2HNuUX7CZCSAPrEHIcSUr5oJGFWwHi5euuy87p2+wIqJyip/aaBrBA8+s8e9bsDTKxxDSj0UDKQloyFGLgvgFKKnIxsg+gMC0/93LOkMxjf5ad7bv0XXp2D0qFNuu/0VC2Bw4scQGjGrwpoAIoARuWvh3AXnZ/y998mPcGOXogrjDPTzR+Y97xLBcLsBu96C4jEJHhsY8mlKMjRrze0GzA7S50nBggACT+SoPyGGZ6IPKX/D1gsgYfiXbvH7y1YFxqX8n2pVIN3eydlr4Ox55wngtXc+hQZtZ6oSQIZ1HcsOuI0A/u9Tx+4BD1UG0nr11K4ToQafG/CGzmipqxNuQAASgNEsSWEziQDm8Eb+Y/q95lbTvzQBxCPR1Gk1t0ICYBbADLQAXCCAve99A407zKmQAILwa5UJMnIXBXmoNNjhBsTCCn43gOYEhGvFoJAANP/JAtBbuNZ0sah/9D2stt/dt3+JBZD8ObMA1FwAZqK7cEOfOHWGBflqXCUGQFmB23stYK6CW+XMaSien+exdKCyTYhzevB5RAoRQMgd84TSBM7tL6f+9Kzbjyv417bvFtbR527lV2IAgxI+Uo8BtDTD1HmbWDrPFdm2+zNU8oXMlVAsAZYBCDdD/TaFsOzp3S7/bP4OwfNgX7bAo/UApzLindkhcM+1MVPFBqFAkmCTVaoZzkhgNo/v36D1XZA04muYMOYCwv0EQFmA3kMPsIyDWhZg9gPbKlUEtH3fF9Bv1Cpo2HYWm11QOzIfDAPugUee2+dScNFpuXQR7CuWeCwToCC/91heAngDUVekAwPM/Mcbr468xKPiYhu8DYeMXwNbt56DB5ZchOwp52H86PNuJQLeOgBK0y1f+26ldZCq/l5Ha4CU/rlXj8IX3/3uuRGD/1xio808SQAUB1g/JINtX+LoDfhaY7DdKgggoAiA3f7NEd+rEUBIRB489sIBdlbPngX4zwfFsPKRf4nAHQSgNARVVAlIpno9NNM3vvkh+LVcQgJ4dKlnCUBOB97CNyjkTySJXowAwkRzkP/7/y3MCgEMUFvTTVHwm7vNgw8/v7Ik9sJ5gPeOXIZ7Fl1kCluV1gDVF9CIsOvbLau4FwC/dn2nuXDk4x/8mwAuXnDsFvTgXkGKA5xIT4BufAtEihGTGQE0yRcK5Pf+/61mRwGQwTqDZ/RWn6xH4dTf58o9u3+csMP6dZdg+uSqIwEy/4dxZAAoSm8ceC/8fOwv/yaAs2fAvniWxwmAJgWN7z6Btx5gyTXNJtFOCKFA/i603CMoLLcmvqmqnX8UZMtesLnCSDhasLDr7ctgnVH5ACHd/hQA7Nj/Ta65gLGTnoTTZy/6NwFQP8DM6R7fJUhxgCV3juLtDnxJZ7KGUvZISCD4/0YbNf+8rFr3b7LBiuf2cUXTDx+6DPkW10iAFJ+QlfU7GyzCWoFVAoBEAPlLtoLfy08/QHH2SC+sEIuFl2LToT5fIPB9PDONtYIAAiYAeK3c7VXxpJ+2s2Drrv9yn+XDBy+DJYefBJjij7vAxoh1H7wbbmr/EISYCjiGglqhbusCeOH1//i9/tvfPwTFE4Z7ZYcg7Q24gW9W4M+IFiITEDgE0BTxrRoBULPMh070xJMlsGP7PzBtknpMgBSfloLQjd+0/XIINuaxrUF88wisUD96Jqzf+oH/E8CWFz2u/Eom4Ke0RDC2yebJBNAeyG6CAAKFAPSWMLUGIAqy3dF7odP98BcuAKx56tJVCYAUn9J81O13e6dVjhtfb3Fp6QgFAXfs/8KPU4AXwf7wPR4vAlICgbRuvU+HqTyZgJKSYDEiLDAsAOoA/F2NAKJi74djJ5zfuPvbr3aYNxddgdH/a/LTkpCoPpscnX4uKP6VRUoWaDVkiX/uB2BzAX+FYusEr1gARADnMuMgg78zMEdrtEnBMzYJJQoAAuimtt6blKtTykNw4tRZl8727l2XYerEfxWfVoLRsM8b2i27YntQpdeG4/Pskf4IfPX9Cf8z//fvcqwK87DylyYBa6+xvASwwFFCLlKBgUAAPeWJLxWWAPfIWAEn/zrn0uE+fdoOS++7yPoHqLCHWomr4ta/mjtAXYF+tSqMlQAv9Wj+v7xMwD13juIdDrIyKMIWpBGZgIAggF5qXYBEAD0rQQAkB/YVQ1rm99Csy5Os0aaqbv3ygoJ1ogrgoWf2+g8B0MpwD24LvhoBPD4oE2oZLXwbg4zWWoIAAoMAeqhbABbomvow/PHnWZfP+Gs7v4Dbuy2t5K1v4XYFWvS9G977+Ef/MP83rfOa4rtYC0Cr4uqJTEAAEACyeHu1EeCkUO0SHnBpPj5VDlKKrnmfRS4rP6UEaSho7YjZTsUDsmzPuzQizKPy289QXDDF49V/5dUC7IhPhWsjzDwEcABxjSCAwLAAWiGOqSmTfsA98Ovxv51zbS8Xw5MbD8GNXe5iP8MVf57mANzc4WHoNXQf2xjMUxmo/N9rYmbDqzs/8eW7H+ybn0cFjPMBC2AYHEoaDtfzFQPRxqjrBAEEAAHoDNY75HlvFXYC3tpjPnz9A390/TIq/6r1+6FJhzlOK7+i4NfF3A/dB+9hgUOqGSAMTvwIGkTN5yIBKhGOm/KU7wYEv/vaozMAedqCOceDfStvjRZK5PcWgNF6PT5+pnabUrvtYc4cO5n9T710GK7rONd55dc7lo3QdmGqE1B6A0rXEPQYslfeF2hR/VmN2s2GbXs+883W38cf8AnlVwjg2xGJcCvfXAAqB75dEEBguADXqA0DJUVqED0Ttrz9KdfZ3vjGh3CT02Y/fa8Nbumwgi0YnTDm7FWGjl6AsaP/BmPP57mCgmQFjJu1AS79c9m3jP9334biCSk+RQA/piZCi9Y5PATwq06ZECzEz10AvTWUWjx5ugFXrtuverD3HPmarep2RvnJnA+NmAlRvTdBZuYx1WnD9PWU1O/ZdGKe1eEUgPz8m2M+ZPp/5ROBv//dGpzA2w9wHBEpCMDfCUBvlYLDzDXwjXyQZx5Awf0Vt9zS/LzOw5eztKEzJj8tGaEg37jRp53aMtRpwFugM6hXrtUqNcrM6/LnSbAvne9Tyq8QwK9IAFFtp0OQej8AlY63FQTg5xJqGItWgI0sASsPASRnP3PVxRt/nT7P0m7OpPpYbCFmKQxN/MSluQEUI1BbHa4890ybe7f6cMn5c2BfsxKKR8X5lPIrBPAbEkDrttk8BHBC60gfCyXyZ6llylHiAImIc2qmdJthS+HYib/Laf21w5LVu9gYbY2e3+xv2uFhSBrxTaUWjET3fUU1I8BGhg26F3789U/vBv1eXAvFYxN9xu8vzwLgJIA/NAZrR0EAgZMJaC37daqZgPK67fYd/RZu67mA2+8nhb2l4wrmx9PcPyXS70j1XWSYrALH91zimhmoZAN2HvjSe8pP+f7xyT6p/Fe4ANFcLsAfOoOlkyCAwMkEUFHHRzy+9BMvHrzibFN58LDJT3L7/crNT6vFSIFpHsDokacgI/MYswaGoDvQb9hh6DF4D3QZuJPtBGh35+sM7e/cBp0H7mATg2hlOH3v0KRPoUnb+1StABbEfH6/55WfBn2+8DQUj/Nd5XeBAE6gBdBBEEAACG171RmttfDNfIEnDjC9zGBQmhMYymn6k5Je02YRm/zTP+4oU25D93Vwc4dHoFGbu1n+v3bELDYYhBqGlDLgIH0u2wvg2A1gYV+j76F1YXUj57KPeZ677d4tnlX+4785Fn3Qym8fVv4rXABOAkC0EwQQABIUgQTAuRqMtQWnPwIn/3R0BX71/e/QOvZ+p6L+tdFcrx81jxXykGlOSk2PRA6OW9y52gHerkIigJQc17YHO5/kR4L870dQvLBAVjDfVv7SBBAZzZUGpCxAtCCAQHABTFbFDYhFnFGfDXhXyZbcWcu2udbc46ZWYDXy6p218qp7Dao0zffqBijOGeXV/n5XCODntEQIb8NVCES9IxGCAAIrDnCH2nDQkvHg6/bB598ch5b97napyccboOcZHbcUjv9x2k0pvvNgP7IPiu+eCcWj433e5C+PAL5PTYTb+UqBfxGTgQOJAIwWAu0HeJWntHbEjLWQd99rbCGnPyi/QgCGgffCb7//XbWKf46WJB4B+/LFUDxxuF/d+mUJ4IvhSXBzJBcB/Ii4WRBAgEhwuFmqacojK2Amz8Sdxu3nwPWditwy0sttBCB3NJLlUvkRXv8AHPsF7G9vg+L7ilDxRzgU389u/bLtwB+lJMNNfN2AXyJuEAQQKJkAvaX0fMA/eUjAn5TfEXewQmirfFi98bDzCl9czNJ58ON3YN+z3dHFZ5uIpn6C3yt+aQI4zD8P4GNEE0EAARcHsNCb+p4/KbYzqIFuQMb4R+D80SMA337JRnHDqT8A/jzF9vJRAA9OngD45UeALz8D++F9YN/2MtifXgHFiwqhOHuUI6UXIEpflgD2JIyAxq24JgIdljdKCcUJFNHQm2mwUmPQkkAlAMpv66Nz4NtR6QDTMqA4Z7RjFj915hVOg+L8yVBsHufYzzcl3VG5RwqSMSQglb4sAbw2LA0a8o0E260xWhuK/YCBFAcwTCcLgDAA3+C/PayclxF/ydFlqkjcjliPeEzuVLy/FFYinkVsQ/xHnmZEz9fO4wY0NJlh67BUAMrNZykYWgqlPj8ycBW+vKGgzw3JgDp8Q0G3IOoICyCQxFhEPQE0JJTcgCNuVviLsrK/g3gAMQnRV6u3hmkcvmV9RIhGb9GE3j6jhnRtpiQ1TJekOmMlbVhuED7PYERd/J7GiOY6g/VOuaPxax4SWHznaHbjVRfl5iWAlQOzIJgvs7NWa2LvgdCbgHIDImyS1GUWuQH3ukHp6YY/Kt/o6Vq9xYSPDaSIghpyAPJ/oGEDSyxSSEQ+Q7DJRrsMlQamK75XjmOsUo0D6G0wstsEOJ8Vx7bhCOX/lwCIGIP4ujkf1rTKr0nrwYQEUjageW7pbMDJKlB6ajH+ALGY3fAGSxOdMa+mw9WQlZwdoiWSdEeey8+7TuuZys+bKLsTV69jwAPepd00+D09QRBAmRhAQW8nVoOF5Uo1WxUKpQko6VHkaA4yWKkoaEMlFJ9KRZ/TGmyJeEvcIN0+voZj8AgVHNmka/QjmMtRVULWgUwAXdSIi3Lcd0TNgG9GJLHiF6H8DlzKGgaTe4znJQByt6RbpDZCZwLODWg2nSmp1tHu+bULyn8QTfeuWqMlmCk9xRX0ZklrmuX2NKbGaL0FH79RiwE0aZUL7yYOF3GAUotBz2TGQUqXSWghqRLAP4jxzO3qUSQUJuDqAcLNUpAxT2reog8RAU0K+t4J5f+AEYfsn4fGTJd0EWYP1jFYGyL2qhEArb+iNVjk9woCcBDAHxnx0LvDVOYiqbzHZ5HYE0QGIJCtACQAQp2ORRSIo+Whb8uR+6sditOyyxClNRSiIprZwFGPEhdzMWy1eFwXWoD5+KAsQQCutQKflFfKC0UJaEsA3QAdQhNB0XhWIZiFWCfn6akZ5Ac5XUi5+mGo9HU17ObPwf9r9vzzZQRQUBOfywrVgiCWChwV8ARglwFykO/qiGUxkdv4OgF/w0tBLwigWrgDFknb3OoI3plY6i0E0QQV/VY8ALewctBwi1bjKCOWrrklm6XtvCHB+nx0XczkBixSIwAJ/dxZfcYEXAzAPvJfhSalP4t+/Yn0BPghNZE1+lCp7+txafBybBpsQmxGbB2WBnvx888OyeAtA/4S3+sbBQFUJ5cgzCoFNbP+m38vnYNHha8XniOF6M3efZIxW5XnVMBTC2DpNTZgzHdS+Mv4SKnN95NTYO3gTJiNBJfadSJ0bTcNWrbOYV1+TVDBr4kwQwOTGerLoNJfUnzaCqzji/Ps18plwDpRCCTEZ4QqGR0EkMtDAFN6jId//Pymv5gVB9/h7f7i0HTI7TWO1TfciIpe22hhwTz6O+kxSHZ7NCrgDPS+gxbALZqWJTUjUhCSP7qJ4gwK8bLL4jiQU9X6AkgxJnSfwBTI7257+aanxh0isYjobKhrcig8wUlldrW4az9iPqI7WgINgo15JdZhcPNckR4U4vsEMBGV55KfEADItz7d9lSv36v9VGa6K7e7xnsdlpQR2ImYgmgWbLLVVKwCXeuZ+I4kiUMpxOMEkM1DAJMZAfiBqS8r/n13joLottNZClO56X2o1ZrKrz939JDYojRGWxDLIukttHxWHEwhHpDbRjsVA5hKMYAs367Npwg+1St0iJkGwQarLyp+efiezZTQW02hYRZHo1dLi8frQoRUN7l+CPqgzBed5c9ZAJDr8t+JHwFDOk0uCej54QAWKiO/S0vl2RE2R8dm6znezxYJCUzRhZsljYk1BS3mIYC5fcf4XCEQ3frH0hJgft/R0DRyhr/c+BWBXLFDiBEao7W2xmCTgvQIg2gjFlLl/j9VLlKrsfVhnqEg9/lQJaBSsUdDOQd3nAwheOsHVeEwVI2cBgySMwVlEaS/Mk3oBiI4w4aIGKwRtUyUMsT3KiIX3TaRLRBSZQRAfqYlRC5XrvBAhhit8OhA3+gFIMWndOT6IRlgaONYza2ppMIHsXiBowagDpLJda1y2cIPCiL2bD8VBnWcAkPRvSCy6dNhKrSLmQ7NW+fADfh91CilWElusEA+1dAwGIMthHZRSBGFUpBJxAaEVF0GoL48T7BCBaG8+fqhGV4nAPL3T2fGw71ojVCLcpC+skrv+Nuo8i++82Tm5tCcv/2Jw1mt/2/oXvyRHg9/ZsTDXxmOx5OIY+kJbCvQe0kpsCk2HZbg8xnbfQJ0jJnGxoTTmDAilCqySmh+43JEU8oSBCFxa/SiiEhI1RAANS19qKYsVPZKQTZv9gKQ8pPyWXuNZUob5KLik9KH4i1vROuBUpsbhqbDV6jsRCxKmTDrDyjlapQHKN1HgLiAVgkRw0Ekj+UDRkJyl0nMiqjCbMR2jcHSNiQiT9KUGusmREhlCKCZPCW4wk7AppG58ElKstcmAinVfKSwlNfXuKj4VNM/AM15ShV+jUpP2QOlEcheVZ2EcscgDQz5GF+zB5AM+nWYwnoKqoAI/ouIR9ctSBkTJ0RIZQigO+KUGgHo2+TAT2mJXiEA+p1/oPJPQuWnWISzCkRKVw8tBkoR0lATGuSh3PCe6TR0DA+hUuSMrhOZi1DJakRaNT5NxyZI0ap6iyglFuKc0MwCmQAyVAaXMAXq0X4q84XtXgj4/Y2mOTXuOHvz0/dSt177mOnwzOBM5j6QMtq92IxE7cbvJIxgU5avrZxFQANl5qIVUIe6S1mXYdMZ4mAL4ZOgCCsrOeUtAsrCm8vTY8Hpd5FfvbDfaN7lG1dsNKJIfl7vsSXDTO0+1JVIRLAFLYL+6I6Eup7CvIBYqtFbG1BTUUirfElqPk0cbiEc5j8NMTXZtHiAnuQxoed6aRjIGry56aYMcjK6T+m7zWjuU7oQfLg9+Ti6Ng/0H8myEC66BTRwdIUu3NaAuQP6AkmKHi8OuBAu//8axD7VDcF4Qz2FiujJFCApB03doVw7b6qPnitF3OM7T2LBN1+59dXiG8VyQVMiPm8XrQEigeX4OtVnxV0GsXtACB8BhKllAEpSgAmeSwGSUtBIrj58E3dLnif1AFC/Pw3r9LfRZY5GpnhYhO7Oja7VN1xCLGPr36i/w1ggDrmQq/j/eDhkAhgsB5MqzADQLfy1h5aCKH6/rddY3nFbTPkpRpCP/j4V6oAfjyqjbstXYtOgddtsVywBCuYuxNctxPH+iv4BIeVITeNMNBPZeKo8Hv+fAlWnMjyTASAleBUVoAnfsM2Sm39mnzEsW+Dvm4uUAiOaU0ivu9b5uAD1EORoTHlBjqnPok5ASHkBQGMe3RLP82QAKAV32UPK/zOa71R7z2P6a+Qeheye41iZbiCtLSOXgIaaUN1AsPMkcAKRJsXMZ/0eomxYyP/6/3orjan+VE3BKPf+hAcXglCNf4iR3/Qf3mUSi6QH4s5CJUtA1Y+hzlc/fo/vce9gtmbO4rFtU0J83v9XtgxbeqhVANKBo1z6fg/sBKSf/2lKMhja8EX96Xuo8eb/hicF9L5CIjZyv8gKc4EEDuP7rNfQZKFmi8ThF4L+P/r+OodvmKs2B5CULCo6G37xQAkwjRunIB7PAafgGM3s3xaXWi22FSskMK3HOFf6IF7UGC2NHHUfIjMgzH8yCU028v9f4PH/R3Wb4PYKQLrBaQtPC7kYhmc2wby+o1nE3F4NCODffoh4V/ohaPjoQo3BoqM9BGIXQXWWpjOU9N/tiK/UDg/1tD8ywP3+PwUY5/Qdw93Y07v9VLRKEqrF7V9eRyT1ETiZHvwTkRJszGdr58WMwWoqod3ylBVlifKyigr9f+paO5jkXv+fDvW3IxKZq6Hm+9NzahRhZnv6AtnvV7OWaBDJoI6Tna0T+BjfeyPNEZAM+UIZqmUAkJi/+SQaO72U56bt3G4ai0K72/x/fFAml29LB57SYtRnbx9ZPQmgxGVKTmFdjk5WDK7ThpvrUfegqA+ohkLsj2iMb/5BdQKwwfSe49y6C1Bp9aXaffp9PBbJ216eSuRLJECvBW/cpFT3YE7NCJtj94AhVyhFtQn+RcxxFAAZrH1kn1C1tHbdEPfOAKRDfCQphU0bCuKwSNLw9j9bzW//sgRKTVq08syJoOB3iPZUJRgSNlgoRvW5/S1S8gA7EcAinjRbGN4sX7m5/p8IYGn/kao1/3S4aZTXK9XY978aAZxDQrT1HsuqBZ1wBTZpjLb6ynJSIdXBAtCzEeDX4pt+gCf9l4m37Tk3pv/s8nRfmsSrZv7T7d+tvfvjEf6aGaCMyGDngoLkCkyRWtocDUPNRX1AgJv/s5X0Xy8e858Cco+7ufyXDi5V8TWLmsF1cBf0Gy2UvwJLiuYJ0NxGJ0jgC63BEqkzWqR6bbKFkgS6+S+1HE8EcDeP+U+jrD918wRgIpeNQ9PZsE4NRznyPg+UI/u7O/DYwCzV17MMVmvCbSG0hFQbLmoDAlJCIvKV2/8GxFGe6D9Npjnt5mAbkQst4VDr+lMGkp4Q5j9XRoWKhIKcKxAaygaItBSzBANS6rcrYmum0ddTLf5Rymwd1X/uPayUy09GoqnB4f/TVuLLQsm5XAEahRbJUVRVCm/j+WjC5gkaRZlwwAk1/gQbbDp8g5/mMf/vQPPf3QtA6GfT2K7WbSsuZFGGfawdnOFzW4l9OSj49KBMtq9Qwz9PMEe6dR4SALkBRUJpAsf3Nyvmvx7xrZYz137OA+Y/3VRq+X86wLR8k/bvCf+f37qi4SipXSY64wp8xuZDGtEKiBRWQMBIkDFXCtbnEQFMl7vCVG/bZzxw25IyvxGXylZlaVQsklasHbn6Nf5U9vWl/YR3cGZYZCyWV8VLUpiYJej3UsuYpwz+aIiP7/AM2CBl+zbV/b3/RDBENLVV6v/JIqG13H9mxIsAoAsdlpQ6DTY6MUHIaG3jWDAirAC/l+ZR9yobZFUn/yoEQFNn/vHIDRUL9/cfpeqjUoBwdLcJbEqwIADn3Sza5di9Pf9odVowUtNo1WqQBGq1ElaAnwf/rFKwwULBv6d4ZuvR7P/t8ake8bXpcBb0HquaAaCvU5mrUH7XXQHq56hv4u4VOIboxkaISaOFEvmrKO2eiCi1xR8lo787TGHLM+0eCFLRuq5x3SeoEgD5rzQkVGQAXH+tyX1ydFtyWwFP48URTBeIJFwB/yUATacFkmN7LM+ILQusGJjlscUfVANA03wrIgBlJdmTgzIFAVTSCngrLpVVU2r4V493o8Wx190gBof4X+ovXFn7bbmRp/KPbllDm2z40oObf/7KjIfYTpMrvJXosFIu+6XYdEEAle0YRItrQnenKgRXa8LJfUQLICpHKJVfpf5aWJWxX2ly15cqAZg9FPxTDiS5Gv3Q5VAjAEoTUrpQ1ABUQVowaTjcEsmdFqRYQGfqFKx9xxyhVH5l/tPUH6M1FB838gT/qNDm3UTPTdkhAqC6/q7tpqkSQGMkgF0JYgJQVcVdpvUcx28FGK2P1oxwZAREdaDfmP82JfgXjfiNJ/iX0sX9jT9lD+MxJIB2MeplwE08TE7VoWX4Nv7ioJ/RAohm1YFRYmiIf5j/LfOkkAhW/mtVW/pBCkatoy8MTfeogikE0JajD4ACVwdEG3CV4WLWMMhBK8CJduHFtfWFNXRiy7C/mP9swks9fOPe5Ln9abWWp8tsnSWA/YIAqnwG4638VsDnWqOtOZ0rQQI+n/pTSn+trXnMf8L8vp6fskO/j0Z70UjrmqougFm4AG6IBdB2IU4CKEaYa+jNUrBREIBv+/8t8yWtY/HnJJ7Gnxu8ZF7b5e02PEFAqk4UY8Cr3grYnTCCjVjndAUOafXW62mmhCZ8hlA0nyUANvOf9f0/w2P+D+g4hS2c9IYFQGnAPh2mqhIAjbt+bZgHJgFnycgsA+XzAWYF0Gh1avvmrA6kVHI6TQ0KajFZKJovp/+0Bsv1+PgRT/pvUb/RXmmxVfrVh3IUAlGQcsNQNxUCKco9HpGLuAtxH+IBxFLE3YhCxBTE6MAiAiLUrUisjfj3CWzW6C21EZIUPV4om89JeIHi/3dC/MHT+LPTS6a1cgOl4g2k1gvglunEiiJny8q+CbELsR9xGHFExkHEu4g3EU8h5iDGBgYR2OV149RqzWkF/K4zWLuwBrOWhULffE6az1cIYKKa/0+R99bR2fCzF4dsXEIlokBUDY51YEuqshlIufHphn9LVvT3ZBwpB++VApHB87JVEAAWAZH/6kGZrN+C0wq4X6fPqakV68V90/+XDGba9/YAj/8/rJ0ZTqYOx5sg1muHb2afMVztwPm9x1YNUZHCTkKskW/3qyn9ERUy2I14QnYbRvovEdBrSluG27SdzmsFfCavlZd0EaIwyPf8f72lDj6+xuP/T2g7B74YnA3/ZMV7iQC8MBBkHOJpJ5X+akRAj9sRD8oxAj+2Bor6juEtCrqELsBYbTi6AVEiJeiDBMDm/n+mpvx1jTZY0K4I9nSbD78kjPEaAawdnMk1EmxgVYwEy5KDegdcuPkrIgKKGbyKWCgTTJb/uQHvJztVGPSKxmCpLdwAn8wAWCMRx9UIoIkpD1Z3nAc7uyyCA71mwd+pIzzuCtDBo+lDjTiGgkZFZ7MR4lAZ5adb+rUqVP6yREABxPWImf4VHyBSPY/WVVY37pTgcXy/OrKK01ZzheL5GAEMQPytuvU3Ih82dlqABLAQdiA+6m+Gi5kJHvc/ecaC09foe1zeU5AlR+4fLxPhP+ImItiDWO1f8QEi4xc5VrSVwgIpcroj7iTEF1KAExUCGCMveahQoTpHFsKWzv8SwNtdF8C3sRO9stGWbbAxqBcDvU7FQK5G/FfKpv8RD8AP4wOO9yIROsRwBwOPIK5j48ONojLQ+3JHsqQzsD6AQtUMAGJI65nwpqz8CvZ0L4Lfk7M85gooxUBDVIqBCDrEQ7EjAcbGqlfmKV8nMzxfTtsdcpPpzxMf2IJY5B/xASeCgWfYPkEkgLBmi4X+eT0FaMyVQlqy9d/38RBAZvRseLsMAWzvsggO9y6E02meSw3SBCIaUKGaCgy3Qfb4cXCZ0nfzEFNlhRpVSuFHyZ+bKlf0rZGLezyt+OURAVkfL/h2fICsgEOJw+GmSO7+gBUaw4wgjQgG+oD/r2cZAC2+KU/wMPiUtnPgnTIEoODjAbkeiwdQJuDB/iPZDV8haYVb4c6kKXBqbzzYD8jm9Ytydd5jiFVyem+j/LUDKsU93iICig88iTD7WHwAn4d9zDA4PSce4hMms9ebq03YYL3NsVBUrBX3BQKohW/Gi2pvXC2ELWbuVQlgZ9cF8PXQyXA5K84jwSfy7RuqZQLQRWjWbQZ8tTUJ4Ggp5T5aBr6m9FcrJNqBeEi2VrzZbKT83lwHMcH+YbDq3iyoZbLwEMBFRAYRQLApRyihN4XqsxGqRUCkZHWMNpjbruiqBEDY1e0uj9QHkNn5f8OT4HaVHLQGCaBhGzNsfSLNQQBH/BxKfOB1xP2lAoVZHlR8cplyEMtlqwmfF722n72aDC265/CuFl+jM1p1OqPIBvhACtBSHx+38xQBLWxf9D8xgCvjAQthX885cHJ4ulvjAbxtwQoJLJozOjAIoDQRHJLrEx6Ub+LRpdqQq7rrMUuOk+TLrtN2mYhkq8mOuHAgDkaPn8DrBnyNaM7OnyABLwYB2RwAKy0A3aNGAPWRAO5pf1eFBKAEBY/0LYAzaSlunRdACyyzOQOBiZmT4My+OLC/F0AkUDp1+DZiLWIxYkapzEFmGSXmUXTl/9FNPxGRh1iGeAmxt8zvLQU4GgvrH86AupFcNQHkBmSxKdQmURrsxSwAGwNOBPCuGgE0QAJYwkEAO0qKhCxwISPRbSRAgcDVg7JY269aHCC8Zw58sy0JINAIoGyMgKyCd+Sg5iqZEOjWni43M42XyWFsKdC/JyAmy+QxR+54fEq2MPaWuu0reP3otf3ujUSI6JPN6was1bE1YiIb4D0CoDVgerYCfC+PBXCfEwRAxUKfDcqGS27KDFAg8GhyCtyokn4iF6B+lAU2PZrObqmAJICrtSEfkhWYSGEbYjNig1zjsE5OMW6UexK2y92K++Sf40Jw9NKhOJg8ZbwzbkAzsgJqmXKFMvoDAdzjBAE4KgXnwzexk9ySGeCdD6ikA23msYGv/GqEUDYLUt7XKvG7iGA3PJLO6wZc0OqtabRNuFHUJKGM3gsCWikIuLMqgoDlZwbmwY/x45jP7o6CIJpVX1MlDkAE0C12Kvz+TkLgxQF8CC64AY8Fm6wakQ3wLgFwpQFrIwHMUUkDXi0zsLv7XfBr4mi3xAHWD8mAuirNKOQGNInJhd3PjgisbIAP4iK6HZP43YBP8b25mfUGNJ8mFNKfC4HUSODdHnPgeHJWldcDfDE8CVq0zlHtSScSmD9rtLAA3G0FOJcNOKvVW4axOEDr2UIhvWQBUCnwU5UtBd7BkR7c13M2nEjJrLLMAP2cM5lxbEchjxvQO2Eq/LE7XpCAm92Ar15PYpkXTjdgidTaVkMj3AAvVALqzZI0BogElrraDOSsJUCDRKqyUIjcgBUDsyDEqG4BkBuwa61wA9wJKgo6dyAOMsdOZDUYHASwX2uwNdKKGQFeIADjFHknoHU2DwHEtZ4Fb1WCABRL4GDvmXCqikiA0oEfJqfALRyjqehGKrSNEYrqATfgsfu4ewP+kEfSS2JcmIclWJ+tuAFT5F1uFRJAj6hC2FpqIEhlSOAQI4G0SpMAuQF/Z8ZDXOfJXG5A+4HT4ZcdCYFbFOQTBDAMPtqcDLd2nsHrBlh0RpukCRfdgd6KAySwgIzKRCBTq3zYVAUEoLgDh3oXyiRQeSuA1w2oF2WBF1ekCzfAnW4Akutfe+NhyAhqEeZyAzbrDJZQYQF4jwC4tgLdZMqDdZ3mVwkBKCRA7sDJlPRKkQBlAz5NSYZmrdXdALICMsZMhHP745i/KhTWfcHARbNHM9LlIIDvUPlZc5B0W5FQSo8TgN56Bz7+qEYADY02eLDDXZUKBJbnDlBg8I+UjEq5Aeey4iCTY2klmaS3dJoB729MEVaAm92AnWtS4dpoMw8JnEck0Vms007sD/SGBUBR2MM8tQD5LtYCqFkC+3vOhuNJWZVyA14Yql4UpOCuQhEMdLcFQLGWtgOmQ1A4Zzrwtjk1NHrRHehhArBIWqOFioFeUHuTyLzOqmQqsCJLYG+Puaxi8LKLbsDPaYnQjmNCLbkBbe6cDt+/mSiCgW7EpUPDYPLU8bzpQGpJbyjSgZ5OBbaySEHNWCrwbp5UYK+oQni9igKBVysb/jFunMsNRHP6jFG1AOjroREWlqoSboB704FrlmVC7VZcVtkxrdHahgggJDxfKKanpPaNk5zaDdA8Ih82dHIPASgkQA1ENF+QWontTroBh5OGw80qS0MUK6BPwlT4fZdoEHKnG/Dx5mQWc+FIB9Jm6vFkkdZpIcqCPSc9ipzKBFxjtMHyKg4Elt9KvIDNEzjPhorE8gcDM/mCgUpK8IWHRUrQnenAU3vioV/iFN7moFU6g02jE26AFwKBRsuN+PhftTcpGJETM6fKA4FXGyryYX+LvHOA3wp4JVZ9YrBiBQwdMRn+3CP6A9yJQttYXgI4ghZAYxEH8DgB2CRk3lB84TfxxAEGl7MhyJ043KeAO01IRHEiPR76dpjCZQVc08YMrzyWJqwAN8YBXlqZzqwtjnTgCUQHtjNAny0U01MSYrRINfRsRdgcnkxAeJkloe6Go5NwDhs5zhMcJCtg9SD1FeKKFRCXjlbAXmEFuCsO8OXWJGjeLYc3DjBZa8yTdGHjhGJ6SoKNViUOMFje36Y6IHRpe/fHAcoLDn41dArbQFRRXEBJCXaMmcZlBdDugM2PiliAu+IAf78bD7Gp3JuDntAazBpRFuyFOIDOsbLpKy1HGm1M9GyPWQBlNxB93N8Mp1MrjgvQ15b1HwnBRvVDp8QCTopZAW6zAuYWjOFtDKINwteKOIB3KgKpIOglHjegQ2QhvNp5gVdIYAdrJJoJx5NGwuWRcVe1Ar4ZkQRt2k7nzgg891CGsALcFAfYvCqdTWfmiAMcx4somhFAVI5QTE+JxmSRdHpWEJSLsKtZAI1NNljZYZ5H3YCycYE93e+Cb2MnXdUlICtgSf9R3FZAj2FTRauw9+MAlxCjaFydNL2vUEyPWQBGi2IFdJCjsRW+UbSZd2LbOV4jgNIuwUfoEvw1IrVyVgD1OkRYYPmikcINcFN78ODh3HGAByXjjBpihbinSUBP6RfLNWp7AhQ3oH1kgVfdgCuaiXrNhp8TxsA/WfFXxAbo46VoBYRwWAHUtBLVLxv+77UkYQW4gQRm2sbwEsAurcHSQMQBPE0A4WapRqeFZAXM4wkENnJDe3BlXIJ3us1j1YNn0oZfYQX8kMqXEVBgs4xlW27EvIAqnha8nHta8E9IAGGCADwsePsrbkB3xEkeEkiLnu115S8LGjJCXYUOayCWkcDjg7K46gLIR23aUewQcEtfwMvJcHOnXJ44AE2nYuPCa4YLN8Ab6UDVjcGKGxAWkQ8vVOGUoKqyBqhm4L9oDZxOHcEmBx9PT4C+HOvElYBgcuYkUSJcxS7AiV0J0D12Kq8bMCvEZJNqhIk5gZ61AqgqMCyPa1IwIRR964KYuT7hBpQHmjbEVpOhNfASZ4+AkhZcfX+mIIAqxD+HhsHUadzzAdZr9dYQlg0Q4kECMJRUBbZF/MpjBXSJLIQtPhAMvJo1QEtKKVPwU1ImpHWdpNoqrFgBFBD8fEuycAWqyg14PxZW3pMFISYuC+AjVP7rRRzAS26AxlEUtJEnDkCzApe0v8tnrYCSfoIec+HZXma4MYJvbBh9z/Tp4+D8AREQrKo5gbueHQGN25p5G4PaMwKIFnMCPSpBzaZI1JCBL34m4iKPFUAdgm/4MAEooMUmadGzuLIBdEjpsG5eJboFqyoQ+MObiWDolc1bEJRFBBB6+wKhlB6tCgzLVayApvj4Ac9N2cSUBw97sTKQe9AI4tlO80HfKp/bFeg8ZBp8s03UBlRVY1BcGve+gMW68AJWpCbE40VBZikoejl3MJBIIL7NLI/OCajMoBGablwHXRceV4Bgzh0HFw663xWwH4kFYBiKhFMK+Dk7Q7UqCHpFq7fWFnEALxGAHAyMcCxuUCeAG9AKWOEHVgARAAUtacBpEKcr0CTGDC+vck/LMCk1KTh9fOrgcPhy31jYuysXtu4sgC07C2HHOzb4cO9k+O1AOlw4nMAIwS5/vz8WBK19MIN3UOhnSAA3CgLwliugt0o1W1o1+Aas4LUChvlJLIBI6hEkK9p2xEMCVCbccfA01tRSla4AKT4p9dE9U2Hp6w9A2sZN0GXdLoh+dh9Erj0IrRCtn90P7Z/bC4Ne2Ab5r6yG15EY/jg4QrYK/C8QeHhDClzfPpcnEFiyOFSSkoRCelrqtM9F/6tkYOhvPARAXYK+Uh7MA2poCuF0A+jvmzRlPJzZF1cl9QF0i9NtP2fLY9Bp3W5o+cxRaI5oWYL3SuEotKCvr3kfieEAZL60kRHB6UPJJdaDPy0MoRQrd2cgnsFaPeYLhfS43JHnCAYarTp8XM2jJHSb9ouaWSVbhD3hCtCy046R/K5Ag9ZmeLIKCoTo5iYzf9iG15hik4KHoaLzgAiBiIIsg+kvr4XDu6fDpcPxfkEE9LoRgVKlJWdB0N1BEbMknT5X6KM35KZmmZKObQ9i/QG/89yS9Yw2KGpX5BdWAD3HpWixXIeugIbTFdD3yoEjL7q+W5AU9cjuadBv/VvsRudV/PKIgMijM1oPC197BL54dxwjFl+PD5AVMDufOxC4MdhoCdUZRRzAO2IqdLgBJkswvhlP8loBbVoVwIudfN8KUNqJx0bP5nYFyHQdmjoZftvp/PAQUk7y30e/tKFSyn8lETjchf7r34TVb9wNxw6kl2QNfLUi8JkHuDcGfagzWJuIXQFelEZ32JQS4Y6IX3iUhJRpAvrXO/wkLUiuQGdeV4D2I5isUGgb43RqkBRz3VvzwLT2EFPasCoEWQOGtYchdeMm2LJzps/GB8hy2vf8cGgSwxUIPIaIEpkAb0ori6TRI8JoWqv1AV4roCmlBTvO8xtXgDYe8WYF6OBe29YMzy/P4LYCKH330d5JMOCFN5iyhlUxAZQmgqhnD7D4wKHd0+Gij8UHlIrA8J5cI8LOKavDNfoCoYvekmBTPlsggmjFMzlYIYE+UTN9tlGoPExDqyVUvuV54gGmPtmq8QCluOeTvRPZ7dzSjcpfNj5A2YUFr62AL94dW2KB+EIgkFqtByRzrwzL1xnNUlDLmUIRvSbNp7G6AOnmAnIF8uUlDqqmcm2jDXJj/McVILLq33omd4Ug3WB0kH9868pV40pxD936f6MpvnnHbJbH94TyXy0+8MQbi+FXH4kPlLQGh3FlAh7XGfI1OryAhHizOtDRH0BpwRt45gYqVsAtaFav7OA/rsDTHeez7UdBnCRAA1LpMFN6ixSeDviZQ0nw3f5RsAkVf9Kmdcwkb+Fh5S8vPpDy4svw6s6ZjJS8aQ1QIHDZgpFcry9ip05vrS8CgT4gQZFWSRfOAoLkl/3NSwLdowrhZT9xBYgE5rUrYpuQNZzxgPpRZphRZIFV2+6FRa89AhM3r4M+z29nwT6K9rf0kuJfLT4wbfOzcGB3ttfiA+QyvfpYGqur4AgEfo24WQQCfUA0JtkK0LN5Aas5GRxqyduE3vSTWAA9z5FOpAbpEOvQ1blp9hZo/swHiPflAh/fUPzy4gMd1+2GeVtWwmfvjvd4fIDcpU9eTmbzF4OcKgkW4nUJNeU4ioMMVhPPSvHSU4Tn+0mBEFkqm+WGId54gFZvgdrdFsBt926HsLVHfU7xy48PHIW+67fD8m33w7f7RpUQgd0DBHD87XhoN3AaTyDwAiKdCCAoXJCA9yW8QAoOt0lSJCOBcYjzvK4A+dar/Sg1SM81zIl4AJFAvYFLoNnDe/yCBBS3IBwfB77wBix9/UH4cO8kOHc4sVQbshvand+LhZ/3psGAjFzeTMBsnYma00Qg0DfSgmyJiFXCA18X35zntE401HTDW3VjJ/+JByxAq+VaJ2YHEK5JeQRaPH7Ab0hAIQKyCKgbMeflZ2DD9iL4at+YkoKiK+cSXJ0Y7CX4V9np//5zJA5OHExlvQsPo8WR+tJmuHnsY6AJt/C8puhuWrTCDfAlaZHN4gH4phgRH2udiJontpnlFw1DyhixSVQfYLRyk4DOlAeNxzwJLZ88hCTwnt+QgOIaUODSuPYw9Hj+bRi3aT08+PpS2LqzED7ZO4HNJfjz4HBmJVAQ8XLp9B4q+fnDCYw0SNm/3z8S9u2aAc++NR+KtjwKSS++Au2ee9cRh1j7Adww4wXQGrlSgTsR9QUB+JDUMuaxpaIh4VQkZB2B+IvXCqBpPFNQqd6S/W1/qA+IbT2T2wLQUlAwsgCun/48hK054lcEUNYqIDKgR5pN0PG5PaymIGPjS5CNVkLhq0/A/NdWwt1bH2bZj7lbVoHlladg/KbnIX7DFui+7m0220D/zJGSn1NSC/HsUbilaAsEo0XI8Zp+ibhJEICvZQWMFrlZyEbNQvcjinlJgNJshTFz/SIrQK7A+k7zoT1nv4ASDwiJngU35W/yWwIomz1Q5hIoxEBoVgbK55Xvu2rxE7pHty99G0JiZrPXSuX1/F0eVS+UztdEF25hi0XxzaE57tt4b0lSpBvRVL67fZHfxAMe7TgPmjkZFKzVsQhumbfVr+IBHgG+Hs0f3Qe1eyzkIQDqCUhkBNBc9AT4lvQokiSjGS0Bm7JQ5HNnSOD2iDxY2v4uv0kPLkTCuo6zaagkPdh9Ady2+E1BAmVdjNUHof7QZaDlCwTmkrUpNZ0tdM7nXAHqFjTYJF1EDrkEKTzLRUuTQAu8VZf7ySgxmh9A/Q31nMkMIAnU7bsYTd6dggRKY80RaJTBnQlYJjVfKAWJngDfFNYtaCQSyNPIDUMXnCEBqhHwl6nC2xAZcqWgMyRQb9D90Gz5bkECMsKfPQrXT32WN7i6UWe0hWoFAfgwCVBA0DFItI48TdjuDAnQwg6yBPwhM/BK5wUw0JnMgIwGcQ9C8xV7BQnImYCmhZtBh+87x2t3CNFIBAJ9vUgoLFcpFb6eLXdwQjkUd2CZH8QElMwATRLSOEkCDZMeYQGwak8C+Pffds9bLFuiVe8J+EFjMN+uNYhNQb4t0UWS1NcqDxCxtkTsdpYEKDBI2YEdPl4nQCTwVMf5ENmqgD8oSDDa4JoRK6HFY/urNwng397skT0sU8KRCTiJ39NZWAB+4QqYJZ0pV9LoGQm0QbzvLAlQirCw3VyfLxZyLBm5C5o7kx4kmGwsAOZvJcNVSwDvMRKs2/ceHgKgnpMURgBROULJfL4+wGhBV8CsbBru5kx6UCGBa+SKQV8vGyYSuAfdlhudSQ/KJcPXjnwCWjxxsNqSAJVLN4h/iD8VSJOpOkwSCuYfmQHFFZhBH/eVSzrBmeYhKhum3oGNSAK+HheY066IbUoOcqZkGN2dxqNXV2sSuDbrcd5U4JLQZrNZBaoQP0oPagx5Ui0jWzjaX57w4hQJUANR16hCeNLHW4mpRsAWMxcaOlUjIJPAqNXQshqSAKUCr5vCnQp8Hs9TiIgD+FuhEJEAmm6hJmohtg5ylgQUIqA04aL2RT4bF9gpTxOa2tbZQiHFEngSWq6uXiRABED9EpypQAooNxQE4I8koLcyIgjVZ5Ml0I+tf3aSBMi0boyKNT56NsvDv+3DhUKj8TnWdoUExlQzEsC/89aF2yC4zUyeVOCXWr1FrAz3Z0uASjlDwll2gPYNfuiKJUAzBnujS/AYugQ7fdAaoOdDgcu06FncewZKSABvwmoVE8C/8Y4Hd0Gt9nN4MgG0KShCEIBfkwANFTVL2giWHYhBvOsKCRBuwxuThnVQQc5OORq/08fmCKS0mcUIy1lLgAJj1SJF6FxX4EmtwdZVEIC/Bwb1cgsxEoHGYGkpVwzaXXEJguXYwDg0uVd1mFeyiegdmRC8BeU50PNJlEnAqYEipjxolL7KUSyEfjIjggAExQCaPbKXDVTlIIBTsuUolMj/i4Vsct8AWz5Ky0aeQFx0lgQUIqBMwXUmG3SMLIBMJAMqIqLV34+jm7Cm43xY28k7eBZBi1E6RhY6/XdRsRBVDFIX4R0P7QpI3H7/DrR2nmBWD8drchzPjFgWGjgpwlxJ6txPorVPGqOtHr6xM+U58OAKNDIZEGiGXwOjDRqjElH/vjdxPaIh3+y7csuGaWpOSLs5gYm2sxjRcb4en2odm6mE8gSMROVIIWFsrqCk01uolXi4swVDarECX4HLfwuZxoEM/tfiWSTEYDYYREigWQOsjViq05wFB2kTzA5X4gICAQtyDzO1hjwpKHyKUJiAzBAgs2scxUIUF6B87zLeHYQCAY8DGkeLuaQh11FIYIoOSUAXaZa3EVuCHazvfNGQQEDhNCJVS81lYiJQNZDo8ZIunFwBiyQ1syl7CJ8W1kC1BI2aX4bWYYiSNRJSTSTYaGHQscWQ5lA8CLGItxBnhWJUC1xGPKXRW67V0mwJfZ5Qimon+hypvmEumzxMASCdoxkkAbFZXhghFCUwQZOlF2v11kZ0AdQyFDDLUEh1jQ2g/6fTT3ekCx2ojR93QMyRMwY/824qFvBpULXfa4hBmnCrjtzAWpFWSWppFkogxNFQVNNhCTgChVFsSWlDeSnJBMRyxBvywtLjsrtQLBTLp818Kv56D7ESMRTRQKN3ZIO0ETT8o8hj5+v/AceICmF+bnRdAAAAAElFTkSuQmCC"
213
+