TDCRPy 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- Code/TDCRPy.py +2 -2
- Code/TDCR_model_lib.py +24 -15
- Code/test.py +3 -0
- TDCRPy/Activity_TDCR.py +305 -0
- TDCRPy/EfficiencyProfils.py +96 -0
- TDCRPy/TDCRPy.py +425 -0
- TDCRPy/TDCR_model_lib.py +1790 -0
- TDCRPy/TDCRoptimize.py +99 -0
- TDCRPy/__init__.py +3 -0
- TDCRPy/decay.py +29 -0
- TDCRPy/test.py +12 -0
- TDCRPy/test1.py +87 -0
- TDCRPy-0.0.8.dist-info/METADATA +88 -0
- TDCRPy-0.0.8.dist-info/RECORD +23 -0
- TDCRPy-0.0.6.dist-info/METADATA +0 -31
- TDCRPy-0.0.6.dist-info/RECORD +0 -14
- {TDCRPy-0.0.6.dist-info → TDCRPy-0.0.8.dist-info}/LICENCE.md +0 -0
- {TDCRPy-0.0.6.dist-info → TDCRPy-0.0.8.dist-info}/WHEEL +0 -0
- {TDCRPy-0.0.6.dist-info → TDCRPy-0.0.8.dist-info}/top_level.txt +0 -0
TDCRPy/TDCRoptimize.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Created on Wed Jul 5 10:04:53 2023
|
|
4
|
+
|
|
5
|
+
@author: romain.coulon
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import TDCRPy as td
|
|
10
|
+
import scipy.optimize as opt
|
|
11
|
+
import sys, time
|
|
12
|
+
sys.path.insert(1, 'G:\Python_modules\BIPM_RI_PyModules')
|
|
13
|
+
import TDCRcalculation as tc
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def eff(TDCR_measure, TAB, TBC, TAC, Rad, kB):
|
|
18
|
+
|
|
19
|
+
N=50000
|
|
20
|
+
L=1
|
|
21
|
+
# r=opt.minimize_scalar(td.TDCRPy, args=(TDCR_measure, TAB, TBC, TAC, Rad, "1", N, kB, 0.98, 1000, "res", "sym"), method='golden')#,options={'xatol': 1e-7, 'disp': True, 'maxiter':100})
|
|
22
|
+
# r=opt.minimize_scalar(td.TDCRPy, args=(TDCR_measure, TAB, TBC, TAC, Rad, "1", N, kB, 0.98, 1000, "res", "sym"), method='brent')
|
|
23
|
+
r=opt.minimize_scalar(td.TDCRPy, args=(TDCR_measure, TAB, TBC, TAC, Rad, "1", N, kB, 0.98, 1000, "res", "sym"), method='bounded', bounds=[0.5, 2])
|
|
24
|
+
|
|
25
|
+
# r=opt.minimize(td.TDCRPy, L, args=(TDCR_measure, TAB, TBC, TAC, Rad, "1", N, kB, 0.98, 1000, "res", "sym"), method='nelder-mead',options={'xatol': 1e-7, 'disp': True, 'maxiter':100})
|
|
26
|
+
L=r.x
|
|
27
|
+
print(r)
|
|
28
|
+
#L=(L*0.995, L*1.021, L*0.988) # Free paramete in keV-1
|
|
29
|
+
# L = (L, L, L)
|
|
30
|
+
# r=opt.minimize(td.TDCRPy, L, args=(TDCR_measure, TAB, TBC, TAC, Rad, "1", N, kB, 0.98, 1000, "res", "asym"), method='nelder-mead',options={'xatol': 1e-7, 'disp': True, 'maxiter':100})
|
|
31
|
+
# L=r.x
|
|
32
|
+
# print(r)
|
|
33
|
+
out=td.TDCRPy(L,TDCR_measure, TAB, TBC, TAC, Rad, "1", N, kB, 0.98, 1000, "eff", "sym")
|
|
34
|
+
return np.mean(L), L, out[2], out[2], out[3]
|
|
35
|
+
|
|
36
|
+
def TicTocGenerator():
|
|
37
|
+
"""
|
|
38
|
+
Generator that returns time differences
|
|
39
|
+
"""
|
|
40
|
+
ti = 0 # initial time
|
|
41
|
+
tf = time.time() # final time
|
|
42
|
+
while True:
|
|
43
|
+
ti = tf
|
|
44
|
+
tf = time.time()
|
|
45
|
+
yield tf-ti # returns the time difference
|
|
46
|
+
|
|
47
|
+
TicToc = TicTocGenerator() # create an instance of the TicTocGen generator
|
|
48
|
+
|
|
49
|
+
# This will be the main function through which we define both tic() and toc()
|
|
50
|
+
def toc(tempBool=True):
|
|
51
|
+
"""
|
|
52
|
+
Prints the time difference yielded by generator instance TicToc
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
tempTimeInterval = next(TicToc)
|
|
56
|
+
if tempBool:
|
|
57
|
+
print( "Elapsed time: %f seconds.\n" %tempTimeInterval )
|
|
58
|
+
|
|
59
|
+
def tic():
|
|
60
|
+
"""
|
|
61
|
+
Records a time in TicToc, marks the beginning of a time interval
|
|
62
|
+
"""
|
|
63
|
+
toc(False)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
"""
|
|
67
|
+
TEST
|
|
68
|
+
"""
|
|
69
|
+
|
|
70
|
+
Rad="Co-60" # list of radionuclides (Na-24)
|
|
71
|
+
kB =1.0e-5 # Birks constant in cm/keV
|
|
72
|
+
TDCR_measure = 0.977667386529166 # Measured TDCR value
|
|
73
|
+
TAB = 0.992232838598821
|
|
74
|
+
TBC = 0.992343419459002
|
|
75
|
+
TAC = 0.99275350064608
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
tic()
|
|
80
|
+
F1, FFF, eff1, eff2 = tc.I2calc(TDCR_measure, TAB, TBC, TAC, Rad, kB)
|
|
81
|
+
toc()
|
|
82
|
+
|
|
83
|
+
print("/nanalytical model")
|
|
84
|
+
print("free parameter = ", F1)
|
|
85
|
+
print("free parameters = ", FFF)
|
|
86
|
+
print("Double count rate efficiency (sym) = ", eff1)
|
|
87
|
+
print("Double count rate efficiency (asym) = ", eff2)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
tic()
|
|
91
|
+
F1, FFF, eff1, eff2, u = eff(TDCR_measure, TAB, TBC, TAC, Rad, kB)
|
|
92
|
+
toc()
|
|
93
|
+
|
|
94
|
+
print("/nstochastic model")
|
|
95
|
+
print("free parameter = ", F1)
|
|
96
|
+
print("free parameters = ", FFF)
|
|
97
|
+
print("Double count rate efficiency (sym) = ", eff1)
|
|
98
|
+
print("Double count rate efficiency (asym) = ", eff2)
|
|
99
|
+
print("u(eff) = ", u)
|
TDCRPy/__init__.py
ADDED
TDCRPy/decay.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This program aims to calculate the relative composition of radionuclides
|
|
3
|
+
decaying in chain using the Bateman model implemented in the radioactivedecay module form (MIT)
|
|
4
|
+
|
|
5
|
+
Romain Coulon, Jialin Hu
|
|
6
|
+
Bureau International des Poids et Mesures
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# pip install radioactivedecay
|
|
10
|
+
import radioactivedecay as rd
|
|
11
|
+
import matplotlib.pyplot as plt
|
|
12
|
+
|
|
13
|
+
rad = "Ra-223" # Radionuclide
|
|
14
|
+
A0 = 1 # Inital activity
|
|
15
|
+
unit = 'Bq' # unit for the activity
|
|
16
|
+
decaytime = 2 # decay time
|
|
17
|
+
unitt = 'd' # unit for the time
|
|
18
|
+
|
|
19
|
+
rad_t0 = rd.Inventory({rad: A0}, unit)
|
|
20
|
+
rad_t1 = rad_t0.decay(decaytime, unitt)
|
|
21
|
+
rad_t1.activities(unit)
|
|
22
|
+
print(rad_t1)
|
|
23
|
+
|
|
24
|
+
decayGraph = rad_t0.plot(decaytime, unitt, yunits=unit)
|
|
25
|
+
plt.savefig('decayGraph.png')
|
|
26
|
+
|
|
27
|
+
nuc = rd.Nuclide(rad)
|
|
28
|
+
decayChain = nuc.plot()
|
|
29
|
+
plt.savefig('decayChain.png')
|
TDCRPy/test.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Created on Thu Jul 13 19:15:23 2023
|
|
4
|
+
|
|
5
|
+
@author: romain.coulon
|
|
6
|
+
"""
|
|
7
|
+
import TDCRPy
|
|
8
|
+
|
|
9
|
+
TDCRPy.TDCRPy(1, 0.5, 0.5, 0.5, 0.5, "H-3", "1", 10, 0.00001, 1,10, "eff", "sym", Display=True)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
TDCRPy.TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2)
|
TDCRPy/test1.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Created on Mon May 15 15:41:41 2023
|
|
4
|
+
|
|
5
|
+
@author: romain.coulon
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
import zipfile
|
|
11
|
+
import numpy as np
|
|
12
|
+
|
|
13
|
+
file = 'decayData/All-nuclides_Ensdf.zip'
|
|
14
|
+
z = zipfile.ZipFile(file)
|
|
15
|
+
|
|
16
|
+
with z.open('Ag-108m.txt') as f:
|
|
17
|
+
data = f.readlines()
|
|
18
|
+
nL = np.size(data)
|
|
19
|
+
|
|
20
|
+
## fomatage en list de vecteur pour chaque line du fichier ENSDF
|
|
21
|
+
for i in range(nL): # boucle dans data
|
|
22
|
+
data[i] = str(data[i]) # conversion en string
|
|
23
|
+
data[i] = data[i].replace("b'",'') # on enlève les caratères de formatage
|
|
24
|
+
data[i] = data[i].replace("\\r\\n'",'') # on enlève les caratères de formatage
|
|
25
|
+
for i in range(nL):
|
|
26
|
+
data[i] = data[i].split()
|
|
27
|
+
|
|
28
|
+
for i in range(nL):
|
|
29
|
+
if i>0 and ("L" in data[i]) and ("AUGER" in data[i]) and ("|]" in data[i-1]):
|
|
30
|
+
data.insert(i,[data[i][0], 'T'])
|
|
31
|
+
|
|
32
|
+
## Définir des repères
|
|
33
|
+
index_auger = [] # indice de
|
|
34
|
+
daugther = [] # liste des filles
|
|
35
|
+
index_end = [] # indice dernier valeur pour une fille
|
|
36
|
+
posi = [] # indice des blocs transitions
|
|
37
|
+
for i, p in enumerate(data): # boucle dans le fichier
|
|
38
|
+
if 'DECAY' in p:
|
|
39
|
+
daugther.append(p[0]) # liste des filles
|
|
40
|
+
if 'Auger' in p:
|
|
41
|
+
index_auger.append(i) # repère de ligne pour ensuite définir l'ensemble des blocs
|
|
42
|
+
if len(p)==2:
|
|
43
|
+
posi.append(i) # repère de ligne pour ensuite définir les blocs (2)
|
|
44
|
+
# if 'L' in p
|
|
45
|
+
# posi:
|
|
46
|
+
if 'P' in p:
|
|
47
|
+
index_end.append(i) # repère de fin pour ensuite définir l'ensemble des blocs
|
|
48
|
+
posi.append(i)
|
|
49
|
+
|
|
50
|
+
## Filtrage des données utiles et formatage
|
|
51
|
+
energy = []
|
|
52
|
+
prob = []
|
|
53
|
+
Type = []
|
|
54
|
+
Fille = []
|
|
55
|
+
for i in range(len(posi)-1): # bloucle dans les blocs
|
|
56
|
+
start = posi[i]+1 # indice debut du bloc
|
|
57
|
+
end = posi[i+1] # indice fin du bloc
|
|
58
|
+
d = data[start:end] # Le bloc
|
|
59
|
+
e_b = [] # Energie des transitions du bloc
|
|
60
|
+
prob_b = [] # Proba des transitions du bloc
|
|
61
|
+
Type_b = [] # Types des transitions du bloc
|
|
62
|
+
Fille_b = [] # Fille des transitions du bloc
|
|
63
|
+
#e2 = []
|
|
64
|
+
if start == end:
|
|
65
|
+
continue
|
|
66
|
+
if start-1 in index_end:
|
|
67
|
+
#e = []
|
|
68
|
+
continue
|
|
69
|
+
for n, p1 in enumerate(d):
|
|
70
|
+
#e2 = []
|
|
71
|
+
if '-' in p1[2]: # traitement des intervals de nombres réels
|
|
72
|
+
x = p1[2].split('-')
|
|
73
|
+
p1[2] = round((float(x[1])+float(x[0]))/2,3) # Moyenne
|
|
74
|
+
if '|]' in p1: # traitment des accolades
|
|
75
|
+
if len(p1)>6: # repère de la ligne portant la proba pour le groupe
|
|
76
|
+
prob_b.append(float(p1[4]))
|
|
77
|
+
e_b.append(float(p1[2]))
|
|
78
|
+
else:
|
|
79
|
+
e_b.append(float(p1[2]))
|
|
80
|
+
prob_b.append(float(p1[3]))
|
|
81
|
+
|
|
82
|
+
if len(prob_b)==1 and len(e_b)>1:
|
|
83
|
+
e_b = [np.mean(e_b)]
|
|
84
|
+
|
|
85
|
+
print(e_b)
|
|
86
|
+
print(prob_b)
|
|
87
|
+
print(" ")
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: TDCRPy
|
|
3
|
+
Version: 0.0.8
|
|
4
|
+
Summary: TDCR model
|
|
5
|
+
Home-page: https://github.com/RomainCoulon/TDCRPy
|
|
6
|
+
Author: RomainCoulon (Romain Coulon)
|
|
7
|
+
Author-email: <romain.coulon@bipm.org>
|
|
8
|
+
License: UNKNOWN
|
|
9
|
+
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
+
Platform: UNKNOWN
|
|
11
|
+
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Natural Language :: English
|
|
15
|
+
Classifier: Natural Language :: French
|
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
|
17
|
+
Classifier: Operating System :: Unix
|
|
18
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
|
19
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
20
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
21
|
+
Description-Content-Type: text/markdown
|
|
22
|
+
License-File: LICENCE.md
|
|
23
|
+
Requires-Dist: numpy
|
|
24
|
+
Requires-Dist: scipy
|
|
25
|
+
Requires-Dist: sys
|
|
26
|
+
Requires-Dist: time
|
|
27
|
+
Requires-Dist: urllib
|
|
28
|
+
Requires-Dist: zipfile
|
|
29
|
+
Requires-Dist: re
|
|
30
|
+
|
|
31
|
+
# TDCRPy
|
|
32
|
+
|
|
33
|
+
TDCRPy is a Python code to calculate detection efficiency of a liquide scintillation counter using 3-photomultiplier tubes.
|
|
34
|
+
The calculation is based on the photo-physical model called of the Triple-to-Double-Coincidence-Ratio method (TDCR) [[1]](#1) and a Monte-Carlo sampling allowing to adress complexe decay schemes and radionuclide mixtures. The process is summarized in the figure below.
|
|
35
|
+
|
|
36
|
+
<img src="./FlowChart.jpg" alt="drawing" width="500"/>
|
|
37
|
+
|
|
38
|
+
## Nuclear decay
|
|
39
|
+
|
|
40
|
+
The code directly reads decay data from the Decay Data Evaluation Project (DDEP) web interface [[2]](#2) that is recommanded to be used by the radionuclide metrology community. The PenNuc format [[3]](#3) is used to simulate decays and the $\beta$ spectra from the BetaShape code [[4]](#4) are used. The BetaShape code estimates accurate $\beta$ spectra by taking the atomic exchange effect and also simulate accurately electron capture decay [[5]](#5). It has been demonstrated to offer significant improvement in the context of liquid scintillation counting [[6]](#6).
|
|
41
|
+
|
|
42
|
+
## Atomic relaxation
|
|
43
|
+
|
|
44
|
+
The atomic relaxation from missing electrons in the inner-shell following electron capture and internal conversion is simulated by ENSDF data on the DDEP web interface.
|
|
45
|
+
|
|
46
|
+
## Interaction
|
|
47
|
+
|
|
48
|
+
The interaction of $\gamma$ rays, electrons and positrons are simulated using response kernels calculated by the Monte-Carlo code MCNP6 developped by Los Alamos [[13]](#13).
|
|
49
|
+
|
|
50
|
+
## Scintillation
|
|
51
|
+
|
|
52
|
+
The stopping power of electrons between 20 keV and 1000 keV is a mixture of a radiative loss model [[7]](#7) and a collision model [[8]](#8) that has been validated agaisnt the NIST model ESTAR [[9]](#9) recommanded by the ICRU Report 37 [[10]](#10). At low energy - between 10 eV and 20 keV - the model from Tan and Xia [[11]](#11) is implemented.
|
|
53
|
+
|
|
54
|
+
The stopping power of $\alpha$ particles of energy comprises between 1 keV and 8 MeV comes from the NIST code ASTAR [[9]](#9) recommanded in the ICRU Report 49 [[12]](#12). For energy below 1 keV, an extrapolation is made.
|
|
55
|
+
|
|
56
|
+
## Statistical model
|
|
57
|
+
|
|
58
|
+
...
|
|
59
|
+
|
|
60
|
+
## References
|
|
61
|
+
|
|
62
|
+
<a id="1">[1]</a> Ryszard Broda, Krzysztof Pochwalski, Tomasz Radoszewski, Calculation of liquid-scintillation detector efficiency, *Applied Radiation and Isotopes* **39**:2, 1988, 159-164, https://doi.org/10.1016/0883-2889(88)90161-X
|
|
63
|
+
|
|
64
|
+
<b id="2">[2]</b> http://www.lnhb.fr/ddep_wg/
|
|
65
|
+
|
|
66
|
+
<c id="3">[3]</c> E. GarcÃa-Toraño, V. Peyres, F. Salvat, PenNuc: Monte Carlo simulation of the decay of radionuclides, *Computer Physics Communications* **245**, 2019, 106849 https://doi.org/10.1016/j.cpc.2019.08.002
|
|
67
|
+
|
|
68
|
+
<c id="4">[4]</c> X. Mougeot, Erratum: Reliability of usual assumptions in the calculation of $\beta$ and $\bar{\mu}$ spectra, *Physical Review C* **91**, 2015, 055504, https://doi.org/10.1103/PhysRevC.92.059902
|
|
69
|
+
|
|
70
|
+
<c id="5">[5]</c> X. Mougeot, Towards high-precision calculation of electron capture decays, *Applied Radiation and Isotopes* **154**, 2019, 108884, https://doi.org/10.1016/j.apradiso.2019.108884
|
|
71
|
+
|
|
72
|
+
<c id="6">[6]</c> K. Kossert, X. Mougeot, Improved activity standardization of <sup>90</sup>Sr/<sup>90</sup>Y by means of liquid scintillation counting, *Applied Radiation and Isotopes* **168**, 2021, 109478, https://doi.org/10.1016/j.apradiso.2020.109478
|
|
73
|
+
|
|
74
|
+
<c id="7">[7]</c> S.M. Seltzer, M.R. Berger, M. R., Evaluation of the collision stopping power of elements and compounds for electrons and positrons, *Applied Radiation and Isotopes* **33**:11, 1982, 1189-1218, https://doi.org/10.1016/0020-708x(82)90244-7
|
|
75
|
+
|
|
76
|
+
<c id="8">[8]</c> M.O. El-Ghossain, Calculations Of Stopping Power, And Range Of Electrons Interaction With Different Material And Human Body Parts, *International Journal of Scientific & Technology Research* **6**:1 2017. https://www.ijstr.org/final-print/jan2017/Calculations-Of-Stopping-Power-And-Range-Of-Electrons-Interaction-With-Different-Material-And-Human-Body-Parts.pdf
|
|
77
|
+
|
|
78
|
+
<c id="9">[9]</c> M.J. Berger, J.S. Coursey, M.A. Zucker and J. Chang,Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions, *NIST Standard Reference Database 124*, 2017, https://dx.doi.org/10.18434/T4NC7P
|
|
79
|
+
|
|
80
|
+
<c id="10">[10]</c> ICRU Report 37, *Stopping Powers for Electrons and Positrons*
|
|
81
|
+
|
|
82
|
+
<c id="11">[11]</c> Z. Tan, Y. Xia, Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20–20,000 eV, *Applied Radiation and Isotopes* **70**, 2012, 296-300, https://doi.org/10.1016/j.apradiso.2011.08.012
|
|
83
|
+
|
|
84
|
+
<c id="12">[12]</c> ICRU Report 49, *Stopping Power and Ranges for Protons and Alpha Particles*, https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/
|
|
85
|
+
|
|
86
|
+
<c id="13">[13]</c> https://mcnp.lanl.gov/
|
|
87
|
+
|
|
88
|
+
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
Code/Activity_TDCR.py,sha256=wcllEOJbeEOexAYzcFGQx2luIBhxSU3LtpEalRmNziw,11530
|
|
2
|
+
Code/EfficiencyProfils.py,sha256=-ZUPva1dU7lMRcKbQAewX9QyiTDwCiNQDoaQiw7dOI4,4829
|
|
3
|
+
Code/TDCRPy.py,sha256=igN-xE3ixC27R0aaZHQ832wp8w5UV0iDjx_1cEc8Kvk,23214
|
|
4
|
+
Code/TDCR_model_lib.py,sha256=bF2S2L3L5c4y2Bg6G1tG1PVR7mJJ1L6UU7G0IEHNsTY,79829
|
|
5
|
+
Code/TDCRoptimize.py,sha256=2CssmP_SZSe6C_Bkgei3hon21RPytH4DetMbXi-e6wk,3171
|
|
6
|
+
Code/__init__.py,sha256=IQBC9crikuuGlHfxIdP65CrgSHgl9U8z2jSYduNpWB0,93
|
|
7
|
+
Code/decay.py,sha256=Lnq-kj-6Xs2Rw9w3Y3LlK_ffFip1QzemHdesiug0Wko,817
|
|
8
|
+
Code/test.py,sha256=3r8LxXmQwlHNIefMswwUCy3OoHHKDVK8A3izerGT15U,292
|
|
9
|
+
Code/test1.py,sha256=rGA9d1cgArhAfxRAAdtiz-vPGQ0Ns3HEdN8sCwydHYM,3250
|
|
10
|
+
TDCRPy/Activity_TDCR.py,sha256=wcllEOJbeEOexAYzcFGQx2luIBhxSU3LtpEalRmNziw,11530
|
|
11
|
+
TDCRPy/EfficiencyProfils.py,sha256=-ZUPva1dU7lMRcKbQAewX9QyiTDwCiNQDoaQiw7dOI4,4829
|
|
12
|
+
TDCRPy/TDCRPy.py,sha256=lrsngHHgBxuOdOmUqxEEbMHjpHnSF8ZP-ZUknfPs37c,23207
|
|
13
|
+
TDCRPy/TDCR_model_lib.py,sha256=bF2S2L3L5c4y2Bg6G1tG1PVR7mJJ1L6UU7G0IEHNsTY,79829
|
|
14
|
+
TDCRPy/TDCRoptimize.py,sha256=2CssmP_SZSe6C_Bkgei3hon21RPytH4DetMbXi-e6wk,3171
|
|
15
|
+
TDCRPy/__init__.py,sha256=IQBC9crikuuGlHfxIdP65CrgSHgl9U8z2jSYduNpWB0,93
|
|
16
|
+
TDCRPy/decay.py,sha256=Lnq-kj-6Xs2Rw9w3Y3LlK_ffFip1QzemHdesiug0Wko,817
|
|
17
|
+
TDCRPy/test.py,sha256=3r8LxXmQwlHNIefMswwUCy3OoHHKDVK8A3izerGT15U,292
|
|
18
|
+
TDCRPy/test1.py,sha256=rGA9d1cgArhAfxRAAdtiz-vPGQ0Ns3HEdN8sCwydHYM,3250
|
|
19
|
+
TDCRPy-0.0.8.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
|
|
20
|
+
TDCRPy-0.0.8.dist-info/METADATA,sha256=CU_LjClcOCPImFHxekh2IA_RxqPwuLem6ek03GO7j-I,5761
|
|
21
|
+
TDCRPy-0.0.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
|
22
|
+
TDCRPy-0.0.8.dist-info/top_level.txt,sha256=5dSMF0KOskVmT0QGz9KnqcD9Ccc2Dkq0Sa8FOZk-7Ck,5
|
|
23
|
+
TDCRPy-0.0.8.dist-info/RECORD,,
|
TDCRPy-0.0.6.dist-info/METADATA
DELETED
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: TDCRPy
|
|
3
|
-
Version: 0.0.6
|
|
4
|
-
Summary: TDCR model
|
|
5
|
-
Home-page: UNKNOWN
|
|
6
|
-
Author: RomainCoulon (Romain Coulon)
|
|
7
|
-
Author-email: <romain.coulon@bipm.org>
|
|
8
|
-
License: UNKNOWN
|
|
9
|
-
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
-
Platform: UNKNOWN
|
|
11
|
-
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
|
-
Classifier: Intended Audience :: Science/Research
|
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
-
Classifier: Natural Language :: English
|
|
15
|
-
Classifier: Natural Language :: French
|
|
16
|
-
Classifier: Programming Language :: Python :: 3
|
|
17
|
-
Classifier: Operating System :: Unix
|
|
18
|
-
Classifier: Operating System :: MacOS :: MacOS X
|
|
19
|
-
Classifier: Operating System :: Microsoft :: Windows
|
|
20
|
-
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
21
|
-
License-File: LICENCE.md
|
|
22
|
-
Requires-Dist: numpy
|
|
23
|
-
Requires-Dist: scipy
|
|
24
|
-
Requires-Dist: sys
|
|
25
|
-
Requires-Dist: time
|
|
26
|
-
Requires-Dist: urllib
|
|
27
|
-
Requires-Dist: zipfile
|
|
28
|
-
Requires-Dist: re
|
|
29
|
-
|
|
30
|
-
UNKNOWN
|
|
31
|
-
|
TDCRPy-0.0.6.dist-info/RECORD
DELETED
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
Code/Activity_TDCR.py,sha256=wcllEOJbeEOexAYzcFGQx2luIBhxSU3LtpEalRmNziw,11530
|
|
2
|
-
Code/EfficiencyProfils.py,sha256=-ZUPva1dU7lMRcKbQAewX9QyiTDwCiNQDoaQiw7dOI4,4829
|
|
3
|
-
Code/TDCRPy.py,sha256=ffOfmaqWdk5PWoVDep8zs_VoQLUhUCQePC0oAbPOYVs,23202
|
|
4
|
-
Code/TDCR_model_lib.py,sha256=vl0pMsGG3FKAmfpnHfjUX8mokay1dvlH99GHYd9BnsI,79115
|
|
5
|
-
Code/TDCRoptimize.py,sha256=2CssmP_SZSe6C_Bkgei3hon21RPytH4DetMbXi-e6wk,3171
|
|
6
|
-
Code/__init__.py,sha256=IQBC9crikuuGlHfxIdP65CrgSHgl9U8z2jSYduNpWB0,93
|
|
7
|
-
Code/decay.py,sha256=Lnq-kj-6Xs2Rw9w3Y3LlK_ffFip1QzemHdesiug0Wko,817
|
|
8
|
-
Code/test.py,sha256=rbvsRbDGzSifUU1dSUA7CHkU58Qt8z8U42A9hGdIMOQ,212
|
|
9
|
-
Code/test1.py,sha256=rGA9d1cgArhAfxRAAdtiz-vPGQ0Ns3HEdN8sCwydHYM,3250
|
|
10
|
-
TDCRPy-0.0.6.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
|
|
11
|
-
TDCRPy-0.0.6.dist-info/METADATA,sha256=2i9g8aqPHJVoECr8P8yaquCvQXmXzjyV8cfNhyTnIZY,950
|
|
12
|
-
TDCRPy-0.0.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
|
13
|
-
TDCRPy-0.0.6.dist-info/top_level.txt,sha256=5dSMF0KOskVmT0QGz9KnqcD9Ccc2Dkq0Sa8FOZk-7Ck,5
|
|
14
|
-
TDCRPy-0.0.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|