TDCRPy 0.0.46__py3-none-any.whl → 0.0.48__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of TDCRPy might be problematic. Click here for more details.
- {TDCRPy-0.0.46.dist-info → TDCRPy-0.0.48.dist-info}/METADATA +48 -6
- {TDCRPy-0.0.46.dist-info → TDCRPy-0.0.48.dist-info}/RECORD +7 -7
- {TDCRPy-0.0.46.dist-info → TDCRPy-0.0.48.dist-info}/WHEEL +1 -1
- tdcrpy/TDCRPy.py +2 -5
- tdcrpy/TDCR_model_lib.py +20 -23
- {TDCRPy-0.0.46.dist-info → TDCRPy-0.0.48.dist-info}/LICENCE.md +0 -0
- {TDCRPy-0.0.46.dist-info → TDCRPy-0.0.48.dist-info}/top_level.txt +0 -0
|
@@ -1,13 +1,11 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: TDCRPy
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.48
|
|
4
4
|
Summary: TDCR model
|
|
5
5
|
Home-page: https://github.com/RomainCoulon/TDCRPy
|
|
6
6
|
Author: RomainCoulon (Romain Coulon)
|
|
7
7
|
Author-email: <romain.coulon@bipm.org>
|
|
8
|
-
License: UNKNOWN
|
|
9
8
|
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
-
Platform: UNKNOWN
|
|
11
9
|
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
10
|
Classifier: Intended Audience :: Science/Research
|
|
13
11
|
Classifier: License :: OSI Approved :: MIT License
|
|
@@ -25,7 +23,53 @@ Requires-Dist: numpy
|
|
|
25
23
|
# TDCRPy
|
|
26
24
|
|
|
27
25
|
TDCRPy is a Python code to calculate detection efficiency of a liquide scintillation counter using 3-photomultiplier tubes.
|
|
28
|
-
The calculation is based on the photo-physical model called of the Triple-to-Double-Coincidence-Ratio method (TDCR) [[1]](#1) and a Monte-Carlo sampling allowing to adress complexe decay schemes and radionuclide mixtures.
|
|
26
|
+
The calculation is based on the photo-physical model called of the Triple-to-Double-Coincidence-Ratio method (TDCR) [[1]](#1) and a Monte-Carlo sampling allowing to adress complexe decay schemes and radionuclide mixtures.
|
|
27
|
+
|
|
28
|
+
The code is developped and maintained by the BIPM (MIT license).
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
## Installation
|
|
33
|
+
|
|
34
|
+
TDCRPy requires that the following packages are installed in your Python environement.
|
|
35
|
+
|
|
36
|
+
```shell
|
|
37
|
+
pip install importlib.resources
|
|
38
|
+
pip install configparser
|
|
39
|
+
pip install numpy
|
|
40
|
+
pip install tqdm
|
|
41
|
+
pip install setuptools
|
|
42
|
+
pip install scipy
|
|
43
|
+
```
|
|
44
|
+
Then, TDCRPy can be installed.
|
|
45
|
+
|
|
46
|
+
```shell
|
|
47
|
+
pip install TDCRPy
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
To obtain the last version.
|
|
51
|
+
|
|
52
|
+
```shell
|
|
53
|
+
pip install TDCRPy --upgrade
|
|
54
|
+
```
|
|
55
|
+
|
|
56
|
+
The module can be imported in your Python code.
|
|
57
|
+
|
|
58
|
+
```python
|
|
59
|
+
import tdcrpy
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
## The function `TDCRPy()`
|
|
63
|
+
|
|
64
|
+
This
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
The process is summarized in the figure below.
|
|
29
73
|
|
|
30
74
|
<img src="./FlowChart.jpg" alt="drawing" width="500"/>
|
|
31
75
|
|
|
@@ -78,5 +122,3 @@ The stopping power of $\alpha$ particles of energy comprises between 1 keV and 8
|
|
|
78
122
|
<c id="12">[12]</c> ICRU Report 49, *Stopping Power and Ranges for Protons and Alpha Particles*, https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/
|
|
79
123
|
|
|
80
124
|
<c id="13">[13]</c> https://mcnp.lanl.gov/
|
|
81
|
-
|
|
82
|
-
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
tdcrpy/Activity_TDCR.py,sha256=wcllEOJbeEOexAYzcFGQx2luIBhxSU3LtpEalRmNziw,11530
|
|
2
2
|
tdcrpy/EfficiencyProfils.py,sha256=-ZUPva1dU7lMRcKbQAewX9QyiTDwCiNQDoaQiw7dOI4,4829
|
|
3
|
-
tdcrpy/TDCRPy.py,sha256=
|
|
4
|
-
tdcrpy/TDCR_model_lib.py,sha256=
|
|
3
|
+
tdcrpy/TDCRPy.py,sha256=5qx3z-kO3ekqQmmEWsfQCHuGjncVx2A8DL8BKxC0LnY,26134
|
|
4
|
+
tdcrpy/TDCR_model_lib.py,sha256=MG1VsHa2J5tBahvKgZoLjLXO41F1L8ncNBmdyAkUR2E,48310
|
|
5
5
|
tdcrpy/TDCRoptimize.py,sha256=qAdSPzrr7HLznFItZNX03LatOONvAWfZRFR22iLH5mI,2831
|
|
6
6
|
tdcrpy/__init__.py,sha256=DrgMGzw5vhdxbXvJq3orzdPeFaq8CwtDHzssp1_DqhM,93
|
|
7
7
|
tdcrpy/config.toml,sha256=Sbu_85L9REvYT9s4uFiqD8yZ8ju6Qyca91RiQOnytA0,1038
|
|
@@ -22,8 +22,8 @@ tdcrpy/Quenching/alpha_toulene.txt,sha256=3aIOCC1h19z8E0JZ2_MaSWRWcdnr-mtmT4qEF6
|
|
|
22
22
|
tdcrpy/decayData/All-nuclides_BetaShape.zip,sha256=ZBeaOUBO09gKGD6ouUXNW5UzdHavTKN5cACTqPqA-KU,6507983
|
|
23
23
|
tdcrpy/decayData/All-nuclides_Ensdf.zip,sha256=LVNNlE_akrg0T-N-7puMuGAme4JRzg-D1YaOwXpiIvg,424716
|
|
24
24
|
tdcrpy/decayData/All-nuclides_PenNuc.zip,sha256=DmhS2CYegWhL8qggc_MO6FgyiXE5qX73dOoH-SSQXoo,388954
|
|
25
|
-
TDCRPy-0.0.
|
|
26
|
-
TDCRPy-0.0.
|
|
27
|
-
TDCRPy-0.0.
|
|
28
|
-
TDCRPy-0.0.
|
|
29
|
-
TDCRPy-0.0.
|
|
25
|
+
TDCRPy-0.0.48.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
|
|
26
|
+
TDCRPy-0.0.48.dist-info/METADATA,sha256=CQsdzzcNnSUoFw7jP5_Rr-qkGOtn_JMiMyRrPlgo1b0,6214
|
|
27
|
+
TDCRPy-0.0.48.dist-info/WHEEL,sha256=AtBG6SXL3KF_v0NxLf0ehyVOh0cold-JbJYXNGorC6Q,92
|
|
28
|
+
TDCRPy-0.0.48.dist-info/top_level.txt,sha256=VgPJa9YJ7fi8wrr9qDJPLhu3tK1BcFRIP6Ib4r3BEfs,7
|
|
29
|
+
TDCRPy-0.0.48.dist-info/RECORD,,
|
tdcrpy/TDCRPy.py
CHANGED
|
@@ -36,10 +36,7 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, mode, mode2, Display=False,
|
|
|
36
36
|
pmf_1 : string
|
|
37
37
|
list of probability of each radionuclide (eg. "0.8, 0.2").
|
|
38
38
|
N : integer
|
|
39
|
-
Number of Monte-Carlo trials. recommanded N
|
|
40
|
-
N=1000, relative uncertainty from MC calculation = 1.0 %
|
|
41
|
-
N=10000, relative uncertainty from MC calculation = 0.33 %
|
|
42
|
-
N=100000, relative uncertainty from MC calculation = 0.10 %
|
|
39
|
+
Number of Monte-Carlo trials. recommanded N>10000. Not applied in the case of pure beta emitting radionuclides.
|
|
43
40
|
kB : float
|
|
44
41
|
Birks constant in cm/keV.
|
|
45
42
|
mode : string
|
|
@@ -137,7 +134,7 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, mode, mode2, Display=False,
|
|
|
137
134
|
efficiency_BC = []
|
|
138
135
|
efficiency_AC = []
|
|
139
136
|
|
|
140
|
-
if barp and not Display: NN = tqdm(range(N), desc="Processing", unit="
|
|
137
|
+
if barp and not Display: NN = tqdm(range(N), desc="Processing", unit=" decays")
|
|
141
138
|
else: NN = range(N)
|
|
142
139
|
for i in NN: # Main Loop - Monte Carlo trials
|
|
143
140
|
particle_vec=[]
|
tdcrpy/TDCR_model_lib.py
CHANGED
|
@@ -10,6 +10,7 @@ Bureau International des Poids et Mesures
|
|
|
10
10
|
|
|
11
11
|
### IMPORT Python Module
|
|
12
12
|
import importlib.resources
|
|
13
|
+
import pkg_resources
|
|
13
14
|
import configparser
|
|
14
15
|
import numpy as np
|
|
15
16
|
import zipfile as zf
|
|
@@ -1163,29 +1164,25 @@ def clear_terminal():
|
|
|
1163
1164
|
def display_header():
|
|
1164
1165
|
# Function to display the header
|
|
1165
1166
|
clear_terminal()
|
|
1166
|
-
|
|
1167
|
-
# ______ ______ ______ _______ ________
|
|
1168
|
-
# |__ __|| ___ \| ___|| ___ | | ____ |
|
|
1169
|
-
# | | | | | || | | | | | | |___| |___ ___
|
|
1170
|
-
# | | | | | || | | |__| | | _____|\ \ | |
|
|
1171
|
-
# | | | |__| || |____| __ \ | | \ \ | |
|
|
1172
|
-
# |_| |_____/ |_____||_| \__\|_| \ \_| |
|
|
1173
|
-
# +++++++++++++++++++++++++++++++++++++++++ / /
|
|
1174
|
-
# _________________________________________/ /
|
|
1175
|
-
# |_____________________________________________/
|
|
1176
|
-
|
|
1177
|
-
# BIPM 2023 - licence MIT
|
|
1178
|
-
# https://pypi.org/project/TDCRPy/
|
|
1179
|
-
# https://github.com/RomainCoulon/TDCRPy
|
|
1180
|
-
|
|
1181
|
-
# Start Calculation
|
|
1182
|
-
|
|
1183
|
-
# '''
|
|
1167
|
+
version = pkg_resources.get_distribution("tdcrpy").version
|
|
1184
1168
|
header_text = r'''
|
|
1185
|
-
|
|
1186
|
-
|
|
1187
|
-
|
|
1188
|
-
|
|
1189
|
-
|
|
1169
|
+
______ ______ ______ _______ ________
|
|
1170
|
+
|__ __|| ___ \| ___|| ___ | | ____ |
|
|
1171
|
+
| | | | | || | | | | | | |___| |___ ___
|
|
1172
|
+
| | | | | || | | |__| | | _____|\ \ | |
|
|
1173
|
+
| | | |__| || |____| __ \ | | \ \ | |
|
|
1174
|
+
|_| |_____/ |_____||_| \__\|_| \ \_| |
|
|
1175
|
+
+++++++++++++++++++++++++++++++++++++++++/ /
|
|
1176
|
+
________________________________________/ /
|
|
1177
|
+
|______________________________________________/
|
|
1178
|
+
|
|
1190
1179
|
'''
|
|
1180
|
+
header_text2 = "version "+version+"\n\
|
|
1181
|
+
BIPM 2023 - license MIT \n\
|
|
1182
|
+
distribution: https://pypi.org/project/TDCRPy \n\
|
|
1183
|
+
developement: https://github.com/RomainCoulon/TDCRPy \n\n\
|
|
1184
|
+
start calculation..."
|
|
1185
|
+
|
|
1186
|
+
# Start Calculation
|
|
1191
1187
|
print(header_text)
|
|
1188
|
+
print(header_text2)
|
|
File without changes
|
|
File without changes
|