TDCRPy 0.0.37__py3-none-any.whl → 0.0.38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of TDCRPy might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: TDCRPy
3
- Version: 0.0.37
3
+ Version: 0.0.38
4
4
  Summary: TDCR model
5
5
  Home-page: https://github.com/RomainCoulon/TDCRPy
6
6
  Author: RomainCoulon (Romain Coulon)
@@ -1,6 +1,6 @@
1
1
  tdcrpy/Activity_TDCR.py,sha256=wcllEOJbeEOexAYzcFGQx2luIBhxSU3LtpEalRmNziw,11530
2
2
  tdcrpy/EfficiencyProfils.py,sha256=-ZUPva1dU7lMRcKbQAewX9QyiTDwCiNQDoaQiw7dOI4,4829
3
- tdcrpy/TDCRPy.py,sha256=iR2gATGf1L4dsdU9JeMBRTr4TK8sS4syR3FUJ_EWL0w,25867
3
+ tdcrpy/TDCRPy.py,sha256=6-N5vpsf0cKGcXYiTfmmk_HXpoHYU7rD1qb4lHJDtv4,25906
4
4
  tdcrpy/TDCR_model_lib.py,sha256=AXxEdg0kIvRXZ0VUwZ8HrgW-pWnM8Nralp_r8GmkIZ8,83907
5
5
  tdcrpy/TDCRoptimize.py,sha256=7S2HAXNLpWPdV4GjVk1C4E8KOraOjtmr2bWC1bzuSzg,3068
6
6
  tdcrpy/__init__.py,sha256=DrgMGzw5vhdxbXvJq3orzdPeFaq8CwtDHzssp1_DqhM,93
@@ -21,8 +21,8 @@ tdcrpy/Quenching/alpha_toulene.txt,sha256=3aIOCC1h19z8E0JZ2_MaSWRWcdnr-mtmT4qEF6
21
21
  tdcrpy/decayData/All-nuclides_BetaShape.zip,sha256=ZBeaOUBO09gKGD6ouUXNW5UzdHavTKN5cACTqPqA-KU,6507983
22
22
  tdcrpy/decayData/All-nuclides_Ensdf.zip,sha256=LVNNlE_akrg0T-N-7puMuGAme4JRzg-D1YaOwXpiIvg,424716
23
23
  tdcrpy/decayData/All-nuclides_PenNuc.zip,sha256=DmhS2CYegWhL8qggc_MO6FgyiXE5qX73dOoH-SSQXoo,388954
24
- TDCRPy-0.0.37.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
25
- TDCRPy-0.0.37.dist-info/METADATA,sha256=nDS3RNmIA4Xl7v1tK0j-SLfdy1GGN5RDVsu4rmZrDPA,5633
26
- TDCRPy-0.0.37.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
- TDCRPy-0.0.37.dist-info/top_level.txt,sha256=VgPJa9YJ7fi8wrr9qDJPLhu3tK1BcFRIP6Ib4r3BEfs,7
28
- TDCRPy-0.0.37.dist-info/RECORD,,
24
+ TDCRPy-0.0.38.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
25
+ TDCRPy-0.0.38.dist-info/METADATA,sha256=IWu7kqjPNQ77P5LRRFuuOulDZjI46ZPGfNo4idYswMU,5633
26
+ TDCRPy-0.0.38.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ TDCRPy-0.0.38.dist-info/top_level.txt,sha256=VgPJa9YJ7fi8wrr9qDJPLhu3tK1BcFRIP6Ib4r3BEfs,7
28
+ TDCRPy-0.0.38.dist-info/RECORD,,
tdcrpy/TDCRPy.py CHANGED
@@ -389,6 +389,7 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Displa
389
389
  '''
390
390
  if mode2=="sym":
391
391
  mean_efficiency_T = np.mean(efficiency_T) # average
392
+ print(efficiency_T[:100])
392
393
  std_efficiency_T = np.std(efficiency_T)/np.sqrt(N) # standard deviation
393
394
  mean_efficiency_D = np.mean(efficiency_D)
394
395
  std_efficiency_D = np.std(efficiency_D)/np.sqrt(N)