TDCRPy 0.0.36__py3-none-any.whl → 0.0.38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of TDCRPy might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: TDCRPy
3
- Version: 0.0.36
3
+ Version: 0.0.38
4
4
  Summary: TDCR model
5
5
  Home-page: https://github.com/RomainCoulon/TDCRPy
6
6
  Author: RomainCoulon (Romain Coulon)
@@ -1,7 +1,7 @@
1
1
  tdcrpy/Activity_TDCR.py,sha256=wcllEOJbeEOexAYzcFGQx2luIBhxSU3LtpEalRmNziw,11530
2
2
  tdcrpy/EfficiencyProfils.py,sha256=-ZUPva1dU7lMRcKbQAewX9QyiTDwCiNQDoaQiw7dOI4,4829
3
- tdcrpy/TDCRPy.py,sha256=Dp4HXT1lwITG3SDjAUzWfeZBCTUA73qhgI95cXplOnM,25881
4
- tdcrpy/TDCR_model_lib.py,sha256=_quRzWVhfdnArH4NE6GQODoPwO9Mt7vgJNyo2H1JZtw,83897
3
+ tdcrpy/TDCRPy.py,sha256=6-N5vpsf0cKGcXYiTfmmk_HXpoHYU7rD1qb4lHJDtv4,25906
4
+ tdcrpy/TDCR_model_lib.py,sha256=AXxEdg0kIvRXZ0VUwZ8HrgW-pWnM8Nralp_r8GmkIZ8,83907
5
5
  tdcrpy/TDCRoptimize.py,sha256=7S2HAXNLpWPdV4GjVk1C4E8KOraOjtmr2bWC1bzuSzg,3068
6
6
  tdcrpy/__init__.py,sha256=DrgMGzw5vhdxbXvJq3orzdPeFaq8CwtDHzssp1_DqhM,93
7
7
  tdcrpy/config.toml,sha256=y-Ii97oy4n7X8FEWyPPVQimxqnjqjlFUwihD7hPPsgg,151
@@ -21,8 +21,8 @@ tdcrpy/Quenching/alpha_toulene.txt,sha256=3aIOCC1h19z8E0JZ2_MaSWRWcdnr-mtmT4qEF6
21
21
  tdcrpy/decayData/All-nuclides_BetaShape.zip,sha256=ZBeaOUBO09gKGD6ouUXNW5UzdHavTKN5cACTqPqA-KU,6507983
22
22
  tdcrpy/decayData/All-nuclides_Ensdf.zip,sha256=LVNNlE_akrg0T-N-7puMuGAme4JRzg-D1YaOwXpiIvg,424716
23
23
  tdcrpy/decayData/All-nuclides_PenNuc.zip,sha256=DmhS2CYegWhL8qggc_MO6FgyiXE5qX73dOoH-SSQXoo,388954
24
- TDCRPy-0.0.36.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
25
- TDCRPy-0.0.36.dist-info/METADATA,sha256=C35WOWktqbwqmeSyCRBFmAthut7v-CR5OWZYPNJbup8,5633
26
- TDCRPy-0.0.36.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
- TDCRPy-0.0.36.dist-info/top_level.txt,sha256=VgPJa9YJ7fi8wrr9qDJPLhu3tK1BcFRIP6Ib4r3BEfs,7
28
- TDCRPy-0.0.36.dist-info/RECORD,,
24
+ TDCRPy-0.0.38.dist-info/LICENCE.md,sha256=fuYzrZRiOAjJBzA1tsGQwojCgGROArb2Ec48GDTjlWM,1086
25
+ TDCRPy-0.0.38.dist-info/METADATA,sha256=IWu7kqjPNQ77P5LRRFuuOulDZjI46ZPGfNo4idYswMU,5633
26
+ TDCRPy-0.0.38.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ TDCRPy-0.0.38.dist-info/top_level.txt,sha256=VgPJa9YJ7fi8wrr9qDJPLhu3tK1BcFRIP6Ib4r3BEfs,7
28
+ TDCRPy-0.0.38.dist-info/RECORD,,
tdcrpy/TDCRPy.py CHANGED
@@ -332,6 +332,8 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Displa
332
332
  Calculation of the scintillation quenching with the Birks Model
333
333
  ====================
334
334
  '''
335
+ if Display: print("\t Summary of the estimation of quenched energies")
336
+ if Display: print("\t\t energy_vec : ", energy_vec, "keV")
335
337
  e_quenching=[]
336
338
  for i, p in enumerate(particle_vec):
337
339
  e_discrete = np.linspace(0,energy_vec[i],nE) # vector for the quenched energy calculation keV
@@ -344,9 +346,6 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Displa
344
346
  e_quenching.append(energy_vec[i])
345
347
  else:
346
348
  e_quenching.append(0)
347
- if Display: print("\t Summary of the estimation of quenched energies")
348
-
349
- if Display: print("\t\t energy_vec : ", energy_vec, "keV")
350
349
  if Display: print("\t\t quenched energy : ", e_quenching, "keV")
351
350
 
352
351
  '''
@@ -364,7 +363,7 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Displa
364
363
  if Display: print("\t Summary of TDCR measurement")
365
364
  if Display: print("\t\t Efficiency of single events: ", efficiency_S[-1])
366
365
  if Display: print("\t\t Efficiency of double events: ", efficiency_D[-1])
367
- if Display: print("\t\t Efficiency of triple events: ", efficiency_D[-1])
366
+ if Display: print("\t\t Efficiency of triple events: ", efficiency_T[-1])
368
367
  elif mode2=="asym":
369
368
  pA_nosingle = np.exp(-L[0]*np.sum(np.asarray(e_quenching))/3) # probability to have 0 electrons in a PMT
370
369
  pA_single = 1-pA_nosingle # probability to have at least 1 electrons in a PMT
@@ -390,6 +389,7 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Displa
390
389
  '''
391
390
  if mode2=="sym":
392
391
  mean_efficiency_T = np.mean(efficiency_T) # average
392
+ print(efficiency_T[:100])
393
393
  std_efficiency_T = np.std(efficiency_T)/np.sqrt(N) # standard deviation
394
394
  mean_efficiency_D = np.mean(efficiency_D)
395
395
  std_efficiency_D = np.std(efficiency_D)/np.sqrt(N)
tdcrpy/TDCR_model_lib.py CHANGED
@@ -1858,6 +1858,7 @@ def modelAnalytical(L,TD,TAB,TBC,TAC,rad,kB,mode,mode2,ne):
1858
1858
  for i, ei in enumerate(e):
1859
1859
  em[i] = E_quench_e(ei*1e3,kB*1e3,ne)*1e-3
1860
1860
 
1861
+
1861
1862
  if mode2=="sym":
1862
1863
  eff_S = sum(p*(1-np.exp(-L*em/3)))
1863
1864
  eff_T = eff_S**3