TB2J 0.9.12.9__py3-none-any.whl → 0.9.12.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- TB2J/.gitignore +5 -0
- TB2J/MAEGreen.py +78 -59
- TB2J/agent_files/debug_spinphon_fd/debug_main.py +156 -0
- TB2J/agent_files/debug_spinphon_fd/test_compute_dJdx.py +272 -0
- TB2J/agent_files/debug_spinphon_fd/test_ispin0_only.py +120 -0
- TB2J/agent_files/debug_spinphon_fd/test_no_d2j.py +31 -0
- TB2J/agent_files/debug_spinphon_fd/test_with_d2j.py +28 -0
- TB2J/contour.py +3 -2
- TB2J/exchange.py +335 -47
- TB2J/exchangeCL2.py +283 -47
- TB2J/exchange_params.py +24 -0
- TB2J/green.py +58 -33
- TB2J/interfaces/wannier90_interface.py +4 -4
- TB2J/io_exchange/io_espins.py +276 -0
- TB2J/io_exchange/io_exchange.py +10 -2
- TB2J/io_exchange/io_vampire.py +3 -1
- TB2J/myTB.py +11 -11
- TB2J/pauli.py +32 -2
- TB2J/rotate_atoms.py +9 -6
- TB2J/symmetrize_J.py +2 -2
- {tb2j-0.9.12.9.dist-info → tb2j-0.9.12.18.dist-info}/METADATA +5 -6
- {tb2j-0.9.12.9.dist-info → tb2j-0.9.12.18.dist-info}/RECORD +26 -19
- {tb2j-0.9.12.9.dist-info → tb2j-0.9.12.18.dist-info}/WHEEL +0 -0
- {tb2j-0.9.12.9.dist-info → tb2j-0.9.12.18.dist-info}/entry_points.txt +0 -0
- {tb2j-0.9.12.9.dist-info → tb2j-0.9.12.18.dist-info}/licenses/LICENSE +0 -0
- {tb2j-0.9.12.9.dist-info → tb2j-0.9.12.18.dist-info}/top_level.txt +0 -0
TB2J/.gitignore
ADDED
TB2J/MAEGreen.py
CHANGED
|
@@ -51,7 +51,7 @@ class MAEGreen(ExchangeNCL):
|
|
|
51
51
|
|
|
52
52
|
nangles = len(self.thetas)
|
|
53
53
|
self.es = np.zeros(nangles, dtype=complex)
|
|
54
|
-
self.
|
|
54
|
+
self.es_matrix = np.zeros((nangles, self.natoms, self.natoms), dtype=complex)
|
|
55
55
|
self.es_atom_orb = DefaultDict(lambda: 0)
|
|
56
56
|
|
|
57
57
|
def set_angles_xyz(self):
|
|
@@ -153,7 +153,7 @@ class MAEGreen(ExchangeNCL):
|
|
|
153
153
|
Hsoc_k = self.tbmodel.get_Hk_soc(self.G.kpts)
|
|
154
154
|
na = len(thetas)
|
|
155
155
|
dE_angle = np.zeros(na, dtype=complex)
|
|
156
|
-
|
|
156
|
+
dE_angle_matrix = np.zeros((na, self.natoms, self.natoms), dtype=complex)
|
|
157
157
|
# dE_angle_orbitals = np.zeros((na, self.natoms, self.norb, self.norb), dtype=complex)
|
|
158
158
|
dE_angle_atom_orb = DefaultDict(lambda: 0)
|
|
159
159
|
for iangle, (theta, phi) in enumerate(zip(thetas, phis)):
|
|
@@ -178,23 +178,30 @@ class MAEGreen(ExchangeNCL):
|
|
|
178
178
|
# dE_angle[iangle] += np.trace(GdH@GdH) * self.G.kweights[ik]
|
|
179
179
|
# dE_angle[iangle] += np.trace(GdH@G0K[ik].T.conj()@dHi ) * self.G.kweights[ik]
|
|
180
180
|
dE_angle[iangle] += dG2sum * self.G.kweights[ik]
|
|
181
|
+
|
|
182
|
+
# Calculate atom-atom matrix interactions
|
|
181
183
|
for iatom in range(self.natoms):
|
|
182
184
|
iorb = self.iorb(iatom)
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
185
|
+
for jatom in range(self.natoms):
|
|
186
|
+
jorb = self.iorb(jatom)
|
|
187
|
+
# Calculate cross terms between atoms i and j
|
|
188
|
+
dE_ij_orb = dG2[np.ix_(iorb, jorb)] * self.G.kweights[ik]
|
|
189
|
+
dE_ij_orb = (
|
|
190
|
+
dE_ij_orb[::2, ::2]
|
|
191
|
+
+ dE_ij_orb[1::2, 1::2]
|
|
192
|
+
+ dE_ij_orb[1::2, ::2]
|
|
193
|
+
+ dE_ij_orb[::2, 1::2]
|
|
194
|
+
)
|
|
195
|
+
dE_ij = np.sum(dE_ij_orb)
|
|
196
|
+
# Transform to local orbital basis
|
|
197
|
+
mmat_i = self.mmats[iatom]
|
|
198
|
+
mmat_j = self.mmats[jatom]
|
|
199
|
+
dE_ij_orb = mmat_i.T @ dE_ij_orb @ mmat_j
|
|
200
|
+
dE_angle_matrix[iangle, iatom, jatom] += dE_ij
|
|
201
|
+
# Store orbital-resolved data for diagonal terms
|
|
202
|
+
if iatom == jatom:
|
|
203
|
+
dE_angle_atom_orb[(iangle, iatom)] += dE_ij_orb
|
|
204
|
+
return dE_angle, dE_angle_matrix, dE_angle_atom_orb
|
|
198
205
|
|
|
199
206
|
def get_perturbed_R(self, e, thetas, phis):
|
|
200
207
|
self.tbmodel.set_so_strength(0.0)
|
|
@@ -232,16 +239,16 @@ class MAEGreen(ExchangeNCL):
|
|
|
232
239
|
npole = len(self.contour.path)
|
|
233
240
|
results = map(func, tqdm.tqdm(self.contour.path, total=npole))
|
|
234
241
|
for i, result in enumerate(results):
|
|
235
|
-
dE_angle,
|
|
242
|
+
dE_angle, dE_angle_matrix, dE_angle_atom_orb = result
|
|
236
243
|
self.es += dE_angle * self.contour.weights[i]
|
|
237
|
-
self.
|
|
244
|
+
self.es_matrix += dE_angle_matrix * self.contour.weights[i]
|
|
238
245
|
for key, value in dE_angle_atom_orb.items():
|
|
239
246
|
self.es_atom_orb[key] += (
|
|
240
247
|
dE_angle_atom_orb[key] * self.contour.weights[i]
|
|
241
248
|
)
|
|
242
249
|
|
|
243
250
|
self.es = -np.imag(self.es) / (2 * np.pi)
|
|
244
|
-
self.
|
|
251
|
+
self.es_matrix = -np.imag(self.es_matrix) / (2 * np.pi)
|
|
245
252
|
for key, value in self.es_atom_orb.items():
|
|
246
253
|
self.es_atom_orb[key] = -np.imag(value) / (2 * np.pi)
|
|
247
254
|
|
|
@@ -259,6 +266,7 @@ class MAEGreen(ExchangeNCL):
|
|
|
259
266
|
Path(output_path).mkdir(exist_ok=True)
|
|
260
267
|
fname = f"{output_path}/MAE.dat"
|
|
261
268
|
fname_orb = f"{output_path}/MAE_orb.dat"
|
|
269
|
+
fname_matrix = f"{output_path}/MAE_matrix.dat"
|
|
262
270
|
# fname_tensor = f"{output_path}/MAE_tensor.dat"
|
|
263
271
|
# if figure3d is not None:
|
|
264
272
|
# fname_fig3d = f"{output_path}/{figure3d}"
|
|
@@ -269,24 +277,32 @@ class MAEGreen(ExchangeNCL):
|
|
|
269
277
|
if with_eigen:
|
|
270
278
|
fname_eigen = f"{output_path}/MAE_eigen.dat"
|
|
271
279
|
with open(fname_eigen, "w") as f:
|
|
272
|
-
f.write("# theta, phi, MAE(total)
|
|
273
|
-
for i, (theta, phi, e
|
|
274
|
-
zip(self.thetas, self.phis, self.es2
|
|
280
|
+
f.write("# theta, phi, MAE(total) Unit: meV\n")
|
|
281
|
+
for i, (theta, phi, e) in enumerate(
|
|
282
|
+
zip(self.thetas, self.phis, self.es2)
|
|
275
283
|
):
|
|
276
|
-
f.write(f"{theta:.5f} {phi:.5f} {e*1e3:.8f}
|
|
277
|
-
for ea in es:
|
|
278
|
-
f.write(f"{ea*1e3:.8f} ")
|
|
279
|
-
f.write("\n")
|
|
284
|
+
f.write(f"{theta:.5f} {phi:.5f} {e*1e3:.8f}\n")
|
|
280
285
|
|
|
281
286
|
with open(fname, "w") as f:
|
|
282
|
-
f.write("# theta (rad), phi(rad), MAE(total)
|
|
283
|
-
for i, (theta, phi, e
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
287
|
+
f.write("# theta (rad), phi(rad), MAE(total) Unit: meV\n")
|
|
288
|
+
for i, (theta, phi, e) in enumerate(zip(self.thetas, self.phis, self.es)):
|
|
289
|
+
f.write(f"{theta%np.pi:.5f} {phi%(2*np.pi):.5f} {e*1e3:.8f}\n")
|
|
290
|
+
|
|
291
|
+
# Write matrix data to MAE_matrix.dat
|
|
292
|
+
with open(fname_matrix, "w") as fmat:
|
|
293
|
+
fmat.write("# MAE atom-atom interaction matrices\n")
|
|
294
|
+
fmat.write("# Format: angle_index theta phi atom_i atom_j MAE_ij(meV)\n")
|
|
295
|
+
fmat.write("# Units: theta and phi in radians, MAE in meV\n")
|
|
296
|
+
for iangle, (theta, phi) in enumerate(zip(self.thetas, self.phis)):
|
|
297
|
+
for iatom in range(self.natoms):
|
|
298
|
+
for jatom in range(self.natoms):
|
|
299
|
+
mae_ij = (
|
|
300
|
+
self.es_matrix[iangle, iatom, jatom] * 1e3
|
|
301
|
+
) # Convert to meV
|
|
302
|
+
fmat.write(
|
|
303
|
+
f"{iangle:4d} {theta:.5f} {phi:.5f} {iatom:4d} {jatom:4d} {mae_ij:.8f}\n"
|
|
304
|
+
)
|
|
305
|
+
fmat.write("\n") # Empty line between angles for readability
|
|
290
306
|
|
|
291
307
|
# self.ani = self.fit_anisotropy_tensor()
|
|
292
308
|
# with open(fname_tensor, "w") as f:
|
|
@@ -312,34 +328,37 @@ class MAEGreen(ExchangeNCL):
|
|
|
312
328
|
for orb in self.orbital_names[iatom]:
|
|
313
329
|
f.write(f"{orb} ")
|
|
314
330
|
f.write("\n")
|
|
315
|
-
for i, (theta, phi, e
|
|
316
|
-
zip(self.thetas, self.phis, self.es, self.es_atom)
|
|
317
|
-
):
|
|
331
|
+
for i, (theta, phi, e) in enumerate(zip(self.thetas, self.phis, self.es)):
|
|
318
332
|
f.write("-" * 60 + "\n")
|
|
319
333
|
f.write(f"Angle {i:03d}: theta={theta:.5f} phi={phi:.5f} \n ")
|
|
320
334
|
f.write(f"E: {e*1e3:.8f} \n")
|
|
321
|
-
for iatom
|
|
322
|
-
f.write(f"Atom {iatom:03d}
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
eorb_diff = eorb - self.es_atom_orb[(0, iatom)]
|
|
334
|
-
f.write("Diference to the first angle: ")
|
|
335
|
-
f.write(
|
|
336
|
-
np.array2string(
|
|
337
|
-
eorb_diff * 1e3,
|
|
338
|
-
precision=4,
|
|
339
|
-
separator=",",
|
|
340
|
-
suppress_small=True,
|
|
335
|
+
for iatom in range(self.natoms):
|
|
336
|
+
f.write(f"Atom {iatom:03d} orbital matrix:\n")
|
|
337
|
+
if (i, iatom) in self.es_atom_orb:
|
|
338
|
+
eorb = self.es_atom_orb[(i, iatom)]
|
|
339
|
+
# write numpy matrix to file
|
|
340
|
+
f.write(
|
|
341
|
+
np.array2string(
|
|
342
|
+
eorb * 1e3,
|
|
343
|
+
precision=4,
|
|
344
|
+
separator=",",
|
|
345
|
+
suppress_small=True,
|
|
346
|
+
)
|
|
341
347
|
)
|
|
342
|
-
|
|
348
|
+
f.write("\n")
|
|
349
|
+
|
|
350
|
+
if (0, iatom) in self.es_atom_orb:
|
|
351
|
+
eorb_diff = eorb - self.es_atom_orb[(0, iatom)]
|
|
352
|
+
f.write("Difference to the first angle: ")
|
|
353
|
+
f.write(
|
|
354
|
+
np.array2string(
|
|
355
|
+
eorb_diff * 1e3,
|
|
356
|
+
precision=4,
|
|
357
|
+
separator=",",
|
|
358
|
+
suppress_small=True,
|
|
359
|
+
)
|
|
360
|
+
)
|
|
361
|
+
f.write("\n")
|
|
343
362
|
f.write("\n")
|
|
344
363
|
|
|
345
364
|
def run(self, output_path="TB2J_anisotropy", with_eigen=False):
|
|
@@ -0,0 +1,156 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Debug script for spin-phonon coupling using double-sided finite difference method.
|
|
3
|
+
|
|
4
|
+
PURPOSE:
|
|
5
|
+
This script uses the double-sided finite difference method from Oiju_FD2.py to
|
|
6
|
+
calculate spin-phonon coupling parameters and their derivatives dJ/dx. It computes
|
|
7
|
+
exchange parameters at both positive and negative displacements, then calculates
|
|
8
|
+
dJ/dx = (J(+dx) - J(-dx)) / (2*dx).
|
|
9
|
+
|
|
10
|
+
USAGE:
|
|
11
|
+
uv run python agent_files/debug_spinphon_fd/debug_main.py
|
|
12
|
+
|
|
13
|
+
EXPECTED OUTPUT:
|
|
14
|
+
The script will create output directories with subdirectories:
|
|
15
|
+
- original/: Exchange parameters at zero displacement (only if compute_d2J=True)
|
|
16
|
+
- negative/: Exchange parameters at -amplitude displacement
|
|
17
|
+
- positive/: Exchange parameters at +amplitude displacement
|
|
18
|
+
- dJdx/: Computed derivatives dJ/dx in both text and pickle formats
|
|
19
|
+
|
|
20
|
+
PERFORMANCE OPTIONS:
|
|
21
|
+
- compute_d2J: Set False to skip J(0) calculation and d2J/dx2 (~33% faster)
|
|
22
|
+
- ispin0_only: Set True to only compute pairs with ispin=0 or jspin=0 (~93% faster)
|
|
23
|
+
- Combined: ~95% reduction in computation time!
|
|
24
|
+
|
|
25
|
+
FILES USED:
|
|
26
|
+
- Oiju_FD2.py: Source of double-sided finite difference implementation
|
|
27
|
+
- Oiju_epw2.py: Reference for data path structure and interface
|
|
28
|
+
|
|
29
|
+
DEBUG NOTES:
|
|
30
|
+
- Uses double-sided finite difference for better numerical accuracy
|
|
31
|
+
- Computes full exchange tensor derivatives including DMI components
|
|
32
|
+
- Results include isotropic, anisotropic, and DMI contributions to dJ/dx
|
|
33
|
+
- Default settings use both optimizations for maximum speed
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
# Add the TB2J directory to the Python path
|
|
38
|
+
# sys.path.insert(0, '/home_phythema/hexu/projects/TB2J/TB2J')
|
|
39
|
+
|
|
40
|
+
import numpy as np
|
|
41
|
+
|
|
42
|
+
from TB2J.Oiju_FD2 import gen_exchange_Oiju_FD_double_sided
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def main():
|
|
46
|
+
"""Main function to run spin-phonon coupling calculation using double-sided finite difference method."""
|
|
47
|
+
|
|
48
|
+
# Use the same data path structure as Oiju_epw2.py
|
|
49
|
+
path = "/home_phythema/hexu/spinphon/2025-10-02_newdata/k555q555"
|
|
50
|
+
nsc=2
|
|
51
|
+
nkpt = 5
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
# Configuration parameters matching Oiju_epw2.py example
|
|
55
|
+
config = {
|
|
56
|
+
"path": path,
|
|
57
|
+
"colinear": True,
|
|
58
|
+
"posfile": "scf.pwi",
|
|
59
|
+
"prefix_up": "up/SrMnO3",
|
|
60
|
+
"prefix_dn": "down/SrMnO3.down",
|
|
61
|
+
"prefix_SOC": "wannier90",
|
|
62
|
+
"epw_up_path": f"{path}/up",
|
|
63
|
+
"epw_down_path": f"{path}/down",
|
|
64
|
+
"epw_prefix_up": "epmat",
|
|
65
|
+
"epw_prefix_dn": "epmat",
|
|
66
|
+
"Ru": (0, 0, 0),
|
|
67
|
+
"Rcut": 5,
|
|
68
|
+
"efermi": 11.26,
|
|
69
|
+
"magnetic_elements": ["Mn"],
|
|
70
|
+
"kmesh": [3, 3, 3],
|
|
71
|
+
"emin": -7.3363330034071295,
|
|
72
|
+
"emax": 0.0,
|
|
73
|
+
"nz": 70,
|
|
74
|
+
"np": 1,
|
|
75
|
+
"exclude_orbs": [],
|
|
76
|
+
"description": "Double-sided finite difference calculation for dJ/dx",
|
|
77
|
+
"list_iatom": None,
|
|
78
|
+
"output_path": f"FD_spinphon_results_sc{nsc}_k{nkpt}",
|
|
79
|
+
# Additional parameters for finite difference method
|
|
80
|
+
"supercell_matrix": np.eye(3, dtype=int)*nsc,
|
|
81
|
+
"amplitude": 0.003,
|
|
82
|
+
"max_distance": None,
|
|
83
|
+
# Performance optimization options
|
|
84
|
+
"compute_d2J": False, # Set True to compute second derivative d2J/dx2
|
|
85
|
+
"ispin0_only": True, # Set True to only compute pairs with ispin=0 or jspin=0
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
# Run calculation for a single displacement pattern (idisp=0)
|
|
89
|
+
# You can modify this to loop over multiple displacement patterns
|
|
90
|
+
displacement_patterns = [5, 6, 8, 0] # Change to range(15) for all patterns
|
|
91
|
+
|
|
92
|
+
print("=" * 80)
|
|
93
|
+
print("Starting double-sided finite difference spin-phonon coupling calculation")
|
|
94
|
+
print("=" * 80)
|
|
95
|
+
print(f"Data path: {path}")
|
|
96
|
+
print(f"Output path: {config['output_path']}")
|
|
97
|
+
print(f"Displacement patterns: {displacement_patterns}")
|
|
98
|
+
print(f"Amplitude: {config['amplitude']}")
|
|
99
|
+
print(
|
|
100
|
+
f"Method: dJ/dx = (J(+{config['amplitude']}) - J(-{config['amplitude']})) / (2*{config['amplitude']})"
|
|
101
|
+
)
|
|
102
|
+
print("\nPerformance optimizations:")
|
|
103
|
+
print(f" - compute_d2J: {config['compute_d2J']} {'(computes d2J/dx2)' if config['compute_d2J'] else '(skips J(0) calculation, ~33% faster)'}")
|
|
104
|
+
print(f" - ispin0_only: {config['ispin0_only']} {'(only pairs with ispin=0 or jspin=0, ~93% faster)' if config['ispin0_only'] else '(all pairs)'}")
|
|
105
|
+
if not config['compute_d2J'] and config['ispin0_only']:
|
|
106
|
+
print(f" - Combined speedup: ~95% reduction in computation time!")
|
|
107
|
+
print("=" * 80)
|
|
108
|
+
|
|
109
|
+
for idisp in displacement_patterns:
|
|
110
|
+
print(f"\n{'='*80}")
|
|
111
|
+
print(f"Processing displacement pattern {idisp}")
|
|
112
|
+
print(f"{'='*80}")
|
|
113
|
+
|
|
114
|
+
try:
|
|
115
|
+
gen_exchange_Oiju_FD_double_sided(idisp=idisp, **config)
|
|
116
|
+
print(f"\n{'='*80}")
|
|
117
|
+
print(f"Successfully completed displacement pattern {idisp}")
|
|
118
|
+
print("Results saved in:")
|
|
119
|
+
if config['compute_d2J']:
|
|
120
|
+
print(f" - {config['output_path']}/idisp{idisp}_Ru{config['Ru'][0]}_{config['Ru'][1]}_{config['Ru'][2]}/original/")
|
|
121
|
+
print(f" - {config['output_path']}/idisp{idisp}_Ru{config['Ru'][0]}_{config['Ru'][1]}_{config['Ru'][2]}/negative/")
|
|
122
|
+
print(f" - {config['output_path']}/idisp{idisp}_Ru{config['Ru'][0]}_{config['Ru'][1]}_{config['Ru'][2]}/positive/")
|
|
123
|
+
print(f" - {config['output_path']}/idisp{idisp}_Ru{config['Ru'][0]}_{config['Ru'][1]}_{config['Ru'][2]}/dJdx/")
|
|
124
|
+
print(f"{'='*80}")
|
|
125
|
+
|
|
126
|
+
except Exception as e:
|
|
127
|
+
print(f"\nError processing displacement pattern {idisp}: {e}")
|
|
128
|
+
import traceback
|
|
129
|
+
|
|
130
|
+
traceback.print_exc()
|
|
131
|
+
|
|
132
|
+
print("\n" + "=" * 80)
|
|
133
|
+
print("Calculation completed!")
|
|
134
|
+
print("=" * 80)
|
|
135
|
+
print("Results structure:")
|
|
136
|
+
print(f" {config['output_path']}/")
|
|
137
|
+
print(f" └── idisp{{N}}_Ru{{X}}_{{Y}}_{{Z}}/")
|
|
138
|
+
if config['compute_d2J']:
|
|
139
|
+
print(" ├── original/ # Exchange at zero displacement")
|
|
140
|
+
print(" ├── negative/ # Exchange at -amplitude")
|
|
141
|
+
print(" ├── positive/ # Exchange at +amplitude")
|
|
142
|
+
print(" └── dJdx/ # Computed dJ/dx derivatives")
|
|
143
|
+
print(" ├── exchange.out # Human-readable format")
|
|
144
|
+
print(" └── dJdx.pickle # Python dictionary format")
|
|
145
|
+
print("\nOutput format:")
|
|
146
|
+
if config['compute_d2J']:
|
|
147
|
+
print(" - 14 columns: includes J_0, J_neg, J_pos, dJ/dx, d2J/dx2")
|
|
148
|
+
else:
|
|
149
|
+
print(" - 12 columns: includes J_neg, J_pos, dJ/dx (no J_0, no d2J/dx2)")
|
|
150
|
+
if config['ispin0_only']:
|
|
151
|
+
print(" - Only pairs with ispin=0 or jspin=0 included")
|
|
152
|
+
print("=" * 80)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
if __name__ == "__main__":
|
|
156
|
+
main()
|
|
@@ -0,0 +1,272 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Test script for compute_dJdx_from_exchanges function with distance-based sorting.
|
|
3
|
+
|
|
4
|
+
PURPOSE:
|
|
5
|
+
Tests the compute_dJdx_from_exchanges function using existing exchange data
|
|
6
|
+
from FD_spinphon_results to verify:
|
|
7
|
+
1. Distance-based sorting works correctly
|
|
8
|
+
2. Output format matches TB2J exchange output order
|
|
9
|
+
3. dJ/dx and d²J/dx² values are reasonable
|
|
10
|
+
|
|
11
|
+
USAGE:
|
|
12
|
+
uv run python agent_files/debug_spinphon_fd/test_compute_dJdx.py
|
|
13
|
+
|
|
14
|
+
EXPECTED OUTPUT:
|
|
15
|
+
Creates dJdx/exchange.out with sorted exchange interactions by distance
|
|
16
|
+
and prints verification information.
|
|
17
|
+
|
|
18
|
+
FILES USED:
|
|
19
|
+
- FD_spinphon_results/original/TB2J.pickle
|
|
20
|
+
- FD_spinphon_results/negative/TB2J.pickle
|
|
21
|
+
- FD_spinphon_results/positive/TB2J.pickle
|
|
22
|
+
|
|
23
|
+
DEBUG NOTES:
|
|
24
|
+
- Uses pickle.load to read existing ExchangeNCL objects
|
|
25
|
+
- Does not require supercellmap module
|
|
26
|
+
- Tests only the derivative computation and output formatting
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
import os
|
|
30
|
+
import pickle
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def load_exchange(pickle_path):
|
|
34
|
+
"""Load exchange object from pickle file."""
|
|
35
|
+
with open(pickle_path, "rb") as f:
|
|
36
|
+
return pickle.load(f)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def compute_dJdx_from_exchanges(
|
|
40
|
+
exchange_orig, exchange_neg, exchange_pos, amplitude, output_path, compute_d2J=True
|
|
41
|
+
):
|
|
42
|
+
"""
|
|
43
|
+
Compute dJ/dx and optionally d²J/dx² from exchanges at three positions using finite difference.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
exchange_orig: Exchange dict at zero displacement (can be None if compute_d2J=False)
|
|
47
|
+
exchange_neg: Exchange dict at -amplitude
|
|
48
|
+
exchange_pos: Exchange dict at +amplitude
|
|
49
|
+
amplitude: Displacement amplitude in Angstrom
|
|
50
|
+
output_path: Directory to save dJdx results
|
|
51
|
+
compute_d2J: Whether to compute second derivative (default=True)
|
|
52
|
+
"""
|
|
53
|
+
os.makedirs(output_path, exist_ok=True)
|
|
54
|
+
|
|
55
|
+
# Extract isotropic exchange values (dict already contains the data)
|
|
56
|
+
Jiso_orig = exchange_orig["exchange_Jdict"] if exchange_orig is not None else None
|
|
57
|
+
Jiso_neg = exchange_neg["exchange_Jdict"]
|
|
58
|
+
Jiso_pos = exchange_pos["exchange_Jdict"]
|
|
59
|
+
|
|
60
|
+
# Get distance information (use neg or pos if orig not available)
|
|
61
|
+
if exchange_orig is not None:
|
|
62
|
+
distance_dict = exchange_orig["distance_dict"]
|
|
63
|
+
else:
|
|
64
|
+
distance_dict = exchange_neg["distance_dict"]
|
|
65
|
+
|
|
66
|
+
# Compute first derivative: dJ/dx = (J_pos - J_neg) / (2*dx)
|
|
67
|
+
# Note: multiply by 1e3 to convert from eV/A to meV/A
|
|
68
|
+
dJiso_dx = {}
|
|
69
|
+
keys_to_use = Jiso_orig.keys() if Jiso_orig is not None else Jiso_neg.keys()
|
|
70
|
+
for key in keys_to_use:
|
|
71
|
+
if key in Jiso_pos and key in Jiso_neg:
|
|
72
|
+
dJiso_dx[key] = (Jiso_pos[key] - Jiso_neg[key]) / (2.0 * amplitude) * 1e3
|
|
73
|
+
|
|
74
|
+
# Compute second derivative: d²J/dx² = (J_pos - 2*J_orig + J_neg) / (dx²)
|
|
75
|
+
# Note: multiply by 1e3 to convert from eV/A² to meV/A²
|
|
76
|
+
d2Jiso_dx2 = {}
|
|
77
|
+
if compute_d2J and Jiso_orig is not None:
|
|
78
|
+
for key in Jiso_orig.keys():
|
|
79
|
+
if key in Jiso_pos and key in Jiso_neg:
|
|
80
|
+
d2Jiso_dx2[key] = (
|
|
81
|
+
(Jiso_pos[key] - 2.0 * Jiso_orig[key] + Jiso_neg[key])
|
|
82
|
+
/ (amplitude**2)
|
|
83
|
+
* 1e3
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
# Sort keys by first atom index (ispin), then by distance
|
|
87
|
+
sorted_keys = sorted(dJiso_dx.keys(), key=lambda x: (x[1], distance_dict[x][1]))
|
|
88
|
+
|
|
89
|
+
# Save results in text format (sorted by ispin then distance)
|
|
90
|
+
output_file = os.path.join(output_path, "exchange.out")
|
|
91
|
+
with open(output_file, "w") as f:
|
|
92
|
+
if compute_d2J:
|
|
93
|
+
f.write(
|
|
94
|
+
"# Derivatives of isotropic exchange computed from finite difference\n"
|
|
95
|
+
)
|
|
96
|
+
else:
|
|
97
|
+
f.write(
|
|
98
|
+
"# First derivative of isotropic exchange computed from finite difference\n"
|
|
99
|
+
)
|
|
100
|
+
f.write(f"# dJ/dx = (J(+{amplitude}) - J(-{amplitude})) / (2*{amplitude})\n")
|
|
101
|
+
if compute_d2J:
|
|
102
|
+
f.write(
|
|
103
|
+
f"# d²J/dx² = (J(+{amplitude}) - 2*J(0) + J(-{amplitude})) / ({amplitude}²)\n"
|
|
104
|
+
)
|
|
105
|
+
if compute_d2J:
|
|
106
|
+
f.write(
|
|
107
|
+
"# Units: J in meV, distances in Angstrom, dJ/dx in meV/Angstrom, d²J/dx² in meV/Angstrom²\n"
|
|
108
|
+
)
|
|
109
|
+
else:
|
|
110
|
+
f.write("# Units: J in meV, distances in Angstrom, dJ/dx in meV/Angstrom\n")
|
|
111
|
+
f.write("# Sorted by: first atom index (ispin), then by distance\n")
|
|
112
|
+
if compute_d2J and Jiso_orig is not None:
|
|
113
|
+
f.write(
|
|
114
|
+
"# ispin jspin Rx Ry Rz distance(A) dx(A) dy(A) dz(A) J_0(meV) J_neg(meV) J_pos(meV) dJ/dx d2J/dx2\n"
|
|
115
|
+
)
|
|
116
|
+
elif Jiso_orig is None:
|
|
117
|
+
if compute_d2J:
|
|
118
|
+
f.write(
|
|
119
|
+
"# ispin jspin Rx Ry Rz distance(A) dx(A) dy(A) dz(A) J_neg(meV) J_pos(meV) dJ/dx d2J/dx2\n"
|
|
120
|
+
)
|
|
121
|
+
else:
|
|
122
|
+
f.write(
|
|
123
|
+
"# ispin jspin Rx Ry Rz distance(A) dx(A) dy(A) dz(A) J_neg(meV) J_pos(meV) dJ/dx\n"
|
|
124
|
+
)
|
|
125
|
+
else:
|
|
126
|
+
f.write(
|
|
127
|
+
"# ispin jspin Rx Ry Rz distance(A) dx(A) dy(A) dz(A) J_0(meV) J_neg(meV) J_pos(meV) dJ/dx\n"
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
for key in sorted_keys:
|
|
131
|
+
R, ispin, jspin = key
|
|
132
|
+
Rx, Ry, Rz = R
|
|
133
|
+
|
|
134
|
+
# Get distance vector and norm
|
|
135
|
+
vec, distance = distance_dict[key]
|
|
136
|
+
|
|
137
|
+
# Get J values (convert from eV to meV)
|
|
138
|
+
Jneg = Jiso_neg[key] * 1e3
|
|
139
|
+
Jpos = Jiso_pos[key] * 1e3
|
|
140
|
+
|
|
141
|
+
# Write output line
|
|
142
|
+
line = (
|
|
143
|
+
f"{ispin:3d} {jspin:3d} {Rx:3d} {Ry:3d} {Rz:3d} "
|
|
144
|
+
f"{distance:12.8f} {vec[0]:10.6f} {vec[1]:10.6f} {vec[2]:10.6f} "
|
|
145
|
+
)
|
|
146
|
+
if Jiso_orig is not None:
|
|
147
|
+
J0 = Jiso_orig[key] * 1e3
|
|
148
|
+
line += f"{J0:16.8f} "
|
|
149
|
+
line += f"{Jneg:16.8f} {Jpos:16.8f} {dJiso_dx[key]:16.8f}"
|
|
150
|
+
if compute_d2J and key in d2Jiso_dx2:
|
|
151
|
+
line += f" {d2Jiso_dx2[key]:16.8f}"
|
|
152
|
+
line += "\n"
|
|
153
|
+
f.write(line)
|
|
154
|
+
|
|
155
|
+
# Save in pickle format
|
|
156
|
+
pickle_file = os.path.join(output_path, "dJdx.pickle")
|
|
157
|
+
results = {
|
|
158
|
+
"dJiso_dx": dJiso_dx,
|
|
159
|
+
"Jiso_neg": Jiso_neg,
|
|
160
|
+
"Jiso_pos": Jiso_pos,
|
|
161
|
+
"amplitude": amplitude,
|
|
162
|
+
}
|
|
163
|
+
if Jiso_orig is not None:
|
|
164
|
+
results["Jiso_orig"] = Jiso_orig
|
|
165
|
+
if compute_d2J:
|
|
166
|
+
results["d2Jiso_dx2"] = d2Jiso_dx2
|
|
167
|
+
|
|
168
|
+
with open(pickle_file, "wb") as f:
|
|
169
|
+
pickle.dump(results, f)
|
|
170
|
+
|
|
171
|
+
print("Results saved to:")
|
|
172
|
+
print(f" {output_file}")
|
|
173
|
+
print(f" {pickle_file}")
|
|
174
|
+
print(f"\nNumber of exchange interactions: {len(dJiso_dx)}")
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def main():
|
|
178
|
+
"""Test compute_dJdx_from_exchanges with existing data."""
|
|
179
|
+
|
|
180
|
+
# Define paths
|
|
181
|
+
results_dir = "FD_spinphon_results"
|
|
182
|
+
orig_pickle = os.path.join(results_dir, "original", "TB2J.pickle")
|
|
183
|
+
neg_pickle = os.path.join(results_dir, "negative", "TB2J.pickle")
|
|
184
|
+
pos_pickle = os.path.join(results_dir, "positive", "TB2J.pickle")
|
|
185
|
+
dJdx_dir = os.path.join(results_dir, "dJdx")
|
|
186
|
+
|
|
187
|
+
print("=" * 80)
|
|
188
|
+
print("Testing compute_dJdx_from_exchanges with distance-based sorting")
|
|
189
|
+
print("=" * 80)
|
|
190
|
+
|
|
191
|
+
# Load exchange objects
|
|
192
|
+
print("\nLoading exchange data...")
|
|
193
|
+
print(f" Original: {orig_pickle}")
|
|
194
|
+
print(f" Negative: {neg_pickle}")
|
|
195
|
+
print(f" Positive: {pos_pickle}")
|
|
196
|
+
|
|
197
|
+
exchange_orig = load_exchange(orig_pickle)
|
|
198
|
+
exchange_neg = load_exchange(neg_pickle)
|
|
199
|
+
exchange_pos = load_exchange(pos_pickle)
|
|
200
|
+
|
|
201
|
+
print("\nExchange objects loaded successfully!")
|
|
202
|
+
print(f" Original has {len(exchange_orig['exchange_Jdict'])} interactions")
|
|
203
|
+
print(f" Negative has {len(exchange_neg['exchange_Jdict'])} interactions")
|
|
204
|
+
print(f" Positive has {len(exchange_pos['exchange_Jdict'])} interactions")
|
|
205
|
+
|
|
206
|
+
# Compute derivatives
|
|
207
|
+
amplitude = 0.01 # Angstrom
|
|
208
|
+
print(f"\nComputing dJ/dx with amplitude = {amplitude} Angstrom...")
|
|
209
|
+
|
|
210
|
+
compute_dJdx_from_exchanges(
|
|
211
|
+
exchange_orig, exchange_neg, exchange_pos, amplitude, dJdx_dir
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
# Read and display first few lines of output
|
|
215
|
+
output_file = os.path.join(dJdx_dir, "exchange.out")
|
|
216
|
+
print("\n" + "=" * 80)
|
|
217
|
+
print("First 10 lines of output (sorted by distance):")
|
|
218
|
+
print("=" * 80)
|
|
219
|
+
|
|
220
|
+
with open(output_file, "r") as f:
|
|
221
|
+
lines = f.readlines()
|
|
222
|
+
for i, line in enumerate(lines[:15]): # Show header + first 10 data lines
|
|
223
|
+
print(line.rstrip())
|
|
224
|
+
|
|
225
|
+
# Verify manual calculation for first non-header line
|
|
226
|
+
print("\n" + "=" * 80)
|
|
227
|
+
print("Manual verification of first interaction:")
|
|
228
|
+
print("=" * 80)
|
|
229
|
+
|
|
230
|
+
# Find first data line
|
|
231
|
+
with open(output_file, "r") as f:
|
|
232
|
+
for line in f:
|
|
233
|
+
if not line.startswith("#"):
|
|
234
|
+
parts = line.split()
|
|
235
|
+
if len(parts) == 14: # Updated: now has distance vector components
|
|
236
|
+
ispin, jspin, Rx, Ry, Rz = map(int, parts[:5])
|
|
237
|
+
distance, dx, dy, dz, J0, Jneg, Jpos, dJdx, d2Jdx2 = map(
|
|
238
|
+
float, parts[5:]
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
print(
|
|
242
|
+
f"Interaction: ispin={ispin}, jspin={jspin}, R=({Rx},{Ry},{Rz})"
|
|
243
|
+
)
|
|
244
|
+
print(f"Distance: {distance:.8f} Å")
|
|
245
|
+
print(f"Distance vector: ({dx:.8f}, {dy:.8f}, {dz:.8f}) Å")
|
|
246
|
+
print(f"J(0) = {J0:.8f} meV")
|
|
247
|
+
print(f"J(-dx) = {Jneg:.8f} meV")
|
|
248
|
+
print(f"J(+dx) = {Jpos:.8f} meV")
|
|
249
|
+
print(f"\nComputed dJ/dx = {dJdx:.8f} meV/Å")
|
|
250
|
+
|
|
251
|
+
# Manual calculation
|
|
252
|
+
manual_dJdx = (Jpos - Jneg) / (2.0 * amplitude)
|
|
253
|
+
print(f"Manual dJ/dx = (J(+dx) - J(-dx)) / (2*{amplitude})")
|
|
254
|
+
print(f" = ({Jpos:.8f} - {Jneg:.8f}) / {2*amplitude}")
|
|
255
|
+
print(f" = {manual_dJdx:.8f} meV/Å")
|
|
256
|
+
|
|
257
|
+
if abs(dJdx - manual_dJdx) < 1e-6:
|
|
258
|
+
print("\n✓ Manual calculation matches!")
|
|
259
|
+
else:
|
|
260
|
+
print(
|
|
261
|
+
f"\n✗ Manual calculation differs by {abs(dJdx - manual_dJdx):.2e}"
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
break
|
|
265
|
+
|
|
266
|
+
print("\n" + "=" * 80)
|
|
267
|
+
print("Test completed successfully!")
|
|
268
|
+
print("=" * 80)
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
if __name__ == "__main__":
|
|
272
|
+
main()
|