TB2J 0.9.12.10__py3-none-any.whl → 0.9.12.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of TB2J might be problematic. Click here for more details.

TB2J/exchange.py CHANGED
@@ -1,6 +1,7 @@
1
1
  import os
2
2
  import pickle
3
3
  from collections import defaultdict
4
+ from itertools import product
4
5
 
5
6
  import numpy as np
6
7
  from tqdm import tqdm
@@ -37,17 +38,28 @@ class Exchange(ExchangeParams):
37
38
  # self._prepare_NijR()
38
39
  self._is_collinear = True
39
40
  self.has_elistc = False
41
+
42
+ # Store overlap matrix before cleaning tbmodels
43
+ if hasattr(self, "tbmodel") and hasattr(self.tbmodel, "SR"):
44
+ # Find R=0 index in tbmodel.Rlist
45
+ iR_S0 = np.argmin(np.linalg.norm(self.tbmodel.Rlist, axis=1))
46
+ self.S_R0 = self.tbmodel.SR[iR_S0] # R=0 overlap matrix
47
+ else:
48
+ self.S_R0 = None
49
+
40
50
  self._clean_tbmodels()
41
51
 
52
+ # Initialize storage for Green's function diagonals (for charge and magnetic moment calculation)
53
+ self.G_diagonal = {iatom: [] for iatom in range(len(self.atoms))}
54
+
42
55
  def _prepare_Jorb_file(self):
43
56
  os.makedirs(self.output_path, exist_ok=True)
44
57
  self.orbpath = os.path.join(self.output_path, "OrbResolve")
45
58
  os.makedirs(self.orbpath, exist_ok=True)
46
59
 
47
60
  def _adjust_emin(self):
48
- self.emin = self.G.find_energy_ingap(rbound=self.efermi - 15.0) - self.efermi
61
+ self.emin = self.G.adjusted_emin
49
62
  # self.emin = self.G.find_energy_ingap(rbound=self.efermi - 15.0) - self.efermi
50
- # self.emin = -42.0
51
63
  # print(f"A gap is found at {self.emin}, set emin to it.")
52
64
 
53
65
  def set_tbmodels(self, tbmodels):
@@ -229,12 +241,16 @@ class Exchange(ExchangeParams):
229
241
  prepare the distance between atoms.
230
242
  """
231
243
  self.distance_dict = {}
232
- self.short_Rlist = []
244
+ self.short_Rlist = [] # Will contain actual R vectors, not indices
233
245
  self.R_ijatom_dict = defaultdict(lambda: [])
234
246
  ind_matoms = self.ind_mag_atoms
235
- for ispin, iatom in enumerate(ind_matoms):
236
- for jspin, jatom in enumerate(ind_matoms):
237
- for R in self.Rlist:
247
+
248
+ # First pass: identify which R vectors are within Rcut
249
+ # Add both R and -R when within cutoff
250
+ valid_R_vectors = set()
251
+ for R in self.Rlist:
252
+ for ispin, iatom in enumerate(ind_matoms):
253
+ for jspin, jatom in enumerate(ind_matoms):
238
254
  pos_i = self.atoms.get_positions()[iatom]
239
255
  pos_jR = self.atoms.get_positions()[jatom] + np.dot(
240
256
  R, self.atoms.get_cell()
@@ -242,9 +258,57 @@ class Exchange(ExchangeParams):
242
258
  vec = pos_jR - pos_i
243
259
  distance = np.sqrt(np.sum(vec**2))
244
260
  if self.Rcut is None or distance < self.Rcut:
245
- self.distance_dict[(tuple(R), ispin, jspin)] = (vec, distance)
246
- self.R_ijatom_dict[tuple(R)].append((iatom, jatom))
247
- self.short_Rlist = list(self.R_ijatom_dict.keys())
261
+ R_tuple = tuple(R)
262
+ valid_R_vectors.add(R_tuple)
263
+ valid_R_vectors.add(tuple(-x for x in R_tuple))
264
+
265
+ # Sort the valid_R_vectors
266
+ self.short_Rlist = sorted(valid_R_vectors)
267
+ # print(f"short_Rlist contains {len(self.short_Rlist)} R vectors, which are: {self.short_Rlist}")
268
+
269
+ # Second pass: build dictionaries using the clean indexing
270
+ for iR, R_vec in enumerate(self.short_Rlist):
271
+ for ispin, iatom in enumerate(ind_matoms):
272
+ for jspin, jatom in enumerate(ind_matoms):
273
+ pos_i = self.atoms.get_positions()[iatom]
274
+ pos_jR = self.atoms.get_positions()[jatom] + np.dot(
275
+ R_vec, self.atoms.get_cell()
276
+ )
277
+ vec = pos_jR - pos_i
278
+ distance = np.sqrt(np.sum(vec**2))
279
+ if self.Rcut is None or distance < self.Rcut:
280
+ self.distance_dict[(R_vec, ispin, jspin)] = (vec, distance)
281
+ self.R_ijatom_dict[iR].append((iatom, jatom))
282
+
283
+ # Create lookup dictionary for negative R vectors
284
+ self.Rvec_to_shortlist_idx = {
285
+ R_vec: iR for iR, R_vec in enumerate(self.short_Rlist)
286
+ }
287
+ self.R_negative_index = {}
288
+ for iR, R_vec in enumerate(self.short_Rlist):
289
+ Rm_vec = tuple(-x for x in R_vec)
290
+ if Rm_vec in self.Rvec_to_shortlist_idx:
291
+ self.R_negative_index[iR] = self.Rvec_to_shortlist_idx[Rm_vec]
292
+ else:
293
+ self.R_negative_index[iR] = None # No negative R found
294
+
295
+ # Verify the R vector pairing
296
+ pairing_good = True
297
+ for iR, R_vec in enumerate(self.short_Rlist):
298
+ neg_idx = self.R_negative_index[iR]
299
+ if neg_idx is not None:
300
+ expected_neg = tuple(-x for x in R_vec)
301
+ actual_neg = self.short_Rlist[neg_idx]
302
+ if expected_neg != actual_neg:
303
+ print(
304
+ f" R[{iR}] = {R_vec} -> -R[{neg_idx}] = {actual_neg} ✗ (expected {expected_neg})"
305
+ )
306
+ pairing_good = False
307
+ else:
308
+ print(f" R[{iR}] = {R_vec} -> No negative R found")
309
+
310
+ if not pairing_good:
311
+ raise ValueError("R vector pairing check failed.")
248
312
 
249
313
  def iorb(self, iatom):
250
314
  """
@@ -294,6 +358,7 @@ class ExchangeNCL(Exchange):
294
358
  efermi=self.efermi,
295
359
  use_cache=self._use_cache,
296
360
  nproc=self.nproc,
361
+ initial_emin=self.emin,
297
362
  )
298
363
  if self.efermi is None:
299
364
  self.efermi = self.G.efermi
@@ -305,10 +370,11 @@ class ExchangeNCL(Exchange):
305
370
  self.A_ijR = defaultdict(lambda: np.zeros((4, 4), dtype=complex))
306
371
  self.A_ijR_orb = dict()
307
372
  # self.HR0 = self.tbmodel.get_H0()
308
- if hasattr(self.tbmodel, "get_H0"):
309
- self.HR0 = self.tbmodel.get_H0()
310
- else:
311
- self.HR0 = self.G.H0
373
+ # if hasattr(self.tbmodel, "get_H0"):
374
+ # self.HR0 = self.tbmodel.get_H0()
375
+ # else:
376
+ # self.HR0 = self.G.H0
377
+ self.HR0 = self.G.H0
312
378
  self._is_collinear = False
313
379
  self.Pdict = {}
314
380
  if self.write_density_matrix:
@@ -362,7 +428,7 @@ class ExchangeNCL(Exchange):
362
428
  return GR[np.ix_(orbi, orbj)]
363
429
  # return GR[self.orb_slice[iatom], self.orb_slice[jatom]]
364
430
 
365
- def get_A_ijR(self, G, R, iatom, jatom):
431
+ def get_A_ijR(self, G, iR, iatom, jatom):
366
432
  """calculate A from G for a energy slice (de).
367
433
  It take the
368
434
  .. math::
@@ -371,20 +437,25 @@ class ExchangeNCL(Exchange):
371
437
  where u, v are I, x, y, z (index 0, 1,2,3). p(i) = self.get_P_iatom(iatom)
372
438
  T^u(ijR) (u=0,1,2,3) = pauli_block_all(G)
373
439
 
374
- :param G: Green's function for all R, i, j.
440
+ :param G: Green's function for all R, i, j (numpy array).
441
+ :param iR: index in short_Rlist (position in G array)
375
442
  :param iatom: i
376
443
  :param jatom: j
377
- :param de: energy step. used for integeration
378
444
  :returns: a matrix of A_ij(u, v), where u, v =(0)0, x(1), y(2), z(3)
379
445
  :rtype: 4*4 matrix
380
446
  """
381
- GR = G[R]
447
+ GR = G[iR]
382
448
  Gij = self.GR_atom(GR, iatom, jatom)
383
449
  Gij_Ixyz = pauli_block_all(Gij)
384
450
 
385
- # G(j, i, -R)
386
- Rm = tuple(-x for x in R)
387
- GRm = G[Rm]
451
+ # G(j, i, -R) - use optimized lookup
452
+ iRm = self.R_negative_index[iR]
453
+ if iRm is None:
454
+ R_vec = self.short_Rlist[iR]
455
+ Rm_vec = tuple(-x for x in R_vec)
456
+ raise KeyError(f"Negative R vector {Rm_vec} not found in short_Rlist")
457
+
458
+ GRm = G[iRm]
388
459
  Gji = self.GR_atom(GRm, jatom, iatom)
389
460
  Gji_Ixyz = pauli_block_all(Gji)
390
461
 
@@ -418,18 +489,85 @@ class ExchangeNCL(Exchange):
418
489
  """
419
490
  Calculate all A matrix elements
420
491
  Loop over all magnetic atoms.
421
- :param G: Green's function.
492
+ :param G: Green's function (numpy array).
422
493
  :param de: energy step.
423
494
  """
424
495
  A_ijR_list = {}
425
496
  Aorb_ijR_list = {}
426
- for iR, R in enumerate(self.R_ijatom_dict):
427
- for iatom, jatom in self.R_ijatom_dict[R]:
428
- A, A_orb = self.get_A_ijR(G, R, iatom, jatom)
429
- A_ijR_list[(R, iatom, jatom)] = A
430
- Aorb_ijR_list[(R, iatom, jatom)] = A_orb
497
+ for iR in self.R_ijatom_dict:
498
+ for iatom, jatom in self.R_ijatom_dict[iR]:
499
+ A, A_orb = self.get_A_ijR(G, iR, iatom, jatom)
500
+ # Store with actual R vector for compatibility with existing code
501
+ R_vec = self.short_Rlist[iR]
502
+ A_ijR_list[(R_vec, iatom, jatom)] = A
503
+ Aorb_ijR_list[(R_vec, iatom, jatom)] = A_orb
431
504
  return A_ijR_list, Aorb_ijR_list
432
505
 
506
+ def get_all_A_vectorized(self, GR):
507
+ """
508
+ Vectorized calculation of all A matrix elements.
509
+ Fully vectorized version based on TB2J_optimization_prototype.ipynb.
510
+ Now works with properly ordered short_Rlist.
511
+
512
+ :param GR: Green's function array of shape (nR, nbasis, nbasis)
513
+ :returns: tuple of (A_ijR_list, Aorb_ijR_list) with R vector keys
514
+ """
515
+
516
+ # Get magnetic sites and their orbital indices
517
+ magnetic_sites = self.ind_mag_atoms
518
+ iorbs = [self.iorb(site) for site in magnetic_sites]
519
+
520
+ # Build the P matrices for all magnetic sites using the same method as original
521
+ P = [self.get_P_iatom(site) for site in magnetic_sites]
522
+
523
+ # Initialize results dictionary
524
+ A = {}
525
+ A_orb = {}
526
+
527
+ # Batch compute all A tensors following the prototype
528
+ for i, j in product(range(len(magnetic_sites)), repeat=2):
529
+ idx, jdx = iorbs[i], iorbs[j]
530
+ Gij = GR[:, idx][:, :, jdx]
531
+ Gji = GR[:, jdx][:, :, idx]
532
+ Gij = pauli_block_all(Gij)
533
+ Gji = pauli_block_all(Gji)
534
+ # NOTE: becareful: this assumes that short_Rlist is properly ordered so that
535
+ # the ith R vector's negative is at -i index.
536
+ Gji = np.flip(Gji, axis=0)
537
+ Pi = P[i]
538
+ Pj = P[j]
539
+ X = Pi @ Gij
540
+ Y = Pj @ Gji
541
+ mi, mj = (magnetic_sites[i], magnetic_sites[j])
542
+
543
+ if self.orb_decomposition:
544
+ # Vectorized orbital decomposition over all R vectors at once
545
+ # X.shape: (nR, 4, ni, nj), Y.shape: (nR, 4, nj, ni)
546
+ A_orb_tensor = (
547
+ np.einsum("ruij,rvji->ruvij", X, Y) / np.pi
548
+ ) # Shape: (nR, 4, 4, ni, nj)
549
+ # Vectorized sum over orbitals for simplified A values
550
+ A_val_tensor = np.sum(A_orb_tensor, axis=(-2, -1)) # Shape: (nR, 4, 4)
551
+ else:
552
+ # Compute A_tensor for all R vectors at once
553
+ A_tensor = (
554
+ np.einsum("...uij,...vji->...uv", X, Y) / np.pi
555
+ ) # Shape: (nR, 4, 4)
556
+ A_val_tensor = A_tensor # Use pre-computed A_tensor directly
557
+ A_orb_tensor = None
558
+
559
+ # Store results for each R vector
560
+ for iR, R_vec in enumerate(self.short_Rlist):
561
+ A_val = A_val_tensor[iR] # Shape: (4, 4)
562
+ A_orb_val = A_orb_tensor[iR] if A_orb_tensor is not None else None
563
+
564
+ # Store with R vector key for compatibility
565
+ A[(R_vec, mi, mj)] = A_val
566
+ if A_orb_val is not None:
567
+ A_orb[(R_vec, mi, mj)] = A_orb_val
568
+
569
+ return A, A_orb
570
+
433
571
  def A_to_Jtensor_orb(self):
434
572
  """
435
573
  convert the orbital composition of A into J, DMI, Jani
@@ -589,28 +727,169 @@ class ExchangeNCL(Exchange):
589
727
  #
590
728
 
591
729
  # self.rho = integrate(self.contour.path, rhoRs)
592
- for iR, R in enumerate(self.R_ijatom_dict):
593
- for iatom, jatom in self.R_ijatom_dict[R]:
594
- f = AijRs[(R, iatom, jatom)]
595
- # self.A_ijR[(R, iatom, jatom)] = integrate(self.contour.path, f)
596
- self.A_ijR[(R, iatom, jatom)] = self.contour.integrate_values(f)
730
+ for iR in self.R_ijatom_dict:
731
+ R_vec = self.short_Rlist[iR]
732
+ for iatom, jatom in self.R_ijatom_dict[iR]:
733
+ f = AijRs[(R_vec, iatom, jatom)]
734
+ # self.A_ijR[(R_vec, iatom, jatom)] = integrate(self.contour.path, f)
735
+ self.A_ijR[(R_vec, iatom, jatom)] = self.contour.integrate_values(f)
597
736
 
598
737
  if self.orb_decomposition:
599
- # self.A_ijR_orb[(R, iatom, jatom)] = integrate(
600
- # self.contour.path, AijRs_orb[(R, iatom, jatom)]
738
+ # self.A_ijR_orb[(R_vec, iatom, jatom)] = integrate(
739
+ # self.contour.path, AijRs_orb[(R_vec, iatom, jatom)]
601
740
  # )
602
- self.contour.integrate_values(AijRs_orb[(R, iatom, jatom)])
741
+ self.A_ijR_orb[(R_vec, iatom, jatom)] = (
742
+ self.contour.integrate_values(AijRs_orb[(R_vec, iatom, jatom)])
743
+ )
603
744
 
604
745
  def get_quantities_per_e(self, e):
605
746
  Gk_all = self.G.get_Gk_all(e)
606
747
  # mae = self.get_mae_kspace(Gk_all)
607
748
  mae = None
608
749
  # TODO: get the MAE from Gk_all
609
- GR = self.G.get_GR(self.short_Rlist, energy=e, get_rho=False, Gk_all=Gk_all)
750
+ # short_Rlist now contains actual R vectors
751
+ GR = self.G.get_GR(self.short_Rlist, energy=e, Gk_all=Gk_all)
752
+
753
+ # Save diagonal elements of Green's function for charge and magnetic moment calculation
754
+ # Only if debug option is enabled
755
+ if self.debug_options.get("compute_charge_moments", False):
756
+ self.save_greens_function_diagonals(GR, e)
757
+
610
758
  # TODO: define the quantities for one energy.
611
- AijR, AijR_orb = self.get_all_A(GR)
759
+ # Use vectorized method for better performance
760
+ try:
761
+ #
762
+ AijR, AijR_orb = self.get_all_A_vectorized(GR)
763
+ # AijR, AijR_orb = self.get_all_A(GR)
764
+ except Exception as e:
765
+ print(f"Vectorized method failed: {e}, falling back to original method")
766
+ AijR, AijR_orb = self.get_all_A(GR)
612
767
  return dict(AijR=AijR, AijR_orb=AijR_orb, mae=mae)
613
768
 
769
+ def save_greens_function_diagonals(self, GR, energy):
770
+ """
771
+ Save diagonal elements of Green's function for each atom.
772
+ These will be used to compute charge and magnetic moments.
773
+
774
+ :param GR: Green's function array of shape (nR, nbasis, nbasis)
775
+ :param energy: Current energy value
776
+ """
777
+ # For proper charge and magnetic moment calculation, we need to sum over k-points
778
+ # with weights: Σ_k S(k)·G(k)·w(k)
779
+ # Since this function is called for each energy, we'll compute the k-sum here
780
+
781
+ # Initialize the k-summed SG matrix for this energy
782
+ nbasis = GR.shape[1]
783
+ SG_ksum = np.zeros((nbasis, nbasis), dtype=complex)
784
+
785
+ # Get k-points and weights from Green's function object
786
+ kpts = self.G.kpts
787
+ kweights = self.G.kweights
788
+
789
+ # Use the passed energy parameter
790
+ current_energy = energy
791
+
792
+ # Sum over all k-points
793
+ for ik, kpt in enumerate(kpts):
794
+ # Get G(k) for current energy
795
+ Gk = self.G.get_Gk(ik, energy=current_energy)
796
+
797
+ if not self.G.is_orthogonal:
798
+ Sk = self.G.get_Sk(ik)
799
+ SG_ksum += Sk @ Gk * kweights[ik]
800
+ else:
801
+ # For orthogonal case, S is identity
802
+ SG_ksum += Gk * kweights[ik]
803
+
804
+ # Now SG_ksum contains Σ_k S(k)·G(k)·w(k) for this energy
805
+
806
+ for iatom in self.orb_dict:
807
+ # Get orbital indices for this atom
808
+ orbi = self.iorb(iatom)
809
+ # Extract diagonal elements for this atom
810
+ G_diag = np.diag(SG_ksum[np.ix_(orbi, orbi)])
811
+ self.G_diagonal[iatom].append(G_diag)
812
+
813
+ def compute_charge_and_magnetic_moments(self):
814
+ """
815
+ Compute charge and magnetic moments from stored Green's function diagonals.
816
+ Uses the relation:
817
+ - Charge: n_i = -1/π ∫ Im[Tr(S·G_ii(E))] dE
818
+ - Magnetic moment: m_i = -1/π ∫ Im[Tr(S·σ·G_ii(E))] dE
819
+ where S is the overlap matrix.
820
+ """
821
+ # Only run if debug option is enabled
822
+ if not self.debug_options.get("compute_charge_moments", False):
823
+ # Just use density matrix method directly
824
+ self.get_rho_atom()
825
+ return
826
+
827
+ if not hasattr(self, "G_diagonal") or not self.G_diagonal:
828
+ print(
829
+ "Warning: No Green's function diagonals stored. Cannot compute charge and magnetic moments."
830
+ )
831
+ return
832
+
833
+ self.charges = np.zeros(len(self.atoms))
834
+ self.spinat = np.zeros((len(self.atoms), 3))
835
+
836
+ for iatom in range(len(self.atoms)):
837
+ if not self.G_diagonal[iatom]:
838
+ continue
839
+
840
+ # Stack all diagonal elements for this atom
841
+ G_diags = np.array(
842
+ self.G_diagonal[iatom]
843
+ ) # shape: (n_energies, n_orbitals)
844
+
845
+ # Integrate over energy using the same contour as exchange calculation
846
+ # Charge: -1/π Im[∫ diag(G) dE]
847
+ integrated_diag = -np.imag(self.contour.integrate_values(G_diags)) / np.pi
848
+
849
+ # Sum over orbitals to get total charge
850
+ self.charges[iatom] = np.sum(integrated_diag)
851
+
852
+ # For non-collinear case, compute magnetic moments from Green's function
853
+ # Note: The stored diagonals only contain G_ii elements, not the full spin structure
854
+ # For proper magnetic moment calculation, we need the full Green's function matrix
855
+ # Here we'll compute the charge from diagonals and use density matrix for moments
856
+
857
+ # The Green's function method can only compute charge from stored diagonals
858
+ gf_charge = np.sum(integrated_diag)
859
+
860
+ # For magnetic moments, we would need the full G matrix with spin structure
861
+ # Since only diagonals are stored, we cannot compute magnetic moments from GF method
862
+ # gf_spinat = np.array(
863
+ # [np.nan, np.nan, np.nan]
864
+ # ) # Placeholder - cannot compute from diagonals
865
+
866
+ # Compute using density matrix method
867
+ self.get_rho_atom() # This computes charges and spinat using density matrix
868
+ dm_spinat = self.spinat[iatom].copy()
869
+ dm_charge = self.charges[iatom]
870
+
871
+ # Compare methods if difference is above threshold
872
+ charge_diff = abs(gf_charge - dm_charge)
873
+ threshold = self.debug_options.get("charge_moment_threshold", 1e-4)
874
+
875
+ if charge_diff > threshold:
876
+ print(f"Atom {iatom}:")
877
+ print(f" Green's function charge: {gf_charge:.6f}")
878
+ print(f" Density matrix charge: {dm_charge:.6f}")
879
+ print(f" Difference: {charge_diff:.6f} (threshold: {threshold})")
880
+ print(
881
+ f" Density matrix magnetic moment: [{dm_spinat[0]:.6f}, {dm_spinat[1]:.6f}, {dm_spinat[2]:.6f}]"
882
+ )
883
+ print(
884
+ " Note: Magnetic moments from GF method require full Green's function matrix, not just diagonals"
885
+ )
886
+
887
+ # By default, use density matrix output unless debug option says otherwise
888
+ if not self.debug_options.get("use_density_matrix_output", True):
889
+ # Override with Green's function charge (not recommended)
890
+ self.charges[iatom] = gf_charge
891
+ # Magnetic moments cannot be computed from diagonals in non-collinear case
892
+
614
893
  def save_AijR(self, AijRs, fname):
615
894
  result = dict(path=self.contour.path, AijRs=AijRs)
616
895
  with open(fname, "wb") as myfile:
@@ -644,27 +923,36 @@ class ExchangeNCL(Exchange):
644
923
  )
645
924
 
646
925
  for i, result in enumerate(results):
647
- for iR, R in enumerate(self.R_ijatom_dict):
648
- for iatom, jatom in self.R_ijatom_dict[R]:
649
- if (R, iatom, jatom) in AijRs:
650
- AijRs[(R, iatom, jatom)].append(result["AijR"][R, iatom, jatom])
926
+ for iR in self.R_ijatom_dict:
927
+ R_vec = self.short_Rlist[iR]
928
+ for iatom, jatom in self.R_ijatom_dict[iR]:
929
+ if (R_vec, iatom, jatom) in AijRs:
930
+ AijRs[(R_vec, iatom, jatom)].append(
931
+ result["AijR"][(R_vec, iatom, jatom)]
932
+ )
651
933
  if self.orb_decomposition:
652
- AijRs_orb[(R, iatom, jatom)].append(
653
- result["AijR_orb"][R, iatom, jatom]
934
+ AijRs_orb[(R_vec, iatom, jatom)].append(
935
+ result["AijR_orb"][(R_vec, iatom, jatom)]
654
936
  )
655
937
 
656
938
  else:
657
- AijRs[(R, iatom, jatom)] = []
658
- AijRs[(R, iatom, jatom)].append(result["AijR"][R, iatom, jatom])
939
+ AijRs[(R_vec, iatom, jatom)] = []
940
+ AijRs[(R_vec, iatom, jatom)].append(
941
+ result["AijR"][(R_vec, iatom, jatom)]
942
+ )
659
943
  if self.orb_decomposition:
660
- AijRs_orb[(R, iatom, jatom)] = []
661
- AijRs_orb[(R, iatom, jatom)].append(
662
- result["AijR_orb"][R, iatom, jatom]
944
+ AijRs_orb[(R_vec, iatom, jatom)] = []
945
+ AijRs_orb[(R_vec, iatom, jatom)].append(
946
+ result["AijR_orb"][(R_vec, iatom, jatom)]
663
947
  )
664
948
 
665
949
  # self.save_AijRs(AijRs)
666
950
  self.integrate(AijRs, AijRs_orb)
667
951
  self.get_rho_atom()
952
+
953
+ # Compute charge and magnetic moments from Green's function diagonals
954
+ self.compute_charge_and_magnetic_moments()
955
+
668
956
  self.A_to_Jtensor()
669
957
  self.A_to_Jtensor_orb()
670
958