TB2J 0.9.10.1__py3-none-any.whl → 0.9.12.17__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of TB2J might be problematic. Click here for more details.
- TB2J/.gitignore +5 -0
- TB2J/Jdownfolder.py +43 -19
- TB2J/MAEGreen.py +78 -60
- TB2J/__init__.py +3 -1
- TB2J/anisotropy.py +2 -2
- TB2J/basis.py +0 -3
- TB2J/contour.py +3 -2
- TB2J/exchange.py +335 -48
- TB2J/exchangeCL2.py +289 -51
- TB2J/exchange_params.py +25 -1
- TB2J/gpaw_wrapper.py +0 -3
- TB2J/green.py +58 -33
- TB2J/interfaces/wannier90_interface.py +4 -4
- TB2J/io_exchange/io_espins.py +276 -0
- TB2J/io_exchange/io_exchange.py +53 -12
- TB2J/io_exchange/io_txt.py +9 -8
- TB2J/io_exchange/io_uppasd.py +0 -1
- TB2J/io_exchange/io_vampire.py +3 -1
- TB2J/magnon/magnon3.py +76 -28
- TB2J/magnon/plot_magnon_dos_cli.py +115 -3
- TB2J/myTB.py +11 -11
- TB2J/pauli.py +32 -2
- TB2J/plot.py +8 -7
- TB2J/rotate_atoms.py +10 -7
- TB2J/scripts/TB2J_downfold.py +97 -0
- TB2J/scripts/TB2J_eigen.py +49 -0
- TB2J/scripts/TB2J_magnon.py +117 -0
- TB2J/scripts/TB2J_magnon2.py +78 -0
- TB2J/scripts/TB2J_magnon_dos.py +5 -0
- TB2J/scripts/TB2J_merge.py +49 -0
- TB2J/scripts/TB2J_plot_magnon_bands.py +22 -0
- TB2J/scripts/TB2J_rotate.py +29 -0
- TB2J/scripts/TB2J_rotateDM.py +21 -0
- TB2J/scripts/__init__.py +0 -0
- TB2J/scripts/abacus2J.py +61 -0
- TB2J/scripts/siesta2J.py +78 -0
- TB2J/scripts/wann2J.py +101 -0
- TB2J/spinham/hamiltonian.py +0 -1
- TB2J/symmetrize_J.py +2 -2
- TB2J/tensor_rotate.py +1 -2
- TB2J/versioninfo.py +3 -0
- TB2J/wannier/w90_tb_parser.py +0 -2
- {tb2j-0.9.10.1.dist-info → tb2j-0.9.12.17.dist-info}/METADATA +7 -7
- {tb2j-0.9.10.1.dist-info → tb2j-0.9.12.17.dist-info}/RECORD +48 -33
- tb2j-0.9.12.17.dist-info/entry_points.txt +15 -0
- tb2j-0.9.10.1.dist-info/entry_points.txt +0 -16
- {tb2j-0.9.10.1.dist-info → tb2j-0.9.12.17.dist-info}/WHEEL +0 -0
- {tb2j-0.9.10.1.dist-info → tb2j-0.9.12.17.dist-info}/licenses/LICENSE +0 -0
- {tb2j-0.9.10.1.dist-info → tb2j-0.9.12.17.dist-info}/top_level.txt +0 -0
TB2J/exchange.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import pickle
|
|
3
3
|
from collections import defaultdict
|
|
4
|
+
from itertools import product
|
|
4
5
|
|
|
5
6
|
import numpy as np
|
|
6
7
|
from tqdm import tqdm
|
|
@@ -37,17 +38,28 @@ class Exchange(ExchangeParams):
|
|
|
37
38
|
# self._prepare_NijR()
|
|
38
39
|
self._is_collinear = True
|
|
39
40
|
self.has_elistc = False
|
|
41
|
+
|
|
42
|
+
# Store overlap matrix before cleaning tbmodels
|
|
43
|
+
if hasattr(self, "tbmodel") and hasattr(self.tbmodel, "SR"):
|
|
44
|
+
# Find R=0 index in tbmodel.Rlist
|
|
45
|
+
iR_S0 = np.argmin(np.linalg.norm(self.tbmodel.Rlist, axis=1))
|
|
46
|
+
self.S_R0 = self.tbmodel.SR[iR_S0] # R=0 overlap matrix
|
|
47
|
+
else:
|
|
48
|
+
self.S_R0 = None
|
|
49
|
+
|
|
40
50
|
self._clean_tbmodels()
|
|
41
51
|
|
|
52
|
+
# Initialize storage for Green's function diagonals (for charge and magnetic moment calculation)
|
|
53
|
+
self.G_diagonal = {iatom: [] for iatom in range(len(self.atoms))}
|
|
54
|
+
|
|
42
55
|
def _prepare_Jorb_file(self):
|
|
43
56
|
os.makedirs(self.output_path, exist_ok=True)
|
|
44
57
|
self.orbpath = os.path.join(self.output_path, "OrbResolve")
|
|
45
58
|
os.makedirs(self.orbpath, exist_ok=True)
|
|
46
59
|
|
|
47
60
|
def _adjust_emin(self):
|
|
48
|
-
self.emin = self.G.
|
|
61
|
+
self.emin = self.G.adjusted_emin
|
|
49
62
|
# self.emin = self.G.find_energy_ingap(rbound=self.efermi - 15.0) - self.efermi
|
|
50
|
-
# self.emin = -42.0
|
|
51
63
|
# print(f"A gap is found at {self.emin}, set emin to it.")
|
|
52
64
|
|
|
53
65
|
def set_tbmodels(self, tbmodels):
|
|
@@ -202,7 +214,6 @@ class Exchange(ExchangeParams):
|
|
|
202
214
|
include_only=self.include_orbs[syms[iatom]],
|
|
203
215
|
)
|
|
204
216
|
else:
|
|
205
|
-
# print(f"orbs: {orbs}")
|
|
206
217
|
mmat, reduced_orbs = map_orbs_matrix(
|
|
207
218
|
orbs, spinor=not (self._is_collinear), include_only=None
|
|
208
219
|
)
|
|
@@ -230,12 +241,16 @@ class Exchange(ExchangeParams):
|
|
|
230
241
|
prepare the distance between atoms.
|
|
231
242
|
"""
|
|
232
243
|
self.distance_dict = {}
|
|
233
|
-
self.short_Rlist = []
|
|
244
|
+
self.short_Rlist = [] # Will contain actual R vectors, not indices
|
|
234
245
|
self.R_ijatom_dict = defaultdict(lambda: [])
|
|
235
246
|
ind_matoms = self.ind_mag_atoms
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
247
|
+
|
|
248
|
+
# First pass: identify which R vectors are within Rcut
|
|
249
|
+
# Add both R and -R when within cutoff
|
|
250
|
+
valid_R_vectors = set()
|
|
251
|
+
for R in self.Rlist:
|
|
252
|
+
for ispin, iatom in enumerate(ind_matoms):
|
|
253
|
+
for jspin, jatom in enumerate(ind_matoms):
|
|
239
254
|
pos_i = self.atoms.get_positions()[iatom]
|
|
240
255
|
pos_jR = self.atoms.get_positions()[jatom] + np.dot(
|
|
241
256
|
R, self.atoms.get_cell()
|
|
@@ -243,9 +258,57 @@ class Exchange(ExchangeParams):
|
|
|
243
258
|
vec = pos_jR - pos_i
|
|
244
259
|
distance = np.sqrt(np.sum(vec**2))
|
|
245
260
|
if self.Rcut is None or distance < self.Rcut:
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
261
|
+
R_tuple = tuple(R)
|
|
262
|
+
valid_R_vectors.add(R_tuple)
|
|
263
|
+
valid_R_vectors.add(tuple(-x for x in R_tuple))
|
|
264
|
+
|
|
265
|
+
# Sort the valid_R_vectors
|
|
266
|
+
self.short_Rlist = sorted(valid_R_vectors)
|
|
267
|
+
# print(f"short_Rlist contains {len(self.short_Rlist)} R vectors, which are: {self.short_Rlist}")
|
|
268
|
+
|
|
269
|
+
# Second pass: build dictionaries using the clean indexing
|
|
270
|
+
for iR, R_vec in enumerate(self.short_Rlist):
|
|
271
|
+
for ispin, iatom in enumerate(ind_matoms):
|
|
272
|
+
for jspin, jatom in enumerate(ind_matoms):
|
|
273
|
+
pos_i = self.atoms.get_positions()[iatom]
|
|
274
|
+
pos_jR = self.atoms.get_positions()[jatom] + np.dot(
|
|
275
|
+
R_vec, self.atoms.get_cell()
|
|
276
|
+
)
|
|
277
|
+
vec = pos_jR - pos_i
|
|
278
|
+
distance = np.sqrt(np.sum(vec**2))
|
|
279
|
+
if self.Rcut is None or distance < self.Rcut:
|
|
280
|
+
self.distance_dict[(R_vec, ispin, jspin)] = (vec, distance)
|
|
281
|
+
self.R_ijatom_dict[iR].append((iatom, jatom))
|
|
282
|
+
|
|
283
|
+
# Create lookup dictionary for negative R vectors
|
|
284
|
+
self.Rvec_to_shortlist_idx = {
|
|
285
|
+
R_vec: iR for iR, R_vec in enumerate(self.short_Rlist)
|
|
286
|
+
}
|
|
287
|
+
self.R_negative_index = {}
|
|
288
|
+
for iR, R_vec in enumerate(self.short_Rlist):
|
|
289
|
+
Rm_vec = tuple(-x for x in R_vec)
|
|
290
|
+
if Rm_vec in self.Rvec_to_shortlist_idx:
|
|
291
|
+
self.R_negative_index[iR] = self.Rvec_to_shortlist_idx[Rm_vec]
|
|
292
|
+
else:
|
|
293
|
+
self.R_negative_index[iR] = None # No negative R found
|
|
294
|
+
|
|
295
|
+
# Verify the R vector pairing
|
|
296
|
+
pairing_good = True
|
|
297
|
+
for iR, R_vec in enumerate(self.short_Rlist):
|
|
298
|
+
neg_idx = self.R_negative_index[iR]
|
|
299
|
+
if neg_idx is not None:
|
|
300
|
+
expected_neg = tuple(-x for x in R_vec)
|
|
301
|
+
actual_neg = self.short_Rlist[neg_idx]
|
|
302
|
+
if expected_neg != actual_neg:
|
|
303
|
+
print(
|
|
304
|
+
f" R[{iR}] = {R_vec} -> -R[{neg_idx}] = {actual_neg} ✗ (expected {expected_neg})"
|
|
305
|
+
)
|
|
306
|
+
pairing_good = False
|
|
307
|
+
else:
|
|
308
|
+
print(f" R[{iR}] = {R_vec} -> No negative R found")
|
|
309
|
+
|
|
310
|
+
if not pairing_good:
|
|
311
|
+
raise ValueError("R vector pairing check failed.")
|
|
249
312
|
|
|
250
313
|
def iorb(self, iatom):
|
|
251
314
|
"""
|
|
@@ -295,6 +358,7 @@ class ExchangeNCL(Exchange):
|
|
|
295
358
|
efermi=self.efermi,
|
|
296
359
|
use_cache=self._use_cache,
|
|
297
360
|
nproc=self.nproc,
|
|
361
|
+
initial_emin=self.emin,
|
|
298
362
|
)
|
|
299
363
|
if self.efermi is None:
|
|
300
364
|
self.efermi = self.G.efermi
|
|
@@ -306,10 +370,11 @@ class ExchangeNCL(Exchange):
|
|
|
306
370
|
self.A_ijR = defaultdict(lambda: np.zeros((4, 4), dtype=complex))
|
|
307
371
|
self.A_ijR_orb = dict()
|
|
308
372
|
# self.HR0 = self.tbmodel.get_H0()
|
|
309
|
-
if hasattr(self.tbmodel, "get_H0"):
|
|
310
|
-
|
|
311
|
-
else:
|
|
312
|
-
|
|
373
|
+
# if hasattr(self.tbmodel, "get_H0"):
|
|
374
|
+
# self.HR0 = self.tbmodel.get_H0()
|
|
375
|
+
# else:
|
|
376
|
+
# self.HR0 = self.G.H0
|
|
377
|
+
self.HR0 = self.G.H0
|
|
313
378
|
self._is_collinear = False
|
|
314
379
|
self.Pdict = {}
|
|
315
380
|
if self.write_density_matrix:
|
|
@@ -363,7 +428,7 @@ class ExchangeNCL(Exchange):
|
|
|
363
428
|
return GR[np.ix_(orbi, orbj)]
|
|
364
429
|
# return GR[self.orb_slice[iatom], self.orb_slice[jatom]]
|
|
365
430
|
|
|
366
|
-
def get_A_ijR(self, G,
|
|
431
|
+
def get_A_ijR(self, G, iR, iatom, jatom):
|
|
367
432
|
"""calculate A from G for a energy slice (de).
|
|
368
433
|
It take the
|
|
369
434
|
.. math::
|
|
@@ -372,20 +437,25 @@ class ExchangeNCL(Exchange):
|
|
|
372
437
|
where u, v are I, x, y, z (index 0, 1,2,3). p(i) = self.get_P_iatom(iatom)
|
|
373
438
|
T^u(ijR) (u=0,1,2,3) = pauli_block_all(G)
|
|
374
439
|
|
|
375
|
-
:param G: Green's function for all R, i, j.
|
|
440
|
+
:param G: Green's function for all R, i, j (numpy array).
|
|
441
|
+
:param iR: index in short_Rlist (position in G array)
|
|
376
442
|
:param iatom: i
|
|
377
443
|
:param jatom: j
|
|
378
|
-
:param de: energy step. used for integeration
|
|
379
444
|
:returns: a matrix of A_ij(u, v), where u, v =(0)0, x(1), y(2), z(3)
|
|
380
445
|
:rtype: 4*4 matrix
|
|
381
446
|
"""
|
|
382
|
-
GR = G[
|
|
447
|
+
GR = G[iR]
|
|
383
448
|
Gij = self.GR_atom(GR, iatom, jatom)
|
|
384
449
|
Gij_Ixyz = pauli_block_all(Gij)
|
|
385
450
|
|
|
386
|
-
# G(j, i, -R)
|
|
387
|
-
|
|
388
|
-
|
|
451
|
+
# G(j, i, -R) - use optimized lookup
|
|
452
|
+
iRm = self.R_negative_index[iR]
|
|
453
|
+
if iRm is None:
|
|
454
|
+
R_vec = self.short_Rlist[iR]
|
|
455
|
+
Rm_vec = tuple(-x for x in R_vec)
|
|
456
|
+
raise KeyError(f"Negative R vector {Rm_vec} not found in short_Rlist")
|
|
457
|
+
|
|
458
|
+
GRm = G[iRm]
|
|
389
459
|
Gji = self.GR_atom(GRm, jatom, iatom)
|
|
390
460
|
Gji_Ixyz = pauli_block_all(Gji)
|
|
391
461
|
|
|
@@ -419,18 +489,85 @@ class ExchangeNCL(Exchange):
|
|
|
419
489
|
"""
|
|
420
490
|
Calculate all A matrix elements
|
|
421
491
|
Loop over all magnetic atoms.
|
|
422
|
-
:param G: Green's function.
|
|
492
|
+
:param G: Green's function (numpy array).
|
|
423
493
|
:param de: energy step.
|
|
424
494
|
"""
|
|
425
495
|
A_ijR_list = {}
|
|
426
496
|
Aorb_ijR_list = {}
|
|
427
|
-
for iR
|
|
428
|
-
for iatom, jatom in self.R_ijatom_dict[
|
|
429
|
-
A, A_orb = self.get_A_ijR(G,
|
|
430
|
-
|
|
431
|
-
|
|
497
|
+
for iR in self.R_ijatom_dict:
|
|
498
|
+
for iatom, jatom in self.R_ijatom_dict[iR]:
|
|
499
|
+
A, A_orb = self.get_A_ijR(G, iR, iatom, jatom)
|
|
500
|
+
# Store with actual R vector for compatibility with existing code
|
|
501
|
+
R_vec = self.short_Rlist[iR]
|
|
502
|
+
A_ijR_list[(R_vec, iatom, jatom)] = A
|
|
503
|
+
Aorb_ijR_list[(R_vec, iatom, jatom)] = A_orb
|
|
432
504
|
return A_ijR_list, Aorb_ijR_list
|
|
433
505
|
|
|
506
|
+
def get_all_A_vectorized(self, GR):
|
|
507
|
+
"""
|
|
508
|
+
Vectorized calculation of all A matrix elements.
|
|
509
|
+
Fully vectorized version based on TB2J_optimization_prototype.ipynb.
|
|
510
|
+
Now works with properly ordered short_Rlist.
|
|
511
|
+
|
|
512
|
+
:param GR: Green's function array of shape (nR, nbasis, nbasis)
|
|
513
|
+
:returns: tuple of (A_ijR_list, Aorb_ijR_list) with R vector keys
|
|
514
|
+
"""
|
|
515
|
+
|
|
516
|
+
# Get magnetic sites and their orbital indices
|
|
517
|
+
magnetic_sites = self.ind_mag_atoms
|
|
518
|
+
iorbs = [self.iorb(site) for site in magnetic_sites]
|
|
519
|
+
|
|
520
|
+
# Build the P matrices for all magnetic sites using the same method as original
|
|
521
|
+
P = [self.get_P_iatom(site) for site in magnetic_sites]
|
|
522
|
+
|
|
523
|
+
# Initialize results dictionary
|
|
524
|
+
A = {}
|
|
525
|
+
A_orb = {}
|
|
526
|
+
|
|
527
|
+
# Batch compute all A tensors following the prototype
|
|
528
|
+
for i, j in product(range(len(magnetic_sites)), repeat=2):
|
|
529
|
+
idx, jdx = iorbs[i], iorbs[j]
|
|
530
|
+
Gij = GR[:, idx][:, :, jdx]
|
|
531
|
+
Gji = GR[:, jdx][:, :, idx]
|
|
532
|
+
Gij = pauli_block_all(Gij)
|
|
533
|
+
Gji = pauli_block_all(Gji)
|
|
534
|
+
# NOTE: becareful: this assumes that short_Rlist is properly ordered so that
|
|
535
|
+
# the ith R vector's negative is at -i index.
|
|
536
|
+
Gji = np.flip(Gji, axis=0)
|
|
537
|
+
Pi = P[i]
|
|
538
|
+
Pj = P[j]
|
|
539
|
+
X = Pi @ Gij
|
|
540
|
+
Y = Pj @ Gji
|
|
541
|
+
mi, mj = (magnetic_sites[i], magnetic_sites[j])
|
|
542
|
+
|
|
543
|
+
if self.orb_decomposition:
|
|
544
|
+
# Vectorized orbital decomposition over all R vectors at once
|
|
545
|
+
# X.shape: (nR, 4, ni, nj), Y.shape: (nR, 4, nj, ni)
|
|
546
|
+
A_orb_tensor = (
|
|
547
|
+
np.einsum("ruij,rvji->ruvij", X, Y) / np.pi
|
|
548
|
+
) # Shape: (nR, 4, 4, ni, nj)
|
|
549
|
+
# Vectorized sum over orbitals for simplified A values
|
|
550
|
+
A_val_tensor = np.sum(A_orb_tensor, axis=(-2, -1)) # Shape: (nR, 4, 4)
|
|
551
|
+
else:
|
|
552
|
+
# Compute A_tensor for all R vectors at once
|
|
553
|
+
A_tensor = (
|
|
554
|
+
np.einsum("...uij,...vji->...uv", X, Y) / np.pi
|
|
555
|
+
) # Shape: (nR, 4, 4)
|
|
556
|
+
A_val_tensor = A_tensor # Use pre-computed A_tensor directly
|
|
557
|
+
A_orb_tensor = None
|
|
558
|
+
|
|
559
|
+
# Store results for each R vector
|
|
560
|
+
for iR, R_vec in enumerate(self.short_Rlist):
|
|
561
|
+
A_val = A_val_tensor[iR] # Shape: (4, 4)
|
|
562
|
+
A_orb_val = A_orb_tensor[iR] if A_orb_tensor is not None else None
|
|
563
|
+
|
|
564
|
+
# Store with R vector key for compatibility
|
|
565
|
+
A[(R_vec, mi, mj)] = A_val
|
|
566
|
+
if A_orb_val is not None:
|
|
567
|
+
A_orb[(R_vec, mi, mj)] = A_orb_val
|
|
568
|
+
|
|
569
|
+
return A, A_orb
|
|
570
|
+
|
|
434
571
|
def A_to_Jtensor_orb(self):
|
|
435
572
|
"""
|
|
436
573
|
convert the orbital composition of A into J, DMI, Jani
|
|
@@ -590,28 +727,169 @@ class ExchangeNCL(Exchange):
|
|
|
590
727
|
#
|
|
591
728
|
|
|
592
729
|
# self.rho = integrate(self.contour.path, rhoRs)
|
|
593
|
-
for iR
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
self.A_ijR[(
|
|
730
|
+
for iR in self.R_ijatom_dict:
|
|
731
|
+
R_vec = self.short_Rlist[iR]
|
|
732
|
+
for iatom, jatom in self.R_ijatom_dict[iR]:
|
|
733
|
+
f = AijRs[(R_vec, iatom, jatom)]
|
|
734
|
+
# self.A_ijR[(R_vec, iatom, jatom)] = integrate(self.contour.path, f)
|
|
735
|
+
self.A_ijR[(R_vec, iatom, jatom)] = self.contour.integrate_values(f)
|
|
598
736
|
|
|
599
737
|
if self.orb_decomposition:
|
|
600
|
-
# self.A_ijR_orb[(
|
|
601
|
-
# self.contour.path, AijRs_orb[(
|
|
738
|
+
# self.A_ijR_orb[(R_vec, iatom, jatom)] = integrate(
|
|
739
|
+
# self.contour.path, AijRs_orb[(R_vec, iatom, jatom)]
|
|
602
740
|
# )
|
|
603
|
-
self.
|
|
741
|
+
self.A_ijR_orb[(R_vec, iatom, jatom)] = (
|
|
742
|
+
self.contour.integrate_values(AijRs_orb[(R_vec, iatom, jatom)])
|
|
743
|
+
)
|
|
604
744
|
|
|
605
745
|
def get_quantities_per_e(self, e):
|
|
606
746
|
Gk_all = self.G.get_Gk_all(e)
|
|
607
747
|
# mae = self.get_mae_kspace(Gk_all)
|
|
608
748
|
mae = None
|
|
609
749
|
# TODO: get the MAE from Gk_all
|
|
610
|
-
|
|
750
|
+
# short_Rlist now contains actual R vectors
|
|
751
|
+
GR = self.G.get_GR(self.short_Rlist, energy=e, Gk_all=Gk_all)
|
|
752
|
+
|
|
753
|
+
# Save diagonal elements of Green's function for charge and magnetic moment calculation
|
|
754
|
+
# Only if debug option is enabled
|
|
755
|
+
if self.debug_options.get("compute_charge_moments", False):
|
|
756
|
+
self.save_greens_function_diagonals(GR, e)
|
|
757
|
+
|
|
611
758
|
# TODO: define the quantities for one energy.
|
|
612
|
-
|
|
759
|
+
# Use vectorized method for better performance
|
|
760
|
+
try:
|
|
761
|
+
#
|
|
762
|
+
AijR, AijR_orb = self.get_all_A_vectorized(GR)
|
|
763
|
+
# AijR, AijR_orb = self.get_all_A(GR)
|
|
764
|
+
except Exception as e:
|
|
765
|
+
print(f"Vectorized method failed: {e}, falling back to original method")
|
|
766
|
+
AijR, AijR_orb = self.get_all_A(GR)
|
|
613
767
|
return dict(AijR=AijR, AijR_orb=AijR_orb, mae=mae)
|
|
614
768
|
|
|
769
|
+
def save_greens_function_diagonals(self, GR, energy):
|
|
770
|
+
"""
|
|
771
|
+
Save diagonal elements of Green's function for each atom.
|
|
772
|
+
These will be used to compute charge and magnetic moments.
|
|
773
|
+
|
|
774
|
+
:param GR: Green's function array of shape (nR, nbasis, nbasis)
|
|
775
|
+
:param energy: Current energy value
|
|
776
|
+
"""
|
|
777
|
+
# For proper charge and magnetic moment calculation, we need to sum over k-points
|
|
778
|
+
# with weights: Σ_k S(k)·G(k)·w(k)
|
|
779
|
+
# Since this function is called for each energy, we'll compute the k-sum here
|
|
780
|
+
|
|
781
|
+
# Initialize the k-summed SG matrix for this energy
|
|
782
|
+
nbasis = GR.shape[1]
|
|
783
|
+
SG_ksum = np.zeros((nbasis, nbasis), dtype=complex)
|
|
784
|
+
|
|
785
|
+
# Get k-points and weights from Green's function object
|
|
786
|
+
kpts = self.G.kpts
|
|
787
|
+
kweights = self.G.kweights
|
|
788
|
+
|
|
789
|
+
# Use the passed energy parameter
|
|
790
|
+
current_energy = energy
|
|
791
|
+
|
|
792
|
+
# Sum over all k-points
|
|
793
|
+
for ik, kpt in enumerate(kpts):
|
|
794
|
+
# Get G(k) for current energy
|
|
795
|
+
Gk = self.G.get_Gk(ik, energy=current_energy)
|
|
796
|
+
|
|
797
|
+
if not self.G.is_orthogonal:
|
|
798
|
+
Sk = self.G.get_Sk(ik)
|
|
799
|
+
SG_ksum += Sk @ Gk * kweights[ik]
|
|
800
|
+
else:
|
|
801
|
+
# For orthogonal case, S is identity
|
|
802
|
+
SG_ksum += Gk * kweights[ik]
|
|
803
|
+
|
|
804
|
+
# Now SG_ksum contains Σ_k S(k)·G(k)·w(k) for this energy
|
|
805
|
+
|
|
806
|
+
for iatom in self.orb_dict:
|
|
807
|
+
# Get orbital indices for this atom
|
|
808
|
+
orbi = self.iorb(iatom)
|
|
809
|
+
# Extract diagonal elements for this atom
|
|
810
|
+
G_diag = np.diag(SG_ksum[np.ix_(orbi, orbi)])
|
|
811
|
+
self.G_diagonal[iatom].append(G_diag)
|
|
812
|
+
|
|
813
|
+
def compute_charge_and_magnetic_moments(self):
|
|
814
|
+
"""
|
|
815
|
+
Compute charge and magnetic moments from stored Green's function diagonals.
|
|
816
|
+
Uses the relation:
|
|
817
|
+
- Charge: n_i = -1/π ∫ Im[Tr(S·G_ii(E))] dE
|
|
818
|
+
- Magnetic moment: m_i = -1/π ∫ Im[Tr(S·σ·G_ii(E))] dE
|
|
819
|
+
where S is the overlap matrix.
|
|
820
|
+
"""
|
|
821
|
+
# Only run if debug option is enabled
|
|
822
|
+
if not self.debug_options.get("compute_charge_moments", False):
|
|
823
|
+
# Just use density matrix method directly
|
|
824
|
+
self.get_rho_atom()
|
|
825
|
+
return
|
|
826
|
+
|
|
827
|
+
if not hasattr(self, "G_diagonal") or not self.G_diagonal:
|
|
828
|
+
print(
|
|
829
|
+
"Warning: No Green's function diagonals stored. Cannot compute charge and magnetic moments."
|
|
830
|
+
)
|
|
831
|
+
return
|
|
832
|
+
|
|
833
|
+
self.charges = np.zeros(len(self.atoms))
|
|
834
|
+
self.spinat = np.zeros((len(self.atoms), 3))
|
|
835
|
+
|
|
836
|
+
for iatom in range(len(self.atoms)):
|
|
837
|
+
if not self.G_diagonal[iatom]:
|
|
838
|
+
continue
|
|
839
|
+
|
|
840
|
+
# Stack all diagonal elements for this atom
|
|
841
|
+
G_diags = np.array(
|
|
842
|
+
self.G_diagonal[iatom]
|
|
843
|
+
) # shape: (n_energies, n_orbitals)
|
|
844
|
+
|
|
845
|
+
# Integrate over energy using the same contour as exchange calculation
|
|
846
|
+
# Charge: -1/π Im[∫ diag(G) dE]
|
|
847
|
+
integrated_diag = -np.imag(self.contour.integrate_values(G_diags)) / np.pi
|
|
848
|
+
|
|
849
|
+
# Sum over orbitals to get total charge
|
|
850
|
+
self.charges[iatom] = np.sum(integrated_diag)
|
|
851
|
+
|
|
852
|
+
# For non-collinear case, compute magnetic moments from Green's function
|
|
853
|
+
# Note: The stored diagonals only contain G_ii elements, not the full spin structure
|
|
854
|
+
# For proper magnetic moment calculation, we need the full Green's function matrix
|
|
855
|
+
# Here we'll compute the charge from diagonals and use density matrix for moments
|
|
856
|
+
|
|
857
|
+
# The Green's function method can only compute charge from stored diagonals
|
|
858
|
+
gf_charge = np.sum(integrated_diag)
|
|
859
|
+
|
|
860
|
+
# For magnetic moments, we would need the full G matrix with spin structure
|
|
861
|
+
# Since only diagonals are stored, we cannot compute magnetic moments from GF method
|
|
862
|
+
# gf_spinat = np.array(
|
|
863
|
+
# [np.nan, np.nan, np.nan]
|
|
864
|
+
# ) # Placeholder - cannot compute from diagonals
|
|
865
|
+
|
|
866
|
+
# Compute using density matrix method
|
|
867
|
+
self.get_rho_atom() # This computes charges and spinat using density matrix
|
|
868
|
+
dm_spinat = self.spinat[iatom].copy()
|
|
869
|
+
dm_charge = self.charges[iatom]
|
|
870
|
+
|
|
871
|
+
# Compare methods if difference is above threshold
|
|
872
|
+
charge_diff = abs(gf_charge - dm_charge)
|
|
873
|
+
threshold = self.debug_options.get("charge_moment_threshold", 1e-4)
|
|
874
|
+
|
|
875
|
+
if charge_diff > threshold:
|
|
876
|
+
print(f"Atom {iatom}:")
|
|
877
|
+
print(f" Green's function charge: {gf_charge:.6f}")
|
|
878
|
+
print(f" Density matrix charge: {dm_charge:.6f}")
|
|
879
|
+
print(f" Difference: {charge_diff:.6f} (threshold: {threshold})")
|
|
880
|
+
print(
|
|
881
|
+
f" Density matrix magnetic moment: [{dm_spinat[0]:.6f}, {dm_spinat[1]:.6f}, {dm_spinat[2]:.6f}]"
|
|
882
|
+
)
|
|
883
|
+
print(
|
|
884
|
+
" Note: Magnetic moments from GF method require full Green's function matrix, not just diagonals"
|
|
885
|
+
)
|
|
886
|
+
|
|
887
|
+
# By default, use density matrix output unless debug option says otherwise
|
|
888
|
+
if not self.debug_options.get("use_density_matrix_output", True):
|
|
889
|
+
# Override with Green's function charge (not recommended)
|
|
890
|
+
self.charges[iatom] = gf_charge
|
|
891
|
+
# Magnetic moments cannot be computed from diagonals in non-collinear case
|
|
892
|
+
|
|
615
893
|
def save_AijR(self, AijRs, fname):
|
|
616
894
|
result = dict(path=self.contour.path, AijRs=AijRs)
|
|
617
895
|
with open(fname, "wb") as myfile:
|
|
@@ -645,27 +923,36 @@ class ExchangeNCL(Exchange):
|
|
|
645
923
|
)
|
|
646
924
|
|
|
647
925
|
for i, result in enumerate(results):
|
|
648
|
-
for iR
|
|
649
|
-
|
|
650
|
-
|
|
651
|
-
|
|
926
|
+
for iR in self.R_ijatom_dict:
|
|
927
|
+
R_vec = self.short_Rlist[iR]
|
|
928
|
+
for iatom, jatom in self.R_ijatom_dict[iR]:
|
|
929
|
+
if (R_vec, iatom, jatom) in AijRs:
|
|
930
|
+
AijRs[(R_vec, iatom, jatom)].append(
|
|
931
|
+
result["AijR"][(R_vec, iatom, jatom)]
|
|
932
|
+
)
|
|
652
933
|
if self.orb_decomposition:
|
|
653
|
-
AijRs_orb[(
|
|
654
|
-
result["AijR_orb"][
|
|
934
|
+
AijRs_orb[(R_vec, iatom, jatom)].append(
|
|
935
|
+
result["AijR_orb"][(R_vec, iatom, jatom)]
|
|
655
936
|
)
|
|
656
937
|
|
|
657
938
|
else:
|
|
658
|
-
AijRs[(
|
|
659
|
-
AijRs[(
|
|
939
|
+
AijRs[(R_vec, iatom, jatom)] = []
|
|
940
|
+
AijRs[(R_vec, iatom, jatom)].append(
|
|
941
|
+
result["AijR"][(R_vec, iatom, jatom)]
|
|
942
|
+
)
|
|
660
943
|
if self.orb_decomposition:
|
|
661
|
-
AijRs_orb[(
|
|
662
|
-
AijRs_orb[(
|
|
663
|
-
result["AijR_orb"][
|
|
944
|
+
AijRs_orb[(R_vec, iatom, jatom)] = []
|
|
945
|
+
AijRs_orb[(R_vec, iatom, jatom)].append(
|
|
946
|
+
result["AijR_orb"][(R_vec, iatom, jatom)]
|
|
664
947
|
)
|
|
665
948
|
|
|
666
949
|
# self.save_AijRs(AijRs)
|
|
667
950
|
self.integrate(AijRs, AijRs_orb)
|
|
668
951
|
self.get_rho_atom()
|
|
952
|
+
|
|
953
|
+
# Compute charge and magnetic moments from Green's function diagonals
|
|
954
|
+
self.compute_charge_and_magnetic_moments()
|
|
955
|
+
|
|
669
956
|
self.A_to_Jtensor()
|
|
670
957
|
self.A_to_Jtensor_orb()
|
|
671
958
|
|