TB2J 0.9.0.1__py3-none-any.whl → 0.9.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- TB2J/Jdownfolder.py +110 -24
- TB2J/Jtensor.py +1 -1
- TB2J/abacus/MAE.py +320 -0
- TB2J/abacus/abacus_wrapper.py +20 -2
- TB2J/abacus/occupations.py +278 -0
- TB2J/abacus/test_density_matrix.py +38 -0
- TB2J/green.py +2 -13
- TB2J/io_merge.py +2 -1
- TB2J/mathutils/__init__.py +1 -0
- TB2J/mathutils/fermi.py +22 -0
- TB2J/mathutils/kR_convert.py +90 -0
- TB2J/mathutils/lowdin.py +12 -0
- TB2J/mathutils/rotate_spin.py +35 -0
- TB2J/pauli.py +17 -0
- TB2J/utils.py +82 -1
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_downfold.py +8 -0
- {TB2J-0.9.0.1.dist-info → TB2J-0.9.0.3.dist-info}/METADATA +1 -1
- {TB2J-0.9.0.1.dist-info → TB2J-0.9.0.3.dist-info}/RECORD +30 -22
- {TB2J-0.9.0.1.dist-info → TB2J-0.9.0.3.dist-info}/WHEEL +1 -1
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_eigen.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_magnon.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_magnon_dos.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_merge.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_rotate.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/TB2J_rotateDM.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/abacus2J.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/siesta2J.py +0 -0
- {TB2J-0.9.0.1.data → TB2J-0.9.0.3.data}/scripts/wann2J.py +0 -0
- {TB2J-0.9.0.1.dist-info → TB2J-0.9.0.3.dist-info}/LICENSE +0 -0
- {TB2J-0.9.0.1.dist-info → TB2J-0.9.0.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,278 @@
|
|
1
|
+
"""
|
2
|
+
This file is stolen from the hotbit programm, with some modification.
|
3
|
+
"""
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
from scipy.optimize import brentq
|
7
|
+
import sys
|
8
|
+
|
9
|
+
from ase.dft.dos import DOS
|
10
|
+
from scipy import integrate
|
11
|
+
|
12
|
+
# import numba
|
13
|
+
|
14
|
+
# from numba import float64, int32
|
15
|
+
|
16
|
+
MAX_EXP_ARGUMENT = np.log(sys.float_info.max)
|
17
|
+
|
18
|
+
# @numba.vectorize(nopython=True)
|
19
|
+
# def myfermi(e, mu, width, nspin):
|
20
|
+
# x = (e - mu) / width
|
21
|
+
# if x < -10:
|
22
|
+
# ret = 2.0 / nspin
|
23
|
+
# elif x > 10:
|
24
|
+
# ret = 0.0
|
25
|
+
# else:
|
26
|
+
# ret = 2.0 / nspin / (math.exp(x) + 1)
|
27
|
+
# return ret
|
28
|
+
|
29
|
+
|
30
|
+
def myfermi(e, mu, width, nspin):
|
31
|
+
x = (e - mu) / width
|
32
|
+
return np.where(x < 10, 2.0 / (nspin * (np.exp(x) + 1.0)), 0.0)
|
33
|
+
|
34
|
+
|
35
|
+
class Occupations(object):
|
36
|
+
def __init__(self, nel, width, wk, nspin=1):
|
37
|
+
"""
|
38
|
+
Initialize parameters for occupations.
|
39
|
+
:param nel: Number of electrons
|
40
|
+
:param width: Fermi-broadening
|
41
|
+
:param wk: k-point weights. eg. If only gamma, [1.0]
|
42
|
+
:param nspin(optional): number of spin, if spin=1 multiplicity=2 else, multiplicity=1.
|
43
|
+
"""
|
44
|
+
self.nel = nel
|
45
|
+
self.width = width
|
46
|
+
self.wk = wk
|
47
|
+
self.nk = len(wk)
|
48
|
+
self.nspin = nspin
|
49
|
+
|
50
|
+
def get_mu(self):
|
51
|
+
"""Return the Fermi-level (or chemical potential)."""
|
52
|
+
return self.mu
|
53
|
+
|
54
|
+
def fermi(self, mu):
|
55
|
+
"""
|
56
|
+
Occupy states with given chemical potential.
|
57
|
+
Occupations are 0...2; without k-point weights
|
58
|
+
"""
|
59
|
+
return myfermi(self.e, mu, self.width, self.nspin)
|
60
|
+
|
61
|
+
def root_function(self, mu):
|
62
|
+
"""This function is exactly zero when mu is right."""
|
63
|
+
f = self.fermi(mu)
|
64
|
+
return np.einsum("i, ij->", self.wk, f) - self.nel
|
65
|
+
|
66
|
+
def occupy(self, e, xtol=1e-11):
|
67
|
+
"""
|
68
|
+
Calculate occupation numbers with given Fermi-broadening.
|
69
|
+
|
70
|
+
@param e: e[ind_k,ind_orb] energy of k-point, state a
|
71
|
+
Note added by hexu: With spin=2,e[k,a,sigma], it also work. only the *2 should be removed.
|
72
|
+
@param wk: wk[:] weights for k-points
|
73
|
+
@param width: The Fermi-broadening
|
74
|
+
|
75
|
+
Returns: fermi[ind_k, ind_orb]
|
76
|
+
"""
|
77
|
+
self.e = e
|
78
|
+
eflat = e.flatten()
|
79
|
+
ind = np.argsort(eflat)
|
80
|
+
e_sorted = eflat[ind]
|
81
|
+
if self.nspin == 1:
|
82
|
+
m = 2
|
83
|
+
elif self.nspin == 2:
|
84
|
+
m = 1
|
85
|
+
n_sorted = (self.wk[:, None, None] * np.ones_like(e) * m).flatten()[ind]
|
86
|
+
|
87
|
+
sum = n_sorted.cumsum()
|
88
|
+
if self.nel < sum[0]:
|
89
|
+
ifermi = 0
|
90
|
+
elif self.nel > sum[-1]:
|
91
|
+
raise ("number of electrons larger than number of orbital*spin")
|
92
|
+
else:
|
93
|
+
ifermi = np.searchsorted(sum, self.nel)
|
94
|
+
try:
|
95
|
+
if ifermi == 0:
|
96
|
+
elo = e_sorted[0]
|
97
|
+
else:
|
98
|
+
elo = e_sorted[ifermi - 1]
|
99
|
+
if ifermi == len(e_sorted) - 1:
|
100
|
+
ehi = e_sorted[-1]
|
101
|
+
else:
|
102
|
+
ehi = e_sorted[ifermi + 1]
|
103
|
+
guess = e_sorted[ifermi]
|
104
|
+
dmu = np.max((self.width, guess - elo, ehi - guess))
|
105
|
+
mu = brentq(self.root_function, guess - dmu, guess + dmu, xtol=xtol)
|
106
|
+
# mu = brent(
|
107
|
+
# self.root_function,
|
108
|
+
# brack=(guess - elo, guess, guess + dmu),
|
109
|
+
# tol=xtol)
|
110
|
+
except Exception as E:
|
111
|
+
# probably a bad guess
|
112
|
+
print("Error in finding Fermi level: ", E)
|
113
|
+
dmu = self.width
|
114
|
+
if self.nel < 1e-3:
|
115
|
+
mu = min(e_sorted) - dmu * 20
|
116
|
+
elif self.nel - sum[-1] > -1e-3:
|
117
|
+
mu = max(e_sorted) + dmu * 20
|
118
|
+
else:
|
119
|
+
# mu = brent(
|
120
|
+
# self.root_function,
|
121
|
+
# brack=(e_sorted[0] - dmu * 10,
|
122
|
+
# guess,
|
123
|
+
# e_sorted[-1] + dmu * 10),
|
124
|
+
# tol=xtol)
|
125
|
+
mu = brentq(
|
126
|
+
self.root_function,
|
127
|
+
e_sorted[0] - dmu * 20,
|
128
|
+
e_sorted[-1] + dmu * 20,
|
129
|
+
xtol=xtol,
|
130
|
+
)
|
131
|
+
|
132
|
+
if np.abs(self.root_function(mu)) > xtol * 1e4:
|
133
|
+
# raise RuntimeError(
|
134
|
+
# 'Fermi level could not be assigned reliably. Has the system fragmented?'
|
135
|
+
# )
|
136
|
+
print(
|
137
|
+
"Fermi level could not be assigned reliably. Has the system fragmented?"
|
138
|
+
)
|
139
|
+
|
140
|
+
f = self.fermi(mu)
|
141
|
+
# rho=(self.eigenvecs*f).dot(self.eigenvecs.transpose())
|
142
|
+
|
143
|
+
self.mu, self.f = mu, f
|
144
|
+
return f
|
145
|
+
|
146
|
+
def plot(self):
|
147
|
+
import pylab as pl
|
148
|
+
|
149
|
+
for ik in range(self.nk):
|
150
|
+
pl.plot(self.e[ik, :], self.f[ik, :])
|
151
|
+
pl.scatter(self.e[ik, :], self.f[ik, :])
|
152
|
+
pl.title("occupations")
|
153
|
+
pl.xlabel("energy (Ha)")
|
154
|
+
pl.ylabel("occupation")
|
155
|
+
pl.show()
|
156
|
+
|
157
|
+
|
158
|
+
class GaussOccupations(Occupations):
|
159
|
+
def get_mu(self):
|
160
|
+
return self.mu
|
161
|
+
|
162
|
+
def delta(self, energy):
|
163
|
+
"""Return a delta-function centered at 'energy'."""
|
164
|
+
x = -(((self.e - energy) / self.width) ** 2)
|
165
|
+
return np.exp(x) / (np.sqrt(np.pi) * self.width)
|
166
|
+
|
167
|
+
def get_dos(self, npts=500):
|
168
|
+
eflat = self.e.flatten()
|
169
|
+
ind = np.argsort(eflat)
|
170
|
+
##e_sorted = eflat[ind]
|
171
|
+
if self.nspin == 1:
|
172
|
+
m = 2
|
173
|
+
elif self.nspin == 2:
|
174
|
+
m = 1
|
175
|
+
# n_sorted = (self.wk * np.ones_like(self.e) * m).flatten()[ind]
|
176
|
+
dos = np.zeros(npts)
|
177
|
+
for w, e_n in zip(self.w_k, self.e_skn[0]):
|
178
|
+
for e in e_n:
|
179
|
+
dos += w * self.delta(e)
|
180
|
+
|
181
|
+
def root_function(self, mu):
|
182
|
+
pass
|
183
|
+
|
184
|
+
# @profile
|
185
|
+
def occupy(self, e, xtol=1e-8, guess=0.0):
|
186
|
+
self.e = e
|
187
|
+
dos = myDOS(kweights=self.wk, eigenvalues=e, width=self.width, npts=501)
|
188
|
+
edos = dos.get_energies()
|
189
|
+
d = dos.get_dos()
|
190
|
+
idos = integrate.cumtrapz(d, edos, initial=0) - self.nel
|
191
|
+
# f_idos = interpolate.interp1d(edos, idos)
|
192
|
+
# ret = optimize.fmin(f_idos, x0=edos[400], xtol=xtol, disp=True)
|
193
|
+
ifermi = np.searchsorted(idos, 0.0)
|
194
|
+
# self.mu = ret[0]
|
195
|
+
self.mu = edos[ifermi]
|
196
|
+
self.f = self.fermi(self.mu)
|
197
|
+
return self.f
|
198
|
+
|
199
|
+
|
200
|
+
class myDOS(DOS):
|
201
|
+
def __init__(
|
202
|
+
self, kweights, eigenvalues, nspin=1, width=0.1, window=None, npts=1001
|
203
|
+
):
|
204
|
+
"""Electronic Density Of States object.
|
205
|
+
|
206
|
+
calc: calculator object
|
207
|
+
Any ASE compliant calculator object.
|
208
|
+
width: float
|
209
|
+
Width of guassian smearing. Use width=0.0 for linear tetrahedron
|
210
|
+
interpolation.
|
211
|
+
window: tuple of two float
|
212
|
+
Use ``window=(emin, emax)``. If not specified, a window
|
213
|
+
big enough to hold all the eigenvalues will be used.
|
214
|
+
npts: int
|
215
|
+
Number of points.
|
216
|
+
|
217
|
+
"""
|
218
|
+
self.npts = npts
|
219
|
+
self.width = width
|
220
|
+
# self.w_k = calc.get_k_point_weights()
|
221
|
+
self.w_k = kweights
|
222
|
+
self.nspins = nspin
|
223
|
+
# self.e_skn = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
|
224
|
+
# for k in range(len(self.w_k))]
|
225
|
+
# for s in range(self.nspins)])
|
226
|
+
# self.e_skn -= calc.get_fermi_level()
|
227
|
+
self.e_skn = np.array([eigenvalues.T]) # eigenvalues: iband, ikpt
|
228
|
+
|
229
|
+
if window is None:
|
230
|
+
emin = None
|
231
|
+
emax = None
|
232
|
+
else:
|
233
|
+
emin, emax = window
|
234
|
+
|
235
|
+
if emin is None:
|
236
|
+
emin = self.e_skn.min() - 10 * self.width
|
237
|
+
if emax is None:
|
238
|
+
emax = self.e_skn.max() + 10 * self.width
|
239
|
+
|
240
|
+
self.energies = np.linspace(emin, emax, npts)
|
241
|
+
|
242
|
+
# if width == 0.0: # To use tetrahedron method
|
243
|
+
# bzkpts = calc.get_bz_k_points()
|
244
|
+
# size, offset = get_monkhorst_pack_size_and_offset(bzkpts)
|
245
|
+
# bz2ibz = calc.get_bz_to_ibz_map()
|
246
|
+
# shape = (self.nspins,) + tuple(size) + (-1,)
|
247
|
+
# self.e_skn = self.e_skn[:, bz2ibz].reshape(shape)
|
248
|
+
# self.cell = calc.atoms.cell
|
249
|
+
|
250
|
+
def get_idos(self):
|
251
|
+
e, d = self.get_dos()
|
252
|
+
return np.trapz(d, e)
|
253
|
+
|
254
|
+
def delta(self, energy):
|
255
|
+
"""Return a delta-function centered at 'energy'."""
|
256
|
+
x = -(((self.energies - energy) / self.width) ** 2)
|
257
|
+
return np.exp(x) / (np.sqrt(np.pi) * self.width)
|
258
|
+
|
259
|
+
def get_dos(self, spin=None):
|
260
|
+
"""Get array of DOS values.
|
261
|
+
|
262
|
+
The *spin* argument can be 0 or 1 (spin up or down) - if not
|
263
|
+
specified, the total DOS is returned.
|
264
|
+
"""
|
265
|
+
|
266
|
+
if spin is None:
|
267
|
+
if self.nspins == 2:
|
268
|
+
# Spin-polarized calculation, but no spin specified -
|
269
|
+
# return the total DOS:
|
270
|
+
return self.get_dos(spin=0) + self.get_dos(spin=1)
|
271
|
+
else:
|
272
|
+
spin = 0
|
273
|
+
|
274
|
+
dos = np.zeros(self.npts)
|
275
|
+
for w, e_n in zip(self.w_k, self.e_skn[spin]):
|
276
|
+
for e in e_n:
|
277
|
+
dos += w * self.delta(e)
|
278
|
+
return dos
|
@@ -0,0 +1,38 @@
|
|
1
|
+
from scipy.linalg import eigh
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
|
5
|
+
def gen_random_hermitean_matrix(n):
|
6
|
+
A = np.random.rand(n, n) + 1j * np.random.rand(n, n)
|
7
|
+
return A + A.conj().T
|
8
|
+
|
9
|
+
|
10
|
+
def gen_overlap_matrix(n):
|
11
|
+
A = np.random.rand(n, n) + 1j * np.random.rand(n, n)
|
12
|
+
return np.dot(A, A.conj().T)
|
13
|
+
|
14
|
+
|
15
|
+
def fermi_function(x, ef, beta):
|
16
|
+
return 1.0 / (np.exp(beta * (x - ef)) + 1)
|
17
|
+
|
18
|
+
|
19
|
+
def test():
|
20
|
+
n = 10
|
21
|
+
A = gen_random_hermitean_matrix(n)
|
22
|
+
S = gen_overlap_matrix(n)
|
23
|
+
beta = 0.1
|
24
|
+
ef = 0
|
25
|
+
|
26
|
+
evals, evecs = eigh(A, S)
|
27
|
+
|
28
|
+
etot = np.sum(evals * fermi_function(evals, ef, beta))
|
29
|
+
|
30
|
+
rho = np.einsum("ib,b,jb->ij", evecs, fermi_function(evals, ef, beta), evecs.conj())
|
31
|
+
|
32
|
+
etot2 = np.trace(np.dot(A, rho))
|
33
|
+
|
34
|
+
print(etot, etot2)
|
35
|
+
|
36
|
+
|
37
|
+
if __name__ == "__main__":
|
38
|
+
test()
|
TB2J/green.py
CHANGED
@@ -7,6 +7,8 @@ import tempfile
|
|
7
7
|
from pathos.multiprocessing import ProcessPool
|
8
8
|
import sys
|
9
9
|
import pickle
|
10
|
+
import warnings
|
11
|
+
from TB2J.mathutils.fermi import fermi
|
10
12
|
|
11
13
|
MAX_EXP_ARGUMENT = np.log(sys.float_info.max)
|
12
14
|
|
@@ -26,19 +28,6 @@ def eigen_to_G(evals, evecs, efermi, energy):
|
|
26
28
|
)
|
27
29
|
|
28
30
|
|
29
|
-
def fermi(e, mu, width=0.01):
|
30
|
-
"""
|
31
|
-
the fermi function.
|
32
|
-
.. math::
|
33
|
-
f=\\frac{1}{\exp((e-\mu)/width)+1}
|
34
|
-
|
35
|
-
:param e,mu,width: e,\mu,width
|
36
|
-
"""
|
37
|
-
|
38
|
-
x = (e - mu) / width
|
39
|
-
return np.where(x < MAX_EXP_ARGUMENT, 1 / (1.0 + np.exp(x)), 0.0)
|
40
|
-
|
41
|
-
|
42
31
|
def find_energy_ingap(evals, rbound, gap=4.0):
|
43
32
|
"""
|
44
33
|
find a energy inside a gap below rbound (right bound),
|
TB2J/io_merge.py
CHANGED
@@ -48,7 +48,8 @@ class SpinIO_merge(SpinIO):
|
|
48
48
|
|
49
49
|
def _set_projection_vectors(self):
|
50
50
|
|
51
|
-
|
51
|
+
norm = np.linalg.norm(self.spinat, axis=-1).reshape(-1, 1)
|
52
|
+
spinat = self.spinat / norm
|
52
53
|
idx = [self.ind_atoms[i] for i in self.index_spin if i >= 0]
|
53
54
|
projv = {}
|
54
55
|
for i, j in combinations_with_replacement(range(self.nspin), 2):
|
@@ -0,0 +1 @@
|
|
1
|
+
from .lowdin import Lowdin
|
TB2J/mathutils/fermi.py
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import warnings
|
3
|
+
import sys
|
4
|
+
|
5
|
+
MAX_EXP_ARGUMENT = np.log(sys.float_info.max)
|
6
|
+
|
7
|
+
|
8
|
+
def fermi(e, mu, width=0.01):
|
9
|
+
"""
|
10
|
+
the fermi function.
|
11
|
+
.. math::
|
12
|
+
f=\\frac{1}{\exp((e-\mu)/width)+1}
|
13
|
+
|
14
|
+
:param e,mu,width: e,\mu,width
|
15
|
+
"""
|
16
|
+
x = (e - mu) / width
|
17
|
+
# disable overflow warning
|
18
|
+
with warnings.catch_warnings():
|
19
|
+
warnings.simplefilter("ignore")
|
20
|
+
ret = np.where(x < MAX_EXP_ARGUMENT, 1 / (1.0 + np.exp(x)), 0.0)
|
21
|
+
|
22
|
+
return ret
|
@@ -0,0 +1,90 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
|
4
|
+
def HR_to_k(HR, Rlist, kpts):
|
5
|
+
# Hk[k,:,:] = sum_R (H[R] exp(i2pi k.R))
|
6
|
+
phase = np.exp(2.0j * np.pi * np.tensordot(kpts, Rlist, axes=([1], [1])))
|
7
|
+
Hk = np.einsum("rlm, kr -> klm", HR, phase)
|
8
|
+
return Hk
|
9
|
+
|
10
|
+
|
11
|
+
def Hk_to_R(Hk, Rlist, kpts, kweights):
|
12
|
+
phase = np.exp(-2.0j * np.pi * np.tensordot(kpts, Rlist, axes=([1], [1])))
|
13
|
+
HR = np.einsum("klm, kr, k->rlm", Hk, phase, kweights)
|
14
|
+
return HR
|
15
|
+
|
16
|
+
|
17
|
+
def k_to_R(kpts, Rlist, Mk, kweights=None):
|
18
|
+
"""
|
19
|
+
Transform k-space wavefunctions to real space.
|
20
|
+
params:
|
21
|
+
kpts: k-points
|
22
|
+
Rlist: list of R vectors
|
23
|
+
Mk: matrix of shape [nkpt, n1, n2] in k-space.
|
24
|
+
|
25
|
+
return:
|
26
|
+
MR: matrix of shape [nR, n1, n2], the matrix in R-space.
|
27
|
+
|
28
|
+
"""
|
29
|
+
nkpt, n1, n2 = Mk.shape
|
30
|
+
if kweights is None:
|
31
|
+
kweights = np.ones(nkpt, dtype=float) / nkpt
|
32
|
+
phase = np.exp(-2.0j * np.pi * np.tensordot(kpts, Rlist, axes=([1], [1])))
|
33
|
+
MR = np.einsum("klm, kr, k -> rlm", Mk, phase, kweights)
|
34
|
+
return MR
|
35
|
+
|
36
|
+
# nkpt, n1, n2 = Mk.shape
|
37
|
+
# nR = Rlist.shape[0]
|
38
|
+
# MR = np.zeros((nR, n1, n2), dtype=complex)
|
39
|
+
# if kweights is None:
|
40
|
+
# kweights = np.ones(nkpt, dtype=float)/nkpt
|
41
|
+
# for iR, R in enumerate(Rlist):
|
42
|
+
# for ik in range(nkpt):
|
43
|
+
# MR[iR] += Mk[ik] * np.exp(-2.0j*np.pi * np.dot(kpts[ik], R)) * kweights[ik]
|
44
|
+
# return MR
|
45
|
+
|
46
|
+
|
47
|
+
def R_to_k(kpts, Rlist, MR):
|
48
|
+
"""
|
49
|
+
Transform real-space wavefunctions to k-space.
|
50
|
+
params:
|
51
|
+
kpts: k-points
|
52
|
+
Rlist: list of R vectors
|
53
|
+
MR: matrix of shape [nR, n1, n2] in R-space.
|
54
|
+
|
55
|
+
return:
|
56
|
+
Mk: matrix of shape [nkpt, n1, n2], the matrix in k-space.
|
57
|
+
|
58
|
+
"""
|
59
|
+
phase = np.exp(2.0 * np.pi * 1j * np.tensordot(kpts, Rlist, axes=([1], [1])))
|
60
|
+
Mk = np.einsum("rlm, kr -> klm", MR, phase)
|
61
|
+
|
62
|
+
# nkpt, n1, n2 = Mk.shape
|
63
|
+
# nR = Rlist.shape[0]
|
64
|
+
# Mk = np.zeros((nkpt, n1, n2), dtype=complex)
|
65
|
+
# for iR, R in enumerate(Rlist):
|
66
|
+
# for ik in range(nkpt):
|
67
|
+
# Mk[ik] += MR[iR] * np.exp(2.0 * np.pi * 1j * np.dot(kpts[ik], R))
|
68
|
+
return Mk
|
69
|
+
|
70
|
+
|
71
|
+
def R_to_onek(kpt, Rlist, MR):
|
72
|
+
"""
|
73
|
+
Transform real-space wavefunctions to k-space.
|
74
|
+
params:
|
75
|
+
kpt: k-point
|
76
|
+
Rlist: list of R vectors
|
77
|
+
MR: matrix of shape [nR, n1, n2] in R-space.
|
78
|
+
|
79
|
+
return:
|
80
|
+
Mk: matrix of shape [n1, n2], the matrix in k-space.
|
81
|
+
|
82
|
+
"""
|
83
|
+
phase = np.exp(2.0j * np.pi * np.dot(Rlist, kpt))
|
84
|
+
Mk = np.einsum("rlm, r -> lm", MR, phase)
|
85
|
+
return Mk
|
86
|
+
# n1, n2 = MR.shape[1:]
|
87
|
+
# Mk = np.zeros((n1, n2), dtype=complex)
|
88
|
+
# for iR, R in enumerate(Rlist):
|
89
|
+
# Mk += MR[iR] * np.exp(2.0j*np.pi * np.dot(kpt, R))
|
90
|
+
# return Mk
|
TB2J/mathutils/lowdin.py
ADDED
@@ -0,0 +1,12 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from scipy.linalg import inv, eigh
|
3
|
+
|
4
|
+
|
5
|
+
def Lowdin(S):
|
6
|
+
"""
|
7
|
+
Calculate S^(-1/2).
|
8
|
+
Which is used in lowind's symmetric orthonormalization.
|
9
|
+
psi_prime = S^(-1/2) psi
|
10
|
+
"""
|
11
|
+
eigval, eigvec = eigh(S)
|
12
|
+
return eigvec @ np.diag(np.sqrt(1.0 / eigval)) @ (eigvec.T.conj())
|
@@ -0,0 +1,35 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from TB2J.pauli import pauli_block_all, s0, s1, s2, s3, gather_pauli_blocks
|
3
|
+
|
4
|
+
|
5
|
+
def rotate_Matrix_from_z_to_axis(M, axis, normalize=True):
|
6
|
+
"""
|
7
|
+
Given a spinor matrix M, rotate it from z-axis to axis.
|
8
|
+
The spinor matrix M is a 2x2 matrix, which can be decomposed as I, x, y, z components using Pauli matrices.
|
9
|
+
"""
|
10
|
+
MI, Mx, My, Mz = pauli_block_all(M)
|
11
|
+
axis = axis / np.linalg.norm(axis)
|
12
|
+
# M_new = s0* MI + Mz * (axis[0] * s1 + axis[1] * s2 + axis[2] * s3) *2
|
13
|
+
M_new = gather_pauli_blocks(MI, Mz * axis[0], Mz * axis[1], Mz * axis[2])
|
14
|
+
return M_new
|
15
|
+
|
16
|
+
|
17
|
+
def test_rotate_Matrix_from_z_to_axis():
|
18
|
+
M = np.array([[1.1, 0], [0, 0.9]])
|
19
|
+
print(pauli_block_all(M))
|
20
|
+
Mnew = rotate_Matrix_from_z_to_axis(M, [1, 1, 1])
|
21
|
+
print(pauli_block_all(Mnew))
|
22
|
+
print(Mnew)
|
23
|
+
|
24
|
+
M = np.array(
|
25
|
+
[
|
26
|
+
[-9.90532976e-06 + 0.0j, 0.00000000e00 + 0.0j],
|
27
|
+
[0.00000000e00 + 0.0j, -9.88431291e-06 + 0.0j],
|
28
|
+
]
|
29
|
+
)
|
30
|
+
print(M)
|
31
|
+
print(rotate_Matrix_from_z_to_axis(M, [0, 0, 1]))
|
32
|
+
|
33
|
+
|
34
|
+
if __name__ == "__main__":
|
35
|
+
test_rotate_Matrix_from_z_to_axis()
|
TB2J/pauli.py
CHANGED
@@ -143,7 +143,24 @@ def pauli_block_all(M):
|
|
143
143
|
return MI, Mx, My, Mz
|
144
144
|
|
145
145
|
|
146
|
+
def gather_pauli_blocks(MI, Mx, My, Mz):
|
147
|
+
"""
|
148
|
+
Gather the I, x, y, z component of a matrix.
|
149
|
+
"""
|
150
|
+
return np.kron(MI, s0) + np.kron(Mx, s1) + np.kron(My, s2) + np.kron(Mz, s3)
|
151
|
+
|
152
|
+
|
153
|
+
def test_gather_pauli_blocks():
|
154
|
+
M = np.random.rand(4, 4)
|
155
|
+
MI, Mx, My, Mz = pauli_block_all(M)
|
156
|
+
M2 = gather_pauli_blocks(MI, Mx, My, Mz)
|
157
|
+
assert np.allclose(M, M2)
|
158
|
+
|
159
|
+
|
146
160
|
def op_norm(M):
|
161
|
+
"""
|
162
|
+
Return the operator norm of a matrix.
|
163
|
+
"""
|
147
164
|
return max(svd(M)[1])
|
148
165
|
|
149
166
|
|
TB2J/utils.py
CHANGED
@@ -87,6 +87,7 @@ def auto_assign_wannier_to_atom(positions, atoms, max_distance=0.1, half=False):
|
|
87
87
|
"""
|
88
88
|
pos = np.array(positions)
|
89
89
|
atompos = atoms.get_scaled_positions(wrap=False)
|
90
|
+
cell = atoms.get_cell()
|
90
91
|
ind_atoms = []
|
91
92
|
newpos = []
|
92
93
|
refpos = []
|
@@ -95,8 +96,9 @@ def auto_assign_wannier_to_atom(positions, atoms, max_distance=0.1, half=False):
|
|
95
96
|
dp = p[None, :] - atompos
|
96
97
|
# residual of d
|
97
98
|
r = dp - np.round(dp)
|
99
|
+
r_cart = r @ cell
|
98
100
|
# find the min of residual
|
99
|
-
normd = np.linalg.norm(
|
101
|
+
normd = np.linalg.norm(r_cart, axis=1)
|
100
102
|
iatom = np.argmin(normd)
|
101
103
|
# ref+residual
|
102
104
|
rmin = r[iatom]
|
@@ -330,3 +332,82 @@ def simpson_nonuniform(x, f):
|
|
330
332
|
result += f[N - 1] * (h[N - 1] ** 2 + 3 * h[N - 1] * h[N - 2]) / (6 * h[N - 2])
|
331
333
|
result -= f[N - 2] * h[N - 1] ** 3 / (6 * h[N - 2] * (h[N - 2] + h[N - 1]))
|
332
334
|
return result
|
335
|
+
|
336
|
+
|
337
|
+
def simpson_nonuniform_weight(x):
|
338
|
+
"""
|
339
|
+
Simpson rule for irregularly spaced data.
|
340
|
+
x: list or np.array of floats
|
341
|
+
Sampling points for the function values
|
342
|
+
Returns
|
343
|
+
-------
|
344
|
+
weight : list or np.array of floats
|
345
|
+
weight for the Simpson rule
|
346
|
+
For the function f(x), the integral is approximated as
|
347
|
+
$\int f(x) dx \approx \sum_i weight[i] * f(x[i])$
|
348
|
+
"""
|
349
|
+
|
350
|
+
weight = np.zeros_like(x)
|
351
|
+
N = len(x) - 1
|
352
|
+
h = np.diff(x)
|
353
|
+
|
354
|
+
for i in range(1, N, 2):
|
355
|
+
hph = h[i] + h[i - 1]
|
356
|
+
weight[i] += (h[i] ** 3 + h[i - 1] ** 3 + 3.0 * h[i] * h[i - 1] * hph) / (
|
357
|
+
6 * h[i] * h[i - 1]
|
358
|
+
)
|
359
|
+
weight[i - 1] += (
|
360
|
+
2.0 * h[i - 1] ** 3 - h[i] ** 3 + 3.0 * h[i] * h[i - 1] ** 2
|
361
|
+
) / (6 * h[i - 1] * hph)
|
362
|
+
weight[i + 1] += (
|
363
|
+
2.0 * h[i] ** 3 - h[i - 1] ** 3 + 3.0 * h[i - 1] * h[i] ** 2
|
364
|
+
) / (6 * h[i] * hph)
|
365
|
+
|
366
|
+
if (N + 1) % 2 == 0:
|
367
|
+
weight[N] += (2 * h[N - 1] ** 2 + 3.0 * h[N - 2] * h[N - 1]) / (
|
368
|
+
6 * (h[N - 2] + h[N - 1])
|
369
|
+
)
|
370
|
+
weight[N - 1] += (h[N - 1] ** 2 + 3 * h[N - 1] * h[N - 2]) / (6 * h[N - 2])
|
371
|
+
weight[N - 2] -= h[N - 1] ** 3 / (6 * h[N - 2] * (h[N - 2] + h[N - 1]))
|
372
|
+
return weight
|
373
|
+
|
374
|
+
|
375
|
+
def trapz_nonuniform_weight(x):
|
376
|
+
"""
|
377
|
+
trapezoidal rule for irregularly spaced data.
|
378
|
+
x: list or np.array of floats
|
379
|
+
Sampling points for the function values
|
380
|
+
Returns
|
381
|
+
-------
|
382
|
+
weight : list or np.array of floats
|
383
|
+
weight for the trapezoidal rule
|
384
|
+
For the function f(x), the integral is approximated as
|
385
|
+
$\int f(x) dx \approx \sum_i weight[i] * f(x[i])$
|
386
|
+
"""
|
387
|
+
h = np.diff(x)
|
388
|
+
weight = np.zeros_like(x)
|
389
|
+
weight[0] = h[0] / 2.0
|
390
|
+
weight[1:-1] = (h[1:] + h[:-1]) / 2.0
|
391
|
+
weight[-1] = h[-1] / 2.0
|
392
|
+
return weight
|
393
|
+
|
394
|
+
|
395
|
+
def test_simpson_nonuniform():
|
396
|
+
x = np.array([0.0, 0.1, 0.3, 0.5, 0.8, 1.0])
|
397
|
+
w = simpson_nonuniform_weight(x)
|
398
|
+
# assert np.allclose(w, [0.1, 0.4, 0.4, 0.4, 0.4, 0.1])
|
399
|
+
assert np.allclose(simpson_nonuniform(x, x**8), 0.12714277533333335)
|
400
|
+
print("simpson_weight:", simpson_nonuniform_weight(x) @ x**8, 0.12714277533333335)
|
401
|
+
print("trapz_weight:", trapz_nonuniform_weight(x) @ x**8)
|
402
|
+
|
403
|
+
x2 = np.linspace(0, 1, 500)
|
404
|
+
print(simpson_nonuniform_weight(x2) @ x2**8, 1 / 9.0)
|
405
|
+
print(simpson_nonuniform_weight(x2) @ x2**8)
|
406
|
+
print("simpson_weight:", simpson_nonuniform_weight(x2) @ x2**8)
|
407
|
+
print("trapz_weight:", trapz_nonuniform_weight(x2) @ x2**8)
|
408
|
+
|
409
|
+
assert np.allclose(simpson_nonuniform(x, x**8), 1 / 9.0)
|
410
|
+
|
411
|
+
|
412
|
+
if __name__ == "__main__":
|
413
|
+
test_simpson_nonuniform()
|
@@ -58,6 +58,13 @@ def main():
|
|
58
58
|
default=False,
|
59
59
|
)
|
60
60
|
|
61
|
+
parser.add_argument(
|
62
|
+
"--method",
|
63
|
+
help="The method to downfold the exchange parameter. Options are Lowdin and PWF (projected Wannier function). ",
|
64
|
+
type=str,
|
65
|
+
default="Lowdin",
|
66
|
+
)
|
67
|
+
|
61
68
|
args = parser.parse_args()
|
62
69
|
|
63
70
|
if len(args.metals) == []:
|
@@ -73,6 +80,7 @@ def main():
|
|
73
80
|
outpath=args.outpath,
|
74
81
|
qmesh=args.qmesh,
|
75
82
|
iso_only=args.iso_only,
|
83
|
+
method=args.method,
|
76
84
|
)
|
77
85
|
|
78
86
|
|