ScandEval 16.11.0__py3-none-any.whl → 16.13.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. scandeval/__init__.py +0 -9
  2. scandeval/async_utils.py +46 -0
  3. scandeval/benchmark_config_factory.py +31 -2
  4. scandeval/benchmark_modules/fresh.py +2 -1
  5. scandeval/benchmark_modules/hf.py +76 -23
  6. scandeval/benchmark_modules/litellm.py +33 -15
  7. scandeval/benchmark_modules/vllm.py +97 -44
  8. scandeval/benchmarker.py +29 -33
  9. scandeval/cli.py +11 -0
  10. scandeval/constants.py +36 -2
  11. scandeval/custom_dataset_configs.py +152 -0
  12. scandeval/data_loading.py +87 -31
  13. scandeval/data_models.py +405 -224
  14. scandeval/dataset_configs/__init__.py +51 -25
  15. scandeval/dataset_configs/albanian.py +1 -1
  16. scandeval/dataset_configs/belarusian.py +47 -0
  17. scandeval/dataset_configs/bulgarian.py +1 -1
  18. scandeval/dataset_configs/catalan.py +1 -1
  19. scandeval/dataset_configs/croatian.py +1 -1
  20. scandeval/dataset_configs/danish.py +3 -2
  21. scandeval/dataset_configs/dutch.py +16 -5
  22. scandeval/dataset_configs/english.py +4 -3
  23. scandeval/dataset_configs/estonian.py +8 -7
  24. scandeval/dataset_configs/faroese.py +1 -1
  25. scandeval/dataset_configs/finnish.py +5 -4
  26. scandeval/dataset_configs/french.py +6 -5
  27. scandeval/dataset_configs/german.py +4 -3
  28. scandeval/dataset_configs/greek.py +1 -1
  29. scandeval/dataset_configs/hungarian.py +1 -1
  30. scandeval/dataset_configs/icelandic.py +4 -3
  31. scandeval/dataset_configs/italian.py +4 -3
  32. scandeval/dataset_configs/latvian.py +2 -2
  33. scandeval/dataset_configs/lithuanian.py +1 -1
  34. scandeval/dataset_configs/norwegian.py +6 -5
  35. scandeval/dataset_configs/polish.py +4 -3
  36. scandeval/dataset_configs/portuguese.py +5 -4
  37. scandeval/dataset_configs/romanian.py +2 -2
  38. scandeval/dataset_configs/serbian.py +1 -1
  39. scandeval/dataset_configs/slovene.py +1 -1
  40. scandeval/dataset_configs/spanish.py +4 -3
  41. scandeval/dataset_configs/swedish.py +4 -3
  42. scandeval/dataset_configs/ukrainian.py +1 -1
  43. scandeval/generation_utils.py +6 -6
  44. scandeval/metrics/__init__.py +1 -0
  45. scandeval/metrics/bias.py +237 -0
  46. scandeval/metrics/huggingface.py +2 -1
  47. scandeval/metrics/llm_as_a_judge.py +1 -1
  48. scandeval/metrics/pipeline.py +1 -1
  49. scandeval/model_cache.py +34 -4
  50. scandeval/prompt_templates/linguistic_acceptability.py +9 -0
  51. scandeval/prompt_templates/multiple_choice.py +9 -0
  52. scandeval/prompt_templates/named_entity_recognition.py +21 -0
  53. scandeval/prompt_templates/reading_comprehension.py +10 -0
  54. scandeval/prompt_templates/sentiment_classification.py +11 -0
  55. scandeval/string_utils.py +157 -0
  56. scandeval/task_group_utils/sequence_classification.py +2 -5
  57. scandeval/task_group_utils/token_classification.py +2 -4
  58. scandeval/tasks.py +22 -0
  59. scandeval/tokenisation_utils.py +12 -1
  60. scandeval/utils.py +13 -383
  61. scandeval-16.13.0.dist-info/METADATA +334 -0
  62. scandeval-16.13.0.dist-info/RECORD +94 -0
  63. scandeval-16.11.0.dist-info/METADATA +0 -649
  64. scandeval-16.11.0.dist-info/RECORD +0 -89
  65. {scandeval-16.11.0.dist-info → scandeval-16.13.0.dist-info}/WHEEL +0 -0
  66. {scandeval-16.11.0.dist-info → scandeval-16.13.0.dist-info}/entry_points.txt +0 -0
  67. {scandeval-16.11.0.dist-info → scandeval-16.13.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,157 @@
1
+ """Utility functions related to string manipulation or structuring."""
2
+
3
+ import collections.abc as c
4
+ import logging
5
+ import re
6
+ import typing as t
7
+
8
+ import demjson3
9
+ import numpy as np
10
+
11
+ from .exceptions import InvalidBenchmark, InvalidModel
12
+ from .logging_utils import log
13
+
14
+ if t.TYPE_CHECKING:
15
+ from .data_models import ModelIdComponents
16
+
17
+
18
+ def scramble(text: str) -> str:
19
+ """Scramble a string in a bijective manner.
20
+
21
+ Args:
22
+ text:
23
+ The string to scramble.
24
+
25
+ Returns:
26
+ The scrambled string.
27
+ """
28
+ rng = np.random.default_rng(seed=4242)
29
+ permutation = rng.permutation(x=len(text))
30
+ scrambled = "".join(text[i] for i in permutation)
31
+ return scrambled
32
+
33
+
34
+ def unscramble(scrambled_text: str) -> str:
35
+ """Unscramble a string in a bijective manner.
36
+
37
+ Args:
38
+ scrambled_text:
39
+ The scrambled string to unscramble.
40
+
41
+ Returns:
42
+ The unscrambled string.
43
+ """
44
+ rng = np.random.default_rng(seed=4242)
45
+ permutation = rng.permutation(x=len(scrambled_text))
46
+ inverse_permutation = np.argsort(permutation)
47
+ unscrambled = "".join(scrambled_text[i] for i in inverse_permutation)
48
+ return unscrambled
49
+
50
+
51
+ def extract_json_dict_from_string(s: str) -> dict | None:
52
+ """Extract a JSON dictionary from a string.
53
+
54
+ Args:
55
+ s:
56
+ The string to extract the JSON dictionary from.
57
+
58
+ Returns:
59
+ The extracted JSON dictionary, or None if no JSON dictionary could be found.
60
+ """
61
+ json_regex = r"\{[^{}]*?\}"
62
+ if (json_match := re.search(pattern=json_regex, string=s, flags=re.DOTALL)) is None:
63
+ log(
64
+ "The model output does not contain any JSON dictionary, so cannot parse "
65
+ f"it. Skipping. Here is the output: {s!r}",
66
+ level=logging.DEBUG,
67
+ )
68
+ return None
69
+ json_string = json_match.group()
70
+ try:
71
+ json_output = demjson3.decode(txt=json_string)
72
+ except demjson3.JSONDecodeError:
73
+ log(
74
+ "The model output is not valid JSON, so cannot parse it. Skipping. "
75
+ f"Here is the output: {json_string!r}",
76
+ level=logging.DEBUG,
77
+ )
78
+ return None
79
+ if not isinstance(json_output, dict):
80
+ log(
81
+ "The model output is not a JSON dictionary, so cannot parse "
82
+ f"it. Skipping. Here is the output: {json_string!r}",
83
+ level=logging.DEBUG,
84
+ )
85
+ return None
86
+ elif not all(isinstance(key, str) for key in json_output.keys()):
87
+ log(
88
+ "The model output is not a JSON dictionary with string keys, "
89
+ "so cannot parse it. Skipping. Here is the output: "
90
+ f"{json_string!r}",
91
+ level=logging.DEBUG,
92
+ )
93
+ return None
94
+ return json_output
95
+
96
+
97
+ def extract_multiple_choice_labels(
98
+ prompt: str, candidate_labels: c.Sequence[str]
99
+ ) -> c.Sequence[str]:
100
+ """Extract multiple choice labels from a prompt.
101
+
102
+ Args:
103
+ prompt:
104
+ The prompt to extract the labels from.
105
+ candidate_labels:
106
+ The candidate labels to look for in the prompt.
107
+
108
+ Returns:
109
+ The extracted labels.
110
+ """
111
+ sample_candidate_labels: list[str] = list()
112
+ for candidate_label in candidate_labels:
113
+ candidate_label_match = re.search(
114
+ pattern=rf"\b{candidate_label}\. ", string=prompt, flags=re.IGNORECASE
115
+ )
116
+ if candidate_label_match is not None:
117
+ sample_candidate_labels.append(candidate_label)
118
+ if not sample_candidate_labels:
119
+ raise InvalidBenchmark(
120
+ "Could not extract any candidate labels from the prompt. Please ensure "
121
+ "that the candidate labels are present in the prompt, each followed by a "
122
+ "dot and a space (e.g., 'a. '). The candidate labels are: "
123
+ f"{', '.join(candidate_labels)}. Here is the prompt: {prompt!r}"
124
+ )
125
+ return sample_candidate_labels
126
+
127
+
128
+ def split_model_id(model_id: str) -> "ModelIdComponents":
129
+ """Split a model ID into its components.
130
+
131
+ Args:
132
+ model_id:
133
+ The model ID to split.
134
+
135
+ Returns:
136
+ The split model ID.
137
+
138
+ Raises:
139
+ If the model ID is not valid.
140
+ """
141
+ # Importing here to avoid circular imports
142
+ from .data_models import ModelIdComponents
143
+
144
+ # Attempt to extract the model ID, revision, and param using regex
145
+ model_id_match = re.match(pattern=r"^[^@#]+", string=model_id)
146
+ revision_match = re.search(pattern=r"@([^@#]+)", string=model_id)
147
+ param_match = re.search(pattern=r"#([^@#]+)", string=model_id)
148
+
149
+ # If we cannot extract the model ID, raise an error
150
+ if model_id_match is None:
151
+ raise InvalidModel(f"The model ID {model_id!r} is not valid.")
152
+ model_id = model_id_match.group()
153
+
154
+ # Extract the revision and param and return the result
155
+ revision = revision_match.group(1) if revision_match is not None else "main"
156
+ param = param_match.group(1) if param_match is not None else None
157
+ return ModelIdComponents(model_id=model_id, revision=revision, param=param)
@@ -10,12 +10,9 @@ import numpy as np
10
10
 
11
11
  from ..enums import TaskGroup
12
12
  from ..exceptions import InvalidBenchmark
13
+ from ..string_utils import extract_multiple_choice_labels
13
14
  from ..types import Predictions
14
- from ..utils import (
15
- extract_multiple_choice_labels,
16
- log_once,
17
- raise_if_model_output_contains_nan_values,
18
- )
15
+ from ..utils import log_once, raise_if_model_output_contains_nan_values
19
16
 
20
17
  if t.TYPE_CHECKING:
21
18
  from datasets.arrow_dataset import Dataset
@@ -9,10 +9,8 @@ import numpy as np
9
9
 
10
10
  from ..exceptions import InvalidBenchmark
11
11
  from ..logging_utils import log
12
- from ..utils import (
13
- extract_json_dict_from_string,
14
- raise_if_model_output_contains_nan_values,
15
- )
12
+ from ..string_utils import extract_json_dict_from_string
13
+ from ..utils import raise_if_model_output_contains_nan_values
16
14
 
17
15
  if t.TYPE_CHECKING:
18
16
  from datasets.arrow_dataset import Dataset
scandeval/tasks.py CHANGED
@@ -153,6 +153,28 @@ EUROPEAN_VALUES = Task(
153
153
  )
154
154
 
155
155
 
156
+ MCSTEREO = Task(
157
+ name="multiple-choice-stereotype-bias",
158
+ task_group=TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION,
159
+ template_dict=MULTIPLE_CHOICE_TEMPLATES,
160
+ metrics=[
161
+ m.bias_adjusted_accuracy_ambig_metric,
162
+ m.bias_ambig_metric,
163
+ m.accuracy_ambig_metric,
164
+ ],
165
+ default_num_few_shot_examples=0,
166
+ default_max_generated_tokens=NUM_GENERATION_TOKENS_FOR_CLASSIFICATION,
167
+ default_labels=["a", "b", "c"],
168
+ default_allowed_model_types=[ModelType.GENERATIVE],
169
+ default_allowed_generative_types=[
170
+ GenerativeType.INSTRUCTION_TUNED,
171
+ GenerativeType.REASONING,
172
+ ],
173
+ requires_zero_shot=True,
174
+ uses_logprobs=True,
175
+ )
176
+
177
+
156
178
  SPEED = Task(
157
179
  name="speed",
158
180
  task_group=TaskGroup.SPEED,
@@ -6,6 +6,7 @@ import re
6
6
  import typing as t
7
7
 
8
8
  import torch
9
+ from transformers import BatchEncoding
9
10
 
10
11
  from .constants import BOS_TOKENS, EOS_TOKENS, PAD_TOKENS
11
12
  from .enums import GenerativeType
@@ -340,7 +341,17 @@ def get_end_of_chat_token_ids(
340
341
  if "does not have a chat template" in str(e):
341
342
  return None
342
343
  raise e
343
- assert isinstance(token_ids, list)
344
+
345
+ assert isinstance(token_ids, (BatchEncoding, list)), (
346
+ f"Expected token_ids to be a BatchEncoding or list, but got {type(token_ids)}.",
347
+ )
348
+
349
+ if isinstance(token_ids, BatchEncoding):
350
+ token_ids = token_ids.input_ids
351
+
352
+ assert isinstance(token_ids, list), (
353
+ f"Expected token_ids to be a list, but got {type(token_ids)}.",
354
+ )
344
355
 
345
356
  for idx, token in enumerate(tokeniser.convert_ids_to_tokens(token_ids)):
346
357
  if "X" in token:
scandeval/utils.py CHANGED
@@ -1,22 +1,14 @@
1
1
  """Utility functions to be used in other scripts."""
2
2
 
3
- import asyncio
4
- import collections.abc as c
5
3
  import gc
6
- import importlib
7
- import importlib.metadata
8
- import importlib.util
9
4
  import logging
10
5
  import os
11
6
  import random
12
- import re
13
7
  import socket
14
8
  import sys
15
9
  import typing as t
16
10
  from pathlib import Path
17
- from types import ModuleType, TracebackType
18
11
 
19
- import demjson3
20
12
  import huggingface_hub as hf_hub
21
13
  import numpy as np
22
14
  import torch
@@ -24,48 +16,14 @@ from huggingface_hub.errors import LocalTokenNotFoundError
24
16
  from requests.exceptions import RequestException
25
17
 
26
18
  from .caching_utils import cache_arguments
27
- from .constants import T
28
- from .exceptions import InvalidBenchmark, InvalidModel, NaNValueInModelOutput
29
- from .logging_utils import log, log_once
19
+ from .constants import LOCAL_MODELS_REQUIRED_FILES
20
+ from .exceptions import InvalidModel, NaNValueInModelOutput
21
+ from .logging_utils import log_once
30
22
 
31
23
  if t.TYPE_CHECKING:
32
- from .data_models import ModelIdComponents
33
24
  from .types import Predictions
34
25
 
35
26
 
36
- def create_model_cache_dir(cache_dir: str, model_id: str) -> str:
37
- """Create cache directory for a model.
38
-
39
- Args:
40
- cache_dir:
41
- The cache directory.
42
- model_id:
43
- The model ID.
44
-
45
- Returns:
46
- The path to the cache directory.
47
- """
48
- # If the model ID is a path, we just use that as the cache dir
49
- if Path(model_id).is_dir():
50
- log_once(
51
- f"Since the model {model_id!r} is a local model, we will use the model "
52
- "directory directly as the model cache directory.",
53
- level=logging.DEBUG,
54
- )
55
- return model_id
56
-
57
- # Otherwise, we create a cache dir based on the model ID
58
- model_cache_dir = Path(
59
- cache_dir, "model_cache", model_id.replace("/", "--")
60
- ).as_posix()
61
- log_once(
62
- f"Using the model cache directory {model_cache_dir!r} for the model "
63
- f"{model_id!r}.",
64
- level=logging.DEBUG,
65
- )
66
- return model_cache_dir
67
-
68
-
69
27
  def resolve_model_path(download_dir: str) -> str:
70
28
  """Resolve the path to the directory containing the model config files and weights.
71
29
 
@@ -107,16 +65,16 @@ def resolve_model_path(download_dir: str) -> str:
107
65
  f"at {model_path}"
108
66
  )
109
67
 
110
- # Check that found_files contains at least a 'config.json'
111
- config_file = next(
112
- (file for file in found_files if file.name == "config.json"), None
68
+ # Check that found_files contains at least one of the required files
69
+ found_required_file = next(
70
+ (file for file in found_files if file.name in LOCAL_MODELS_REQUIRED_FILES), None
113
71
  )
114
- if config_file is None:
72
+ if found_required_file is None:
115
73
  raise InvalidModel(
116
- f"Missing required file 'config.json' for {model_id_path.strip('models--')}"
117
- f"at {model_path}"
74
+ f"At least one of the files {LOCAL_MODELS_REQUIRED_FILES} must be present "
75
+ f"for {model_id_path.strip('models--')} at {model_path}"
118
76
  )
119
- model_path = config_file.parent
77
+ model_path = found_required_file.parent
120
78
 
121
79
  # As a precaution we also check that all of the files are in the same directory
122
80
  # if not we create a new dir with symlinks to all of the files from all snapshots
@@ -164,47 +122,6 @@ def enforce_reproducibility(seed: int = 4242) -> np.random.Generator:
164
122
  return rng
165
123
 
166
124
 
167
- def get_class_by_name(
168
- class_name: str | c.Sequence[str], module_name: str
169
- ) -> t.Type | None:
170
- """Get a class by its name.
171
-
172
- Args:
173
- class_name:
174
- The name of the class, written in kebab-case. The corresponding class name
175
- must be the same, but written in PascalCase, and lying in a module with the
176
- same name, but written in snake_case. If a list of strings is passed, the
177
- first class that is found is returned.
178
- module_name:
179
- The name of the module where the class is located.
180
-
181
- Returns:
182
- The class. If the class is not found, None is returned.
183
- """
184
- if isinstance(class_name, str):
185
- class_name = [class_name]
186
-
187
- error_messages = list()
188
- for name in class_name:
189
- try:
190
- module = importlib.import_module(name=module_name)
191
- class_: t.Type = getattr(module, name)
192
- return class_
193
- except (ModuleNotFoundError, AttributeError) as e:
194
- error_messages.append(str(e))
195
-
196
- if error_messages:
197
- errors = "\n- " + "\n- ".join(error_messages)
198
- log(
199
- f"Could not find the class with the name(s) {', '.join(class_name)}. The "
200
- f"following error messages were raised: {errors}",
201
- level=logging.DEBUG,
202
- )
203
-
204
- # If the class could not be found, return None
205
- return None
206
-
207
-
208
125
  def get_min_cuda_compute_capability() -> float | None:
209
126
  """Gets the lowest cuda capability.
210
127
 
@@ -222,7 +139,7 @@ def get_min_cuda_compute_capability() -> float | None:
222
139
 
223
140
  @cache_arguments(disable_condition=lambda: hasattr(sys, "_called_from_test"))
224
141
  def internet_connection_available() -> bool:
225
- """Checks if internet connection is available by pinging google.com.
142
+ """Checks if internet connection is available.
226
143
 
227
144
  Returns:
228
145
  Whether or not internet connection is available.
@@ -265,141 +182,6 @@ def raise_if_model_output_contains_nan_values(model_output: "Predictions") -> No
265
182
  raise NaNValueInModelOutput()
266
183
 
267
184
 
268
- def scramble(text: str) -> str:
269
- """Scramble a string in a bijective manner.
270
-
271
- Args:
272
- text:
273
- The string to scramble.
274
-
275
- Returns:
276
- The scrambled string.
277
- """
278
- rng = np.random.default_rng(seed=4242)
279
- permutation = rng.permutation(x=len(text))
280
- scrambled = "".join(text[i] for i in permutation)
281
- return scrambled
282
-
283
-
284
- def unscramble(scrambled_text: str) -> str:
285
- """Unscramble a string in a bijective manner.
286
-
287
- Args:
288
- scrambled_text:
289
- The scrambled string to unscramble.
290
-
291
- Returns:
292
- The unscrambled string.
293
- """
294
- rng = np.random.default_rng(seed=4242)
295
- permutation = rng.permutation(x=len(scrambled_text))
296
- inverse_permutation = np.argsort(permutation)
297
- unscrambled = "".join(scrambled_text[i] for i in inverse_permutation)
298
- return unscrambled
299
-
300
-
301
- def get_package_version(package_name: str) -> str | None:
302
- """Get the version of a package.
303
-
304
- Args:
305
- package_name:
306
- The name of the package.
307
-
308
- Returns:
309
- The version of the package, or None if the package is not installed.
310
- """
311
- try:
312
- return importlib.metadata.version(package_name)
313
- except importlib.metadata.PackageNotFoundError:
314
- return None
315
-
316
-
317
- def safe_run(coroutine: t.Coroutine[t.Any, t.Any, T]) -> T:
318
- """Run a coroutine, ensuring that the event loop is always closed when we're done.
319
-
320
- Args:
321
- coroutine:
322
- The coroutine to run.
323
-
324
- Returns:
325
- The result of the coroutine.
326
- """
327
- try:
328
- loop = asyncio.get_event_loop()
329
- except RuntimeError: # If the current event loop is closed
330
- loop = asyncio.new_event_loop()
331
- asyncio.set_event_loop(loop)
332
- response = loop.run_until_complete(coroutine)
333
- return response
334
-
335
-
336
- async def add_semaphore_and_catch_exception(
337
- coroutine: t.Coroutine[t.Any, t.Any, T], semaphore: asyncio.Semaphore
338
- ) -> T | Exception:
339
- """Run a coroutine with a semaphore.
340
-
341
- Args:
342
- coroutine:
343
- The coroutine to run.
344
- semaphore:
345
- The semaphore to use.
346
-
347
- Returns:
348
- The result of the coroutine.
349
- """
350
- async with semaphore:
351
- try:
352
- return await coroutine
353
- except Exception as exc:
354
- return exc
355
-
356
-
357
- def extract_json_dict_from_string(s: str) -> dict | None:
358
- """Extract a JSON dictionary from a string.
359
-
360
- Args:
361
- s:
362
- The string to extract the JSON dictionary from.
363
-
364
- Returns:
365
- The extracted JSON dictionary, or None if no JSON dictionary could be found.
366
- """
367
- json_regex = r"\{[^{}]*?\}"
368
- if (json_match := re.search(pattern=json_regex, string=s, flags=re.DOTALL)) is None:
369
- log(
370
- "The model output does not contain any JSON dictionary, so cannot parse "
371
- f"it. Skipping. Here is the output: {s!r}",
372
- level=logging.DEBUG,
373
- )
374
- return None
375
- json_string = json_match.group()
376
- try:
377
- json_output = demjson3.decode(txt=json_string)
378
- except demjson3.JSONDecodeError:
379
- log(
380
- "The model output is not valid JSON, so cannot parse it. Skipping. "
381
- f"Here is the output: {json_string!r}",
382
- level=logging.DEBUG,
383
- )
384
- return None
385
- if not isinstance(json_output, dict):
386
- log(
387
- "The model output is not a JSON dictionary, so cannot parse "
388
- f"it. Skipping. Here is the output: {json_string!r}",
389
- level=logging.DEBUG,
390
- )
391
- return None
392
- elif not all(isinstance(key, str) for key in json_output.keys()):
393
- log(
394
- "The model output is not a JSON dictionary with string keys, "
395
- "so cannot parse it. Skipping. Here is the output: "
396
- f"{json_string!r}",
397
- level=logging.DEBUG,
398
- )
399
- return None
400
- return json_output
401
-
402
-
403
185
  @cache_arguments()
404
186
  def get_hf_token(api_key: str | None) -> str | bool:
405
187
  """Get the Hugging Face token.
@@ -419,10 +201,9 @@ def get_hf_token(api_key: str | None) -> str | bool:
419
201
  level=logging.DEBUG,
420
202
  )
421
203
  return api_key
422
- elif (token := os.getenv("HUGGINGFACE_API_KEY")) is not None:
204
+ elif (token := os.getenv("HF_TOKEN")) is not None:
423
205
  log_once(
424
- "Using the Hugging Face API key from the environment variable "
425
- "`HUGGINGFACE_API_KEY`.",
206
+ "Using the Hugging Face API key from the environment variable `HF_TOKEN`.",
426
207
  level=logging.DEBUG,
427
208
  )
428
209
  return token
@@ -448,154 +229,3 @@ def get_hf_token(api_key: str | None) -> str | bool:
448
229
  level=logging.DEBUG,
449
230
  )
450
231
  return False
451
-
452
-
453
- def extract_multiple_choice_labels(
454
- prompt: str, candidate_labels: c.Sequence[str]
455
- ) -> c.Sequence[str]:
456
- """Extract multiple choice labels from a prompt.
457
-
458
- Args:
459
- prompt:
460
- The prompt to extract the labels from.
461
- candidate_labels:
462
- The candidate labels to look for in the prompt.
463
-
464
- Returns:
465
- The extracted labels.
466
- """
467
- sample_candidate_labels: list[str] = list()
468
- for candidate_label in candidate_labels:
469
- candidate_label_match = re.search(
470
- pattern=rf"\b{candidate_label}\. ", string=prompt, flags=re.IGNORECASE
471
- )
472
- if candidate_label_match is not None:
473
- sample_candidate_labels.append(candidate_label)
474
- if not sample_candidate_labels:
475
- raise InvalidBenchmark(
476
- "Could not extract any candidate labels from the prompt. Please ensure "
477
- "that the candidate labels are present in the prompt, each followed by a "
478
- "dot and a space (e.g., 'a. '). The candidate labels are: "
479
- f"{', '.join(candidate_labels)}. Here is the prompt: {prompt!r}"
480
- )
481
- return sample_candidate_labels
482
-
483
-
484
- def split_model_id(model_id: str) -> "ModelIdComponents":
485
- """Split a model ID into its components.
486
-
487
- Args:
488
- model_id:
489
- The model ID to split.
490
-
491
- Returns:
492
- The split model ID.
493
-
494
- Raises:
495
- If the model ID is not valid.
496
- """
497
- # Importing here to avoid circular imports
498
- from .data_models import ModelIdComponents
499
-
500
- # Attempt to extract the model ID, revision, and param using regex
501
- model_id_match = re.match(pattern=r"^[^@#]+", string=model_id)
502
- revision_match = re.search(pattern=r"@([^@#]+)", string=model_id)
503
- param_match = re.search(pattern=r"#([^@#]+)", string=model_id)
504
-
505
- # If we cannot extract the model ID, raise an error
506
- if model_id_match is None:
507
- raise InvalidModel(f"The model ID {model_id!r} is not valid.")
508
- model_id = model_id_match.group()
509
-
510
- # Extract the revision and param and return the result
511
- revision = revision_match.group(1) if revision_match is not None else "main"
512
- param = param_match.group(1) if param_match is not None else None
513
- return ModelIdComponents(model_id=model_id, revision=revision, param=param)
514
-
515
-
516
- def load_custom_datasets_module(custom_datasets_file: Path) -> ModuleType | None:
517
- """Load the custom datasets module if it exists.
518
-
519
- Args:
520
- custom_datasets_file:
521
- The path to the custom datasets module.
522
-
523
- Raises:
524
- RuntimeError:
525
- If the custom datasets module cannot be loaded.
526
- """
527
- if custom_datasets_file.exists():
528
- spec = importlib.util.spec_from_file_location(
529
- name="custom_datasets_module", location=str(custom_datasets_file.resolve())
530
- )
531
- if spec is None:
532
- log_once(
533
- "Could not load the spec for the custom datasets file from "
534
- f"{custom_datasets_file.resolve()}.",
535
- level=logging.ERROR,
536
- )
537
- return None
538
- module = importlib.util.module_from_spec(spec=spec)
539
- if spec.loader is None:
540
- log_once(
541
- "Could not load the module for the custom datasets file from "
542
- f"{custom_datasets_file.resolve()}.",
543
- level=logging.ERROR,
544
- )
545
- return None
546
- spec.loader.exec_module(module)
547
- return module
548
- return None
549
-
550
-
551
- class attention_backend:
552
- """Context manager to temporarily set the attention backend.
553
-
554
- This sets the `VLLM_ATTENTION_BACKEND` environment variable to the desired value
555
- for the duration of the context manager, and restores the previous value afterwards.
556
- """
557
-
558
- def __init__(self, value: str | None) -> None:
559
- """Initialise the context manager.
560
-
561
- Args:
562
- value:
563
- The name of the attention backend to set. If None then no change is
564
- made. Also, if the user has already set the `VLLM_ATTENTION_BACKEND` env
565
- var, then no change is made.
566
- """
567
- user_has_set_backend = (
568
- os.environ.get("USER_HAS_SET_VLLM_ATTENTION_BACKEND", "0") == "1"
569
- )
570
- self.value = None if user_has_set_backend else value
571
- self.previous_value: str | None = None
572
-
573
- def __enter__(self) -> None:
574
- """Enter the context manager."""
575
- if self.value is None:
576
- return
577
- self.previous_value = os.getenv("VLLM_ATTENTION_BACKEND")
578
- os.environ["VLLM_ATTENTION_BACKEND"] = self.value
579
-
580
- def __exit__(
581
- self,
582
- exc_type: t.Type[BaseException] | None,
583
- exc_value: BaseException | None,
584
- exc_tb: TracebackType | None,
585
- ) -> None:
586
- """Exit the context manager.
587
-
588
- Args:
589
- exc_type:
590
- The type of the exception.
591
- exc_value:
592
- The value of the exception.
593
- exc_tb:
594
- The traceback of the exception.
595
- """
596
- if self.value is None:
597
- return
598
- if self.previous_value is None:
599
- os.environ.pop("VLLM_ATTENTION_BACKEND", None)
600
- else:
601
- os.environ["VLLM_ATTENTION_BACKEND"] = self.previous_value