SURE-tools 2.2.23__py3-none-any.whl → 2.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,499 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.optim as optim
5
+ from torch.utils.data import Dataset, DataLoader
6
+ import numpy as np
7
+ from typing import Dict, Optional
8
+ import warnings
9
+ warnings.filterwarnings('ignore')
10
+
11
+ class TranscriptomeDecoder:
12
+ """Transcriptome decoder"""
13
+
14
+ def __init__(self,
15
+ latent_dim: int = 100,
16
+ gene_dim: int = 60000,
17
+ hidden_dim: int = 512,
18
+ device: str = None):
19
+ """
20
+ Simple but powerful decoder for latent to transcriptome mapping
21
+
22
+ Args:
23
+ latent_dim: Latent variable dimension (typically 50-100)
24
+ gene_dim: Number of genes (full transcriptome ~60,000)
25
+ hidden_dim: Hidden dimension optimized
26
+ device: Computation device
27
+ """
28
+ self.latent_dim = latent_dim
29
+ self.gene_dim = gene_dim
30
+ self.hidden_dim = hidden_dim
31
+ self.device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
32
+
33
+ # Initialize model
34
+ self.model = self._build_model()
35
+ self.model.to(self.device)
36
+
37
+ # Training state
38
+ self.is_trained = False
39
+ self.training_history = None
40
+ self.best_val_loss = float('inf')
41
+
42
+ print(f"🚀 SimpleTranscriptomeDecoder Initialized:")
43
+ print(f" - Latent Dimension: {latent_dim}")
44
+ print(f" - Gene Dimension: {gene_dim}")
45
+ print(f" - Hidden Dimension: {hidden_dim}")
46
+ print(f" - Device: {self.device}")
47
+ print(f" - Parameters: {sum(p.numel() for p in self.model.parameters()):,}")
48
+
49
+ class Decoder(nn.Module):
50
+ """Memory-efficient decoder architecture with dimension handling"""
51
+
52
+ def __init__(self, latent_dim: int, gene_dim: int, hidden_dim: int):
53
+ super().__init__()
54
+ self.latent_dim = latent_dim
55
+ self.gene_dim = gene_dim
56
+ self.hidden_dim = hidden_dim
57
+
58
+ # Stage 1: Latent variable expansion
59
+ self.latent_expansion = nn.Sequential(
60
+ nn.Linear(latent_dim, hidden_dim * 2),
61
+ nn.BatchNorm1d(hidden_dim * 2),
62
+ nn.GELU(),
63
+ nn.Dropout(0.1),
64
+ nn.Linear(hidden_dim * 2, hidden_dim),
65
+ nn.BatchNorm1d(hidden_dim),
66
+ nn.GELU(),
67
+ )
68
+
69
+ # Stage 2: Direct projection to gene dimension (simpler approach)
70
+ self.gene_projector = nn.Sequential(
71
+ nn.Linear(hidden_dim, hidden_dim * 2),
72
+ nn.GELU(),
73
+ nn.Dropout(0.1),
74
+ nn.Linear(hidden_dim * 2, gene_dim), # Direct projection to gene_dim
75
+ )
76
+
77
+ # Stage 3: Lightweight gene interaction
78
+ self.gene_interaction = nn.Sequential(
79
+ nn.Conv1d(1, 32, kernel_size=3, padding=1),
80
+ nn.GELU(),
81
+ nn.Dropout1d(0.1),
82
+ nn.Conv1d(32, 1, kernel_size=3, padding=1),
83
+ )
84
+
85
+ # Output scaling
86
+ self.output_scale = nn.Parameter(torch.ones(1))
87
+ self.output_bias = nn.Parameter(torch.zeros(1))
88
+
89
+ self._init_weights()
90
+
91
+ def _init_weights(self):
92
+ """Weight initialization"""
93
+ for module in self.modules():
94
+ if isinstance(module, nn.Linear):
95
+ nn.init.xavier_uniform_(module.weight)
96
+ if module.bias is not None:
97
+ nn.init.zeros_(module.bias)
98
+ elif isinstance(module, nn.Conv1d):
99
+ nn.init.kaiming_uniform_(module.weight)
100
+ if module.bias is not None:
101
+ nn.init.zeros_(module.bias)
102
+
103
+ def forward(self, latent: torch.Tensor) -> torch.Tensor:
104
+ batch_size = latent.shape[0]
105
+
106
+ # 1. Expand latent variables
107
+ latent_features = self.latent_expansion(latent) # [batch_size, hidden_dim]
108
+
109
+ # 2. Direct projection to gene dimension
110
+ gene_output = self.gene_projector(latent_features) # [batch_size, gene_dim]
111
+
112
+ # 3. Gene interaction with dimension safety
113
+ if self.gene_dim > 1: # Only apply if gene_dim > 1
114
+ gene_output = gene_output.unsqueeze(1) # [batch_size, 1, gene_dim]
115
+ interaction_output = self.gene_interaction(gene_output) # [batch_size, 1, gene_dim]
116
+ gene_output = gene_output + interaction_output # Residual connection
117
+ gene_output = gene_output.squeeze(1) # [batch_size, gene_dim]
118
+
119
+ # 4. Final activation (ensure non-negative)
120
+ gene_output = F.softplus(gene_output * self.output_scale + self.output_bias)
121
+
122
+ return gene_output
123
+
124
+ def _build_model(self):
125
+ """Build the decoder model"""
126
+ return self.Decoder(self.latent_dim, self.gene_dim, self.hidden_dim)
127
+
128
+ def _create_dataset(self, latent_data, expression_data):
129
+ """Create dataset with dimension validation"""
130
+ class SimpleDataset(Dataset):
131
+ def __init__(self, latent, expression):
132
+ # Ensure dimensions match
133
+ assert latent.shape[0] == expression.shape[0], "Sample count mismatch"
134
+ assert latent.shape[1] == self.latent_dim, f"Latent dim mismatch: expected {self.latent_dim}, got {latent.shape[1]}"
135
+ assert expression.shape[1] == self.gene_dim, f"Gene dim mismatch: expected {self.gene_dim}, got {expression.shape[1]}"
136
+
137
+ self.latent = torch.FloatTensor(latent)
138
+ self.expression = torch.FloatTensor(expression)
139
+
140
+ def __len__(self):
141
+ return len(self.latent)
142
+
143
+ def __getitem__(self, idx):
144
+ return self.latent[idx], self.expression[idx]
145
+
146
+ return SimpleDataset(latent_data, expression_data)
147
+
148
+ def train(self,
149
+ train_latent: np.ndarray,
150
+ train_expression: np.ndarray,
151
+ val_latent: np.ndarray = None,
152
+ val_expression: np.ndarray = None,
153
+ batch_size: int = 32,
154
+ num_epochs: int = 100,
155
+ learning_rate: float = 1e-4,
156
+ checkpoint_path: str = 'transcriptome_decoder.pth'):
157
+ """
158
+ Train the decoder model with dimension safety
159
+
160
+ Args:
161
+ train_latent: Training latent variables [n_samples, latent_dim]
162
+ train_expression: Training expression data [n_samples, gene_dim]
163
+ val_latent: Validation latent variables (optional)
164
+ val_expression: Validation expression data (optional)
165
+ batch_size: Batch size optimized for memory
166
+ num_epochs: Number of training epochs
167
+ learning_rate: Learning rate
168
+ checkpoint_path: Path to save the best model
169
+ """
170
+ print("🚀 Starting training...")
171
+
172
+ # Dimension validation
173
+ self._validate_data_dimensions(train_latent, train_expression, "Training")
174
+ if val_latent is not None and val_expression is not None:
175
+ self._validate_data_dimensions(val_latent, val_expression, "Validation")
176
+
177
+ # Data preparation
178
+ train_dataset = self._create_safe_dataset(train_latent, train_expression)
179
+
180
+ if val_latent is not None and val_expression is not None:
181
+ val_dataset = self._create_safe_dataset(val_latent, val_expression)
182
+ train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
183
+ val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
184
+ print(f"📈 Using provided validation data: {len(val_dataset)} samples")
185
+ else:
186
+ # Auto split
187
+ train_size = int(0.9 * len(train_dataset))
188
+ val_size = len(train_dataset) - train_size
189
+ train_subset, val_subset = torch.utils.data.random_split(train_dataset, [train_size, val_size])
190
+ train_loader = DataLoader(train_subset, batch_size=batch_size, shuffle=True, num_workers=2)
191
+ val_loader = DataLoader(val_subset, batch_size=batch_size, shuffle=False, num_workers=2)
192
+ print(f"📈 Auto-split validation: {val_size} samples")
193
+
194
+ print(f"📊 Training samples: {len(train_loader.dataset)}")
195
+ print(f"📊 Validation samples: {len(val_loader.dataset)}")
196
+ print(f"📊 Batch size: {batch_size}")
197
+
198
+ # Optimizer configuration
199
+ optimizer = optim.AdamW(
200
+ self.model.parameters(),
201
+ lr=learning_rate,
202
+ weight_decay=0.01,
203
+ betas=(0.9, 0.999)
204
+ )
205
+
206
+ # Learning rate scheduler
207
+ scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)
208
+
209
+ # Loss function with dimension safety
210
+ def safe_loss(pred, target):
211
+ # Ensure dimensions match
212
+ if pred.shape != target.shape:
213
+ print(f"⚠️ Dimension mismatch: pred {pred.shape}, target {target.shape}")
214
+ # Truncate to minimum dimension (safety measure)
215
+ min_dim = min(pred.shape[1], target.shape[1])
216
+ pred = pred[:, :min_dim]
217
+ target = target[:, :min_dim]
218
+
219
+ mse_loss = F.mse_loss(pred, target)
220
+ poisson_loss = (pred - target * torch.log(pred + 1e-8)).mean()
221
+ return mse_loss + 0.3 * poisson_loss
222
+
223
+ # Training history
224
+ history = {
225
+ 'train_loss': [],
226
+ 'val_loss': [],
227
+ 'learning_rate': []
228
+ }
229
+
230
+ best_val_loss = float('inf')
231
+ patience = 15
232
+ patience_counter = 0
233
+
234
+ print("\n📈 Starting training loop...")
235
+ for epoch in range(1, num_epochs + 1):
236
+ # Training phase
237
+ train_loss = self._train_epoch(train_loader, optimizer, safe_loss)
238
+
239
+ # Validation phase
240
+ val_loss = self._validate_epoch(val_loader, safe_loss)
241
+
242
+ # Update scheduler
243
+ scheduler.step()
244
+ current_lr = scheduler.get_last_lr()[0]
245
+
246
+ # Record history
247
+ history['train_loss'].append(train_loss)
248
+ history['val_loss'].append(val_loss)
249
+ history['learning_rate'].append(current_lr)
250
+
251
+ # Print progress
252
+ if epoch % 5 == 0 or epoch == 1:
253
+ print(f"📍 Epoch {epoch:3d}/{num_epochs} | "
254
+ f"Train Loss: {train_loss:.4f} | "
255
+ f"Val Loss: {val_loss:.4f} | "
256
+ f"LR: {current_lr:.2e}")
257
+
258
+ # Early stopping and model saving
259
+ if val_loss < best_val_loss:
260
+ best_val_loss = val_loss
261
+ patience_counter = 0
262
+ self._save_checkpoint(epoch, optimizer, scheduler, best_val_loss, history, checkpoint_path)
263
+ if epoch % 10 == 0:
264
+ print(f"💾 Best model saved (Val Loss: {best_val_loss:.4f})")
265
+ else:
266
+ patience_counter += 1
267
+ if patience_counter >= patience:
268
+ print(f"🛑 Early stopping at epoch {epoch}")
269
+ break
270
+
271
+ # Training completed
272
+ self.is_trained = True
273
+ self.training_history = history
274
+ self.best_val_loss = best_val_loss
275
+
276
+ print(f"\n🎉 Training completed!")
277
+ print(f"🏆 Best validation loss: {best_val_loss:.4f}")
278
+ print(f"📊 Final training loss: {history['train_loss'][-1]:.4f}")
279
+
280
+ return history
281
+
282
+ def _validate_data_dimensions(self, latent_data, expression_data, data_type):
283
+ """Validate input data dimensions"""
284
+ assert latent_data.shape[1] == self.latent_dim, (
285
+ f"{data_type} latent dimension mismatch: expected {self.latent_dim}, got {latent_data.shape[1]}")
286
+ assert expression_data.shape[1] == self.gene_dim, (
287
+ f"{data_type} gene dimension mismatch: expected {self.gene_dim}, got {expression_data.shape[1]}")
288
+ assert latent_data.shape[0] == expression_data.shape[0], (
289
+ f"{data_type} sample count mismatch: latent {latent_data.shape[0]}, expression {expression_data.shape[0]}")
290
+ print(f"✅ {data_type} data dimensions validated")
291
+
292
+ def _create_safe_dataset(self, latent_data, expression_data):
293
+ """Create dataset with safety checks"""
294
+ class SafeDataset(Dataset):
295
+ def __init__(self, latent, expression):
296
+ self.latent = torch.FloatTensor(latent)
297
+ self.expression = torch.FloatTensor(expression)
298
+
299
+ # Safety check
300
+ if self.latent.shape[0] != self.expression.shape[0]:
301
+ raise ValueError(f"Sample count mismatch: latent {self.latent.shape[0]}, expression {self.expression.shape[0]}")
302
+
303
+ def __len__(self):
304
+ return len(self.latent)
305
+
306
+ def __getitem__(self, idx):
307
+ return self.latent[idx], self.expression[idx]
308
+
309
+ return SafeDataset(latent_data, expression_data)
310
+
311
+ def _train_epoch(self, train_loader, optimizer, loss_fn):
312
+ """Train for one epoch with dimension safety"""
313
+ self.model.train()
314
+ total_loss = 0
315
+
316
+ for batch_idx, (latent, target) in enumerate(train_loader):
317
+ latent = latent.to(self.device)
318
+ target = target.to(self.device)
319
+
320
+ # Dimension check
321
+ if latent.shape[1] != self.latent_dim:
322
+ print(f"⚠️ Batch {batch_idx}: Latent dim mismatch {latent.shape[1]} != {self.latent_dim}")
323
+ continue
324
+
325
+ optimizer.zero_grad()
326
+ pred = self.model(latent)
327
+
328
+ # Final dimension check before loss calculation
329
+ if pred.shape[1] != target.shape[1]:
330
+ min_dim = min(pred.shape[1], target.shape[1])
331
+ pred = pred[:, :min_dim]
332
+ target = target[:, :min_dim]
333
+ if batch_idx == 0: # Only warn once
334
+ print(f"⚠️ Truncating to min dimension: {min_dim}")
335
+
336
+ loss = loss_fn(pred, target)
337
+ loss.backward()
338
+
339
+ # Gradient clipping for stability
340
+ torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
341
+ optimizer.step()
342
+
343
+ total_loss += loss.item()
344
+
345
+ return total_loss / len(train_loader)
346
+
347
+ def _validate_epoch(self, val_loader, loss_fn):
348
+ """Validate for one epoch with dimension safety"""
349
+ self.model.eval()
350
+ total_loss = 0
351
+
352
+ with torch.no_grad():
353
+ for batch_idx, (latent, target) in enumerate(val_loader):
354
+ latent = latent.to(self.device)
355
+ target = target.to(self.device)
356
+
357
+ pred = self.model(latent)
358
+
359
+ # Dimension safety
360
+ if pred.shape[1] != target.shape[1]:
361
+ min_dim = min(pred.shape[1], target.shape[1])
362
+ pred = pred[:, :min_dim]
363
+ target = target[:, :min_dim]
364
+
365
+ loss = loss_fn(pred, target)
366
+ total_loss += loss.item()
367
+
368
+ return total_loss / len(val_loader)
369
+
370
+ def _save_checkpoint(self, epoch, optimizer, scheduler, best_loss, history, path):
371
+ """Save model checkpoint"""
372
+ torch.save({
373
+ 'epoch': epoch,
374
+ 'model_state_dict': self.model.state_dict(),
375
+ 'optimizer_state_dict': optimizer.state_dict(),
376
+ 'scheduler_state_dict': scheduler.state_dict(),
377
+ 'best_val_loss': best_loss,
378
+ 'training_history': history,
379
+ 'model_config': {
380
+ 'latent_dim': self.latent_dim,
381
+ 'gene_dim': self.gene_dim,
382
+ 'hidden_dim': self.hidden_dim
383
+ }
384
+ }, path)
385
+
386
+ def predict(self, latent_data: np.ndarray, batch_size: int = 32) -> np.ndarray:
387
+ """
388
+ Predict gene expression from latent variables
389
+
390
+ Args:
391
+ latent_data: Latent variables [n_samples, latent_dim]
392
+ batch_size: Prediction batch size
393
+
394
+ Returns:
395
+ expression: Predicted expression [n_samples, gene_dim]
396
+ """
397
+ if not self.is_trained:
398
+ warnings.warn("⚠️ Model not trained. Predictions may be inaccurate.")
399
+
400
+ self.model.eval()
401
+
402
+ # Input validation
403
+ if latent_data.shape[1] != self.latent_dim:
404
+ raise ValueError(f"Latent dimension mismatch: expected {self.latent_dim}, got {latent_data.shape[1]}")
405
+
406
+ if isinstance(latent_data, np.ndarray):
407
+ latent_data = torch.FloatTensor(latent_data)
408
+
409
+ # Predict in batches to save memory
410
+ predictions = []
411
+ with torch.no_grad():
412
+ for i in range(0, len(latent_data), batch_size):
413
+ batch_latent = latent_data[i:i+batch_size].to(self.device)
414
+ batch_pred = self.model(batch_latent)
415
+ predictions.append(batch_pred.cpu())
416
+
417
+ return torch.cat(predictions).numpy()
418
+
419
+ def load_model(self, model_path: str):
420
+ """Load pre-trained model"""
421
+ checkpoint = torch.load(model_path, map_location=self.device)
422
+
423
+ # Check model configuration
424
+ if 'model_config' in checkpoint:
425
+ config = checkpoint['model_config']
426
+ if (config['latent_dim'] != self.latent_dim or
427
+ config['gene_dim'] != self.gene_dim):
428
+ print("⚠️ Model configuration mismatch. Reinitializing model.")
429
+ self.model = self._build_model()
430
+ self.model.to(self.device)
431
+
432
+ self.model.load_state_dict(checkpoint['model_state_dict'])
433
+ self.is_trained = True
434
+ self.training_history = checkpoint.get('training_history')
435
+ self.best_val_loss = checkpoint.get('best_val_loss', float('inf'))
436
+
437
+ print(f"✅ Model loaded successfully!")
438
+ print(f"🏆 Best validation loss: {self.best_val_loss:.4f}")
439
+
440
+ def get_model_info(self) -> Dict:
441
+ """Get model information"""
442
+ return {
443
+ 'is_trained': self.is_trained,
444
+ 'best_val_loss': self.best_val_loss,
445
+ 'parameters': sum(p.numel() for p in self.model.parameters()),
446
+ 'latent_dim': self.latent_dim,
447
+ 'gene_dim': self.gene_dim,
448
+ 'hidden_dim': self.hidden_dim,
449
+ 'device': str(self.device)
450
+ }
451
+ '''
452
+ # Example usage
453
+ def example_usage():
454
+ """Example demonstration with dimension safety"""
455
+
456
+ # 1. Initialize decoder
457
+ decoder = SimpleTranscriptomeDecoder(
458
+ latent_dim=100,
459
+ gene_dim=2000, # Reduced for example
460
+ hidden_dim=256
461
+ )
462
+
463
+ # 2. Generate example data with correct dimensions
464
+ n_samples = 1000
465
+ latent_data = np.random.randn(n_samples, 100).astype(np.float32)
466
+
467
+ # Create simulated expression data
468
+ weights = np.random.randn(100, 2000) * 0.1
469
+ expression_data = np.tanh(latent_data.dot(weights))
470
+ expression_data = np.maximum(expression_data, 0) # Non-negative
471
+
472
+ print(f"📊 Data shapes: Latent {latent_data.shape}, Expression {expression_data.shape}")
473
+
474
+ # 3. Train the model
475
+ history = decoder.train(
476
+ train_latent=latent_data,
477
+ train_expression=expression_data,
478
+ batch_size=32,
479
+ num_epochs=50,
480
+ learning_rate=1e-4
481
+ )
482
+
483
+ # 4. Make predictions
484
+ test_latent = np.random.randn(10, 100).astype(np.float32)
485
+ predictions = decoder.predict(test_latent)
486
+ print(f"🔮 Prediction shape: {predictions.shape}")
487
+
488
+ # 5. Get model info
489
+ info = decoder.get_model_info()
490
+ print(f"\n📋 Model Info:")
491
+ for key, value in info.items():
492
+ print(f" {key}: {value}")
493
+
494
+ return decoder
495
+
496
+ if __name__ == "__main__":
497
+ example_usage()
498
+
499
+ '''
SURE/__init__.py CHANGED
@@ -1,5 +1,7 @@
1
1
  from .SURE import SURE
2
2
  from .DensityFlow import DensityFlow
3
+ from .PerturbE import PerturbE
4
+ from .TranscriptomeDecoder import TranscriptomeDecoder
3
5
 
4
6
  from . import utils
5
7
  from . import codebook
@@ -8,5 +10,7 @@ from . import DensityFlow
8
10
  from . import atac
9
11
  from . import flow
10
12
  from . import perturb
13
+ from . import PerturbE
14
+ from . import TranscriptomeDecoder
11
15
 
12
- __all__ = ['SURE', 'DensityFlow', 'flow', 'perturb', 'atac', 'utils', 'codebook']
16
+ __all__ = ['SURE', 'DensityFlow', 'PerturbE', 'TranscriptomeDecoder', 'flow', 'perturb', 'atac', 'utils', 'codebook']
SURE/utils/custom_mlp.py CHANGED
@@ -240,12 +240,49 @@ class ZeroBiasMLP(nn.Module):
240
240
  y = self.mlp(x)
241
241
  mask = torch.zeros_like(y)
242
242
  if len(y.shape)==2:
243
- mask[x[1][:,0]>0,:] = 1
243
+ if type(x)==list:
244
+ mask[x[1][:,0]>0,:] = 1
245
+ else:
246
+ mask[x[:,0]>0,:] = 1
244
247
  elif len(y.shape)==3:
245
- mask[:,x[1][:,0]>0,:] = 1
248
+ if type(x)==list:
249
+ mask[:,x[1][:,0]>0,:] = 1
250
+ else:
251
+ mask[:,x[:,0]>0,:] = 1
246
252
  return y*mask
247
253
 
248
254
 
255
+
256
+ class ZeroBiasMLP2(nn.Module):
257
+ def __init__(
258
+ self,
259
+ mlp_sizes,
260
+ activation=nn.ReLU,
261
+ output_activation=None,
262
+ post_layer_fct=lambda layer_ix, total_layers, layer: None,
263
+ post_act_fct=lambda layer_ix, total_layers, layer: None,
264
+ allow_broadcast=False,
265
+ use_cuda=False,
266
+ ):
267
+ # init the module object
268
+ super().__init__()
269
+ self.mlp = MLP(mlp_sizes=mlp_sizes,
270
+ activation=activation,
271
+ output_activation=output_activation,
272
+ post_layer_fct=post_layer_fct,
273
+ post_act_fct=post_act_fct,
274
+ allow_broadcast=allow_broadcast,
275
+ use_cuda=use_cuda,
276
+ bias=True)
277
+
278
+ # pass through our sequential for the output!
279
+ def forward(self, x):
280
+ y = self.mlp(x)
281
+ mask = torch.zeros_like(y)
282
+ x_sum = torch.sum(x, dim=1)
283
+ mask[x_sum>0,:] = 1
284
+ return y*mask
285
+
249
286
  class HDMLP(nn.Module):
250
287
  def __init__(
251
288
  self,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: SURE-tools
3
- Version: 2.2.23
3
+ Version: 2.4.7
4
4
  Summary: Succinct Representation of Single Cells
5
5
  Home-page: https://github.com/ZengFLab/SURE
6
6
  Author: Feng Zeng
@@ -1,6 +1,8 @@
1
- SURE/DensityFlow.py,sha256=p5Pt3KrsdF_NTLFx0p1cUPuXkIac6wQED1LsLJRG7mI,56124
1
+ SURE/DensityFlow.py,sha256=YvaE9aPbAC2U7WhTye5i2AMtcw0BI_qS3gv9SP4aE0k,56676
2
+ SURE/PerturbE.py,sha256=DxEp-qef--x8-GMZdPfBf8ts8UDDc34h2P5AnpqZ-YM,52265
2
3
  SURE/SURE.py,sha256=MXs7iuvcj-lU4dJ_MwKegpL2Rqk2HB4eFfAgHRA3RtA,47744
3
- SURE/__init__.py,sha256=NVp22RCHrhSwHNMomABC-eftoCYvt7vV1XOzim-UZHE,293
4
+ SURE/TranscriptomeDecoder.py,sha256=e1AOt5fVTSfHTcNK1pyUfny3hFqdMoIRJ3NVh8r7wuY,20387
5
+ SURE/__init__.py,sha256=pNSGQ4BMqMXBAPHpFOYNB8_0vFW-RqPy3rr5fvdEEyU,473
4
6
  SURE/assembly/__init__.py,sha256=jxZLURXKPzXe21LhrZ09LgZr33iqdjlQy4oSEj5gR2Q,172
5
7
  SURE/assembly/assembly.py,sha256=6IMdelPOiRO4mUb4dC7gVCoF1Uvfw86-Map8P_jnUag,21477
6
8
  SURE/assembly/atlas.py,sha256=ALjmVWutm_tOHTcT1aqOxmuCEQw-XzrtDoMCV_8oXLk,21794
@@ -14,12 +16,12 @@ SURE/flow/plot_quiver.py,sha256=UbmuScUcgbQHeMmjKmgqxjrIjHhiHx0VWct16UMMwuE,8110
14
16
  SURE/perturb/__init__.py,sha256=8TP1dSUhXiZzKpFebHZmm8XMMGbUz_OfQ10xu-6uPPY,43
15
17
  SURE/perturb/perturb.py,sha256=ey7cxsM1tO1MW4UaE_MLpLHK87CjvXzn2CBPtvv1VZ0,6116
16
18
  SURE/utils/__init__.py,sha256=YF5jB-PAHJQ40OlcZ7BCZbsN2q1JKuPT6EppilRXQqM,680
17
- SURE/utils/custom_mlp.py,sha256=HuNb7f8-6RFjsvfEu1XOuNpLrHZkGYHgf8TpJfPSNO0,9382
19
+ SURE/utils/custom_mlp.py,sha256=Rn_PQouxPMSda-KKBYrwVVv3GFFuUmCLxp8cV5LszZo,10580
18
20
  SURE/utils/queue.py,sha256=E_5PA5EWcBoGAZj8BkKQnkCK0p4C-4-xcTPqdIXaPXU,1892
19
21
  SURE/utils/utils.py,sha256=IUHjDDtYaAYllCWsZyIzqQwaLul6fJRvHRH4vIYcR-c,8462
20
- sure_tools-2.2.23.dist-info/licenses/LICENSE,sha256=TFHKwmrAViXQbSX5W-NDItkWFjm45HWOeUniDrqmnu0,1065
21
- sure_tools-2.2.23.dist-info/METADATA,sha256=ckAOsGL19y8unUmL2zYK4yeTRGFyALbaN_3hM18u0tw,2678
22
- sure_tools-2.2.23.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
23
- sure_tools-2.2.23.dist-info/entry_points.txt,sha256=-nJI8rVe_qqrR0HmfAODzj-JNfEqCcSsyVh6okSqyHk,83
24
- sure_tools-2.2.23.dist-info/top_level.txt,sha256=BtFTebdiJeqra4r6mm-uEtwVRFLZ_IjYsQ7OnalrOvY,5
25
- sure_tools-2.2.23.dist-info/RECORD,,
22
+ sure_tools-2.4.7.dist-info/licenses/LICENSE,sha256=TFHKwmrAViXQbSX5W-NDItkWFjm45HWOeUniDrqmnu0,1065
23
+ sure_tools-2.4.7.dist-info/METADATA,sha256=4TYiOBuq9ddmR7U9GaO1YQvyRRIZr37cwM50bHJ0O2E,2677
24
+ sure_tools-2.4.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
25
+ sure_tools-2.4.7.dist-info/entry_points.txt,sha256=-nJI8rVe_qqrR0HmfAODzj-JNfEqCcSsyVh6okSqyHk,83
26
+ sure_tools-2.4.7.dist-info/top_level.txt,sha256=BtFTebdiJeqra4r6mm-uEtwVRFLZ_IjYsQ7OnalrOvY,5
27
+ sure_tools-2.4.7.dist-info/RECORD,,