SURE-tools 2.1.92__py3-none-any.whl → 2.2.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- SURE/{PerturbFlow.py → DensityFlow.py} +102 -80
- SURE/SURE.py +6 -6
- SURE/__init__.py +3 -3
- SURE/flow/flow_stats.py +12 -0
- SURE/perturb/perturb.py +27 -1
- {sure_tools-2.1.92.dist-info → sure_tools-2.2.23.dist-info}/METADATA +1 -1
- {sure_tools-2.1.92.dist-info → sure_tools-2.2.23.dist-info}/RECORD +11 -11
- {sure_tools-2.1.92.dist-info → sure_tools-2.2.23.dist-info}/WHEEL +0 -0
- {sure_tools-2.1.92.dist-info → sure_tools-2.2.23.dist-info}/entry_points.txt +0 -0
- {sure_tools-2.1.92.dist-info → sure_tools-2.2.23.dist-info}/licenses/LICENSE +0 -0
- {sure_tools-2.1.92.dist-info → sure_tools-2.2.23.dist-info}/top_level.txt +0 -0
|
@@ -54,18 +54,19 @@ def set_random_seed(seed):
|
|
|
54
54
|
# Set seed for Pyro
|
|
55
55
|
pyro.set_rng_seed(seed)
|
|
56
56
|
|
|
57
|
-
class
|
|
57
|
+
class DensityFlow(nn.Module):
|
|
58
58
|
def __init__(self,
|
|
59
59
|
input_size: int,
|
|
60
60
|
codebook_size: int = 200,
|
|
61
61
|
cell_factor_size: int = 0,
|
|
62
|
+
turn_off_cell_specific: bool = False,
|
|
62
63
|
supervised_mode: bool = False,
|
|
63
64
|
z_dim: int = 10,
|
|
64
65
|
z_dist: Literal['normal','studentt','laplacian','cauchy','gumbel'] = 'gumbel',
|
|
65
|
-
loss_func: Literal['negbinomial','poisson','multinomial','bernoulli'] = '
|
|
66
|
+
loss_func: Literal['negbinomial','poisson','multinomial','bernoulli'] = 'multinomial',
|
|
66
67
|
inverse_dispersion: float = 10.0,
|
|
67
68
|
use_zeroinflate: bool = False,
|
|
68
|
-
hidden_layers: list = [
|
|
69
|
+
hidden_layers: list = [500],
|
|
69
70
|
hidden_layer_activation: Literal['relu','softplus','leakyrelu','linear'] = 'relu',
|
|
70
71
|
nn_dropout: float = 0.1,
|
|
71
72
|
post_layer_fct: list = ['layernorm'],
|
|
@@ -102,6 +103,7 @@ class PerturbFlow(nn.Module):
|
|
|
102
103
|
else:
|
|
103
104
|
self.use_bias = [not zero_bias] * self.cell_factor_size
|
|
104
105
|
#self.use_bias = not zero_bias
|
|
106
|
+
self.turn_off_cell_specific = turn_off_cell_specific
|
|
105
107
|
|
|
106
108
|
self.codebook_weights = None
|
|
107
109
|
|
|
@@ -203,27 +205,51 @@ class PerturbFlow(nn.Module):
|
|
|
203
205
|
self.cell_factor_effect = nn.ModuleList()
|
|
204
206
|
for i in np.arange(self.cell_factor_size):
|
|
205
207
|
if self.use_bias[i]:
|
|
206
|
-
self.
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
208
|
+
if self.turn_off_cell_specific:
|
|
209
|
+
self.cell_factor_effect.append(MLP(
|
|
210
|
+
[1] + self.decoder_hidden_layers + [self.latent_dim],
|
|
211
|
+
activation=activate_fct,
|
|
212
|
+
output_activation=None,
|
|
213
|
+
post_layer_fct=post_layer_fct,
|
|
214
|
+
post_act_fct=post_act_fct,
|
|
215
|
+
allow_broadcast=self.allow_broadcast,
|
|
216
|
+
use_cuda=self.use_cuda,
|
|
217
|
+
)
|
|
218
|
+
)
|
|
219
|
+
else:
|
|
220
|
+
self.cell_factor_effect.append(MLP(
|
|
221
|
+
[self.latent_dim+1] + self.decoder_hidden_layers + [self.latent_dim],
|
|
222
|
+
activation=activate_fct,
|
|
223
|
+
output_activation=None,
|
|
224
|
+
post_layer_fct=post_layer_fct,
|
|
225
|
+
post_act_fct=post_act_fct,
|
|
226
|
+
allow_broadcast=self.allow_broadcast,
|
|
227
|
+
use_cuda=self.use_cuda,
|
|
228
|
+
)
|
|
214
229
|
)
|
|
215
|
-
)
|
|
216
230
|
else:
|
|
217
|
-
self.
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
231
|
+
if self.turn_off_cell_specific:
|
|
232
|
+
self.cell_factor_effect.append(ZeroBiasMLP(
|
|
233
|
+
[1] + self.decoder_hidden_layers + [self.latent_dim],
|
|
234
|
+
activation=activate_fct,
|
|
235
|
+
output_activation=None,
|
|
236
|
+
post_layer_fct=post_layer_fct,
|
|
237
|
+
post_act_fct=post_act_fct,
|
|
238
|
+
allow_broadcast=self.allow_broadcast,
|
|
239
|
+
use_cuda=self.use_cuda,
|
|
240
|
+
)
|
|
241
|
+
)
|
|
242
|
+
else:
|
|
243
|
+
self.cell_factor_effect.append(ZeroBiasMLP(
|
|
244
|
+
[self.latent_dim+1] + self.decoder_hidden_layers + [self.latent_dim],
|
|
245
|
+
activation=activate_fct,
|
|
246
|
+
output_activation=None,
|
|
247
|
+
post_layer_fct=post_layer_fct,
|
|
248
|
+
post_act_fct=post_act_fct,
|
|
249
|
+
allow_broadcast=self.allow_broadcast,
|
|
250
|
+
use_cuda=self.use_cuda,
|
|
251
|
+
)
|
|
225
252
|
)
|
|
226
|
-
)
|
|
227
253
|
|
|
228
254
|
self.decoder_concentrate = MLP(
|
|
229
255
|
[self.latent_dim] + self.decoder_hidden_layers + [self.input_size],
|
|
@@ -308,7 +334,7 @@ class PerturbFlow(nn.Module):
|
|
|
308
334
|
return xs
|
|
309
335
|
|
|
310
336
|
def model1(self, xs):
|
|
311
|
-
pyro.module('
|
|
337
|
+
pyro.module('DensityFlow', self)
|
|
312
338
|
|
|
313
339
|
eps = torch.finfo(xs.dtype).eps
|
|
314
340
|
batch_size = xs.size(0)
|
|
@@ -387,7 +413,7 @@ class PerturbFlow(nn.Module):
|
|
|
387
413
|
ns = pyro.sample('n', dist.OneHotCategorical(logits=alpha))
|
|
388
414
|
|
|
389
415
|
def model2(self, xs, us=None):
|
|
390
|
-
pyro.module('
|
|
416
|
+
pyro.module('DensityFlow', self)
|
|
391
417
|
|
|
392
418
|
eps = torch.finfo(xs.dtype).eps
|
|
393
419
|
batch_size = xs.size(0)
|
|
@@ -471,7 +497,7 @@ class PerturbFlow(nn.Module):
|
|
|
471
497
|
ns = pyro.sample('n', dist.OneHotCategorical(logits=alpha))
|
|
472
498
|
|
|
473
499
|
def model3(self, xs, ys, embeds=None):
|
|
474
|
-
pyro.module('
|
|
500
|
+
pyro.module('DensityFlow', self)
|
|
475
501
|
|
|
476
502
|
eps = torch.finfo(xs.dtype).eps
|
|
477
503
|
batch_size = xs.size(0)
|
|
@@ -567,7 +593,7 @@ class PerturbFlow(nn.Module):
|
|
|
567
593
|
zns = embeds
|
|
568
594
|
|
|
569
595
|
def model4(self, xs, us, ys, embeds=None):
|
|
570
|
-
pyro.module('
|
|
596
|
+
pyro.module('DensityFlow', self)
|
|
571
597
|
|
|
572
598
|
eps = torch.finfo(xs.dtype).eps
|
|
573
599
|
batch_size = xs.size(0)
|
|
@@ -676,9 +702,17 @@ class PerturbFlow(nn.Module):
|
|
|
676
702
|
zus = None
|
|
677
703
|
for i in np.arange(self.cell_factor_size):
|
|
678
704
|
if i==0:
|
|
679
|
-
|
|
705
|
+
#if self.turn_off_cell_specific:
|
|
706
|
+
# zus = self.cell_factor_effect[i](us[:,i].reshape(-1,1))
|
|
707
|
+
#else:
|
|
708
|
+
# zus = self.cell_factor_effect[i]([zns,us[:,i].reshape(-1,1)])
|
|
709
|
+
zus = self._cell_response(zns, i, us[:,i].reshape(-1,1))
|
|
680
710
|
else:
|
|
681
|
-
|
|
711
|
+
#if self.turn_off_cell_specific:
|
|
712
|
+
# zus = zus + self.cell_factor_effect[i](us[:,i].reshape(-1,1))
|
|
713
|
+
#else:
|
|
714
|
+
# zus = zus + self.cell_factor_effect[i]([zns,us[:,i].reshape(-1,1)])
|
|
715
|
+
zus = zus + self._cell_response(zns, i, us[:,i].reshape(-1,1))
|
|
682
716
|
return zus
|
|
683
717
|
|
|
684
718
|
def _get_codebook_identity(self):
|
|
@@ -696,7 +730,7 @@ class PerturbFlow(nn.Module):
|
|
|
696
730
|
"""
|
|
697
731
|
Return the mean part of metacell codebook
|
|
698
732
|
"""
|
|
699
|
-
cb = self.
|
|
733
|
+
cb = self._get_codebook()
|
|
700
734
|
cb = tensor_to_numpy(cb)
|
|
701
735
|
return cb
|
|
702
736
|
|
|
@@ -820,13 +854,15 @@ class PerturbFlow(nn.Module):
|
|
|
820
854
|
us_i = us[:,pert_idx].reshape(-1,1)
|
|
821
855
|
|
|
822
856
|
# factor effect of xs
|
|
823
|
-
dzs0 = self.get_cell_response(
|
|
857
|
+
dzs0 = self.get_cell_response(zs, factor_idx=pert_idx, perturb=us_i)
|
|
824
858
|
|
|
825
859
|
# perturbation effect
|
|
826
860
|
ps = np.ones_like(us_i)
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
861
|
+
if np.sum(np.abs(ps-us_i))>=1:
|
|
862
|
+
dzs = self.get_cell_response(zs, factor_idx=pert_idx, perturb=ps)
|
|
863
|
+
zs = zs + dzs0 + dzs
|
|
864
|
+
else:
|
|
865
|
+
zs = zs + dzs0
|
|
830
866
|
|
|
831
867
|
if library_sizes is None:
|
|
832
868
|
library_sizes = np.sum(xs, axis=1, keepdims=True)
|
|
@@ -840,47 +876,48 @@ class PerturbFlow(nn.Module):
|
|
|
840
876
|
|
|
841
877
|
return counts, zs
|
|
842
878
|
|
|
843
|
-
def _cell_response(self,
|
|
879
|
+
def _cell_response(self, zs, perturb_idx, perturb):
|
|
844
880
|
#zns,_ = self.encoder_zn(xs)
|
|
845
|
-
zns,_ = self._get_basal_embedding(xs)
|
|
881
|
+
#zns,_ = self._get_basal_embedding(xs)
|
|
882
|
+
zns = zs
|
|
846
883
|
if perturb.ndim==2:
|
|
847
|
-
|
|
884
|
+
if self.turn_off_cell_specific:
|
|
885
|
+
ms = self.cell_factor_effect[perturb_idx](perturb)
|
|
886
|
+
else:
|
|
887
|
+
ms = self.cell_factor_effect[perturb_idx]([zns, perturb])
|
|
848
888
|
else:
|
|
849
|
-
|
|
889
|
+
if self.turn_off_cell_specific:
|
|
890
|
+
ms = self.cell_factor_effect[perturb_idx](perturb.reshape(-1,1))
|
|
891
|
+
else:
|
|
892
|
+
ms = self.cell_factor_effect[perturb_idx]([zns, perturb.reshape(-1,1)])
|
|
850
893
|
|
|
851
894
|
return ms
|
|
852
895
|
|
|
853
896
|
def get_cell_response(self,
|
|
854
|
-
|
|
855
|
-
|
|
856
|
-
|
|
897
|
+
zs,
|
|
898
|
+
perturb_idx,
|
|
899
|
+
perturb_us,
|
|
857
900
|
batch_size: int = 1024):
|
|
858
901
|
"""
|
|
859
902
|
Return cells' changes in the latent space induced by specific perturbation of a factor
|
|
860
903
|
|
|
861
904
|
"""
|
|
862
|
-
xs = self.preprocess(xs)
|
|
863
|
-
|
|
864
|
-
ps = convert_to_tensor(
|
|
865
|
-
dataset = CustomDataset2(
|
|
905
|
+
#xs = self.preprocess(xs)
|
|
906
|
+
zs = convert_to_tensor(zs, device=self.get_device())
|
|
907
|
+
ps = convert_to_tensor(perturb_us, device=self.get_device())
|
|
908
|
+
dataset = CustomDataset2(zs,ps)
|
|
866
909
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
|
|
867
910
|
|
|
868
911
|
Z = []
|
|
869
912
|
with tqdm(total=len(dataloader), desc='', unit='batch') as pbar:
|
|
870
|
-
for
|
|
871
|
-
zns = self._cell_response(
|
|
913
|
+
for Z_batch, P_batch, _ in dataloader:
|
|
914
|
+
zns = self._cell_response(Z_batch, perturb_idx, P_batch)
|
|
872
915
|
Z.append(tensor_to_numpy(zns))
|
|
873
916
|
pbar.update(1)
|
|
874
917
|
|
|
875
918
|
Z = np.concatenate(Z)
|
|
876
919
|
return Z
|
|
877
920
|
|
|
878
|
-
def get_metacell_response(self, factor_idx, perturb):
|
|
879
|
-
zs = self._get_codebook()
|
|
880
|
-
ps = convert_to_tensor(perturb, device=self.get_device())
|
|
881
|
-
ms = self.cell_factor_effect[factor_idx]([zs,ps])
|
|
882
|
-
return tensor_to_numpy(ms)
|
|
883
|
-
|
|
884
921
|
def _get_expression_response(self, delta_zs):
|
|
885
922
|
return self.decoder_concentrate(delta_zs)
|
|
886
923
|
|
|
@@ -905,7 +942,7 @@ class PerturbFlow(nn.Module):
|
|
|
905
942
|
R = np.concatenate(R)
|
|
906
943
|
return R
|
|
907
944
|
|
|
908
|
-
def _count(self,concentrate, library_size=None):
|
|
945
|
+
def _count(self, concentrate, library_size=None):
|
|
909
946
|
if self.loss_func == 'bernoulli':
|
|
910
947
|
#counts = self.sigmoid(concentrate)
|
|
911
948
|
counts = dist.Bernoulli(logits=concentrate).to_event(1).mean
|
|
@@ -913,28 +950,17 @@ class PerturbFlow(nn.Module):
|
|
|
913
950
|
rate = concentrate.exp()
|
|
914
951
|
theta = dist.DirichletMultinomial(total_count=1, concentration=rate).mean
|
|
915
952
|
counts = theta * library_size
|
|
916
|
-
#counts = dist.Poisson(rate=rate).to_event(1).mean
|
|
917
|
-
return counts
|
|
918
|
-
|
|
919
|
-
def _count_sample(self,concentrate):
|
|
920
|
-
if self.loss_func == 'bernoulli':
|
|
921
|
-
logits = concentrate
|
|
922
|
-
counts = dist.Bernoulli(logits=logits).to_event(1).sample()
|
|
923
|
-
else:
|
|
924
|
-
counts = self._count(concentrate=concentrate)
|
|
925
|
-
counts = dist.Poisson(rate=counts).to_event(1).sample()
|
|
926
953
|
return counts
|
|
927
954
|
|
|
928
955
|
def get_counts(self, zs, library_sizes,
|
|
929
|
-
batch_size: int = 1024
|
|
930
|
-
use_sampler: bool = False):
|
|
956
|
+
batch_size: int = 1024):
|
|
931
957
|
|
|
932
958
|
zs = convert_to_tensor(zs, device=self.get_device())
|
|
933
959
|
|
|
934
960
|
if type(library_sizes) == list:
|
|
935
|
-
library_sizes = np.array(library_sizes).
|
|
961
|
+
library_sizes = np.array(library_sizes).reshape(-1,1)
|
|
936
962
|
elif len(library_sizes.shape)==1:
|
|
937
|
-
library_sizes = library_sizes.
|
|
963
|
+
library_sizes = library_sizes.reshape(-1,1)
|
|
938
964
|
ls = convert_to_tensor(library_sizes, device=self.get_device())
|
|
939
965
|
|
|
940
966
|
dataset = CustomDataset2(zs,ls)
|
|
@@ -944,10 +970,7 @@ class PerturbFlow(nn.Module):
|
|
|
944
970
|
with tqdm(total=len(dataloader), desc='', unit='batch') as pbar:
|
|
945
971
|
for Z_batch, L_batch, _ in dataloader:
|
|
946
972
|
concentrate = self._get_expression_response(Z_batch)
|
|
947
|
-
|
|
948
|
-
counts = self._count_sample(concentrate)
|
|
949
|
-
else:
|
|
950
|
-
counts = self._count(concentrate, L_batch)
|
|
973
|
+
counts = self._count(concentrate, L_batch)
|
|
951
974
|
E.append(tensor_to_numpy(counts))
|
|
952
975
|
pbar.update(1)
|
|
953
976
|
|
|
@@ -970,7 +993,7 @@ class PerturbFlow(nn.Module):
|
|
|
970
993
|
us = None,
|
|
971
994
|
ys = None,
|
|
972
995
|
zs = None,
|
|
973
|
-
num_epochs: int =
|
|
996
|
+
num_epochs: int = 500,
|
|
974
997
|
learning_rate: float = 0.0001,
|
|
975
998
|
batch_size: int = 256,
|
|
976
999
|
algo: Literal['adam','rmsprop','adamw'] = 'adam',
|
|
@@ -981,7 +1004,7 @@ class PerturbFlow(nn.Module):
|
|
|
981
1004
|
threshold: int = 0,
|
|
982
1005
|
use_jax: bool = True):
|
|
983
1006
|
"""
|
|
984
|
-
Train the
|
|
1007
|
+
Train the DensityFlow model.
|
|
985
1008
|
|
|
986
1009
|
Parameters
|
|
987
1010
|
----------
|
|
@@ -1007,7 +1030,7 @@ class PerturbFlow(nn.Module):
|
|
|
1007
1030
|
Parameter for optimization.
|
|
1008
1031
|
use_jax
|
|
1009
1032
|
If toggled on, Jax will be used for speeding up. CAUTION: This will raise errors because of unknown reasons when it is called in
|
|
1010
|
-
the Python script or Jupyter notebook. It is OK if it is used when runing
|
|
1033
|
+
the Python script or Jupyter notebook. It is OK if it is used when runing DensityFlow in the shell command.
|
|
1011
1034
|
"""
|
|
1012
1035
|
xs = self.preprocess(xs, threshold=threshold)
|
|
1013
1036
|
xs = convert_to_tensor(xs, dtype=self.dtype, device=self.get_device())
|
|
@@ -1125,12 +1148,12 @@ class PerturbFlow(nn.Module):
|
|
|
1125
1148
|
|
|
1126
1149
|
|
|
1127
1150
|
EXAMPLE_RUN = (
|
|
1128
|
-
"example run:
|
|
1151
|
+
"example run: DensityFlow --help"
|
|
1129
1152
|
)
|
|
1130
1153
|
|
|
1131
1154
|
def parse_args():
|
|
1132
1155
|
parser = argparse.ArgumentParser(
|
|
1133
|
-
description="
|
|
1156
|
+
description="DensityFlow\n{}".format(EXAMPLE_RUN))
|
|
1134
1157
|
|
|
1135
1158
|
parser.add_argument(
|
|
1136
1159
|
"--cuda", action="store_true", help="use GPU(s) to speed up training"
|
|
@@ -1317,7 +1340,7 @@ def main():
|
|
|
1317
1340
|
cell_factor_size = 0 if us is None else us.shape[1]
|
|
1318
1341
|
|
|
1319
1342
|
###########################################
|
|
1320
|
-
|
|
1343
|
+
DensityFlow = DensityFlow(
|
|
1321
1344
|
input_size=input_size,
|
|
1322
1345
|
cell_factor_size=cell_factor_size,
|
|
1323
1346
|
inverse_dispersion=args.inverse_dispersion,
|
|
@@ -1336,7 +1359,7 @@ def main():
|
|
|
1336
1359
|
dtype=dtype,
|
|
1337
1360
|
)
|
|
1338
1361
|
|
|
1339
|
-
|
|
1362
|
+
DensityFlow.fit(xs, us=us,
|
|
1340
1363
|
num_epochs=args.num_epochs,
|
|
1341
1364
|
learning_rate=args.learning_rate,
|
|
1342
1365
|
batch_size=args.batch_size,
|
|
@@ -1348,12 +1371,11 @@ def main():
|
|
|
1348
1371
|
|
|
1349
1372
|
if args.save_model is not None:
|
|
1350
1373
|
if args.save_model.endswith('gz'):
|
|
1351
|
-
|
|
1374
|
+
DensityFlow.save_model(DensityFlow, args.save_model, compression=True)
|
|
1352
1375
|
else:
|
|
1353
|
-
|
|
1376
|
+
DensityFlow.save_model(DensityFlow, args.save_model)
|
|
1354
1377
|
|
|
1355
1378
|
|
|
1356
1379
|
|
|
1357
1380
|
if __name__ == "__main__":
|
|
1358
|
-
|
|
1359
1381
|
main()
|
SURE/SURE.py
CHANGED
|
@@ -99,17 +99,17 @@ class SURE(nn.Module):
|
|
|
99
99
|
cell_factor_size: int = 0,
|
|
100
100
|
supervised_mode: bool = False,
|
|
101
101
|
z_dim: int = 10,
|
|
102
|
-
z_dist: Literal['normal','studentt','laplacian','cauchy','gumbel'] = '
|
|
103
|
-
loss_func: Literal['negbinomial','poisson','multinomial','bernoulli'] = '
|
|
102
|
+
z_dist: Literal['normal','studentt','laplacian','cauchy','gumbel'] = 'gumbel',
|
|
103
|
+
loss_func: Literal['negbinomial','poisson','multinomial','bernoulli'] = 'poisson',
|
|
104
104
|
inverse_dispersion: float = 10.0,
|
|
105
105
|
use_zeroinflate: bool = True,
|
|
106
|
-
hidden_layers: list = [
|
|
106
|
+
hidden_layers: list = [500],
|
|
107
107
|
hidden_layer_activation: Literal['relu','softplus','leakyrelu','linear'] = 'relu',
|
|
108
108
|
nn_dropout: float = 0.1,
|
|
109
109
|
post_layer_fct: list = ['layernorm'],
|
|
110
110
|
post_act_fct: list = None,
|
|
111
111
|
config_enum: str = 'parallel',
|
|
112
|
-
use_cuda: bool =
|
|
112
|
+
use_cuda: bool = True,
|
|
113
113
|
seed: int = 42,
|
|
114
114
|
dtype = torch.float32, # type: ignore
|
|
115
115
|
):
|
|
@@ -817,7 +817,7 @@ class SURE(nn.Module):
|
|
|
817
817
|
us = None,
|
|
818
818
|
ys = None,
|
|
819
819
|
zs = None,
|
|
820
|
-
num_epochs: int =
|
|
820
|
+
num_epochs: int = 500,
|
|
821
821
|
learning_rate: float = 0.0001,
|
|
822
822
|
batch_size: int = 256,
|
|
823
823
|
algo: Literal['adam','rmsprop','adamw'] = 'adam',
|
|
@@ -826,7 +826,7 @@ class SURE(nn.Module):
|
|
|
826
826
|
decay_rate: float = 0.9,
|
|
827
827
|
config_enum: str = 'parallel',
|
|
828
828
|
threshold: int = 0,
|
|
829
|
-
use_jax: bool =
|
|
829
|
+
use_jax: bool = True):
|
|
830
830
|
"""
|
|
831
831
|
Train the SURE model.
|
|
832
832
|
|
SURE/__init__.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
from .SURE import SURE
|
|
2
|
-
from .
|
|
2
|
+
from .DensityFlow import DensityFlow
|
|
3
3
|
|
|
4
4
|
from . import utils
|
|
5
5
|
from . import codebook
|
|
6
6
|
from . import SURE
|
|
7
|
-
from . import
|
|
7
|
+
from . import DensityFlow
|
|
8
8
|
from . import atac
|
|
9
9
|
from . import flow
|
|
10
10
|
from . import perturb
|
|
11
11
|
|
|
12
|
-
__all__ = ['SURE', '
|
|
12
|
+
__all__ = ['SURE', 'DensityFlow', 'flow', 'perturb', 'atac', 'utils', 'codebook']
|
SURE/flow/flow_stats.py
CHANGED
|
@@ -41,6 +41,18 @@ class VectorFieldEval:
|
|
|
41
41
|
divergence[np.isnan(divergence)] = 0
|
|
42
42
|
|
|
43
43
|
return divergence
|
|
44
|
+
|
|
45
|
+
def movement_stats(self,vectors):
|
|
46
|
+
return calculate_movement_stats(vectors)
|
|
47
|
+
|
|
48
|
+
def direction_stats(self, vectors):
|
|
49
|
+
return calculate_direction_stats(vectors)
|
|
50
|
+
|
|
51
|
+
def movement_energy(self, vectors, masses=None):
|
|
52
|
+
return calculate_movement_energy(vectors, masses)
|
|
53
|
+
|
|
54
|
+
def movement_divergence(self, positions, vectors):
|
|
55
|
+
return calculate_movement_divergence(positions, vectors)
|
|
44
56
|
|
|
45
57
|
|
|
46
58
|
def calculate_movement_stats(vectors):
|
SURE/perturb/perturb.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
import re
|
|
2
2
|
import numpy as np
|
|
3
|
+
import pandas as pd
|
|
3
4
|
from numba import njit
|
|
4
5
|
from itertools import chain
|
|
5
6
|
from joblib import Parallel, delayed
|
|
@@ -8,6 +9,8 @@ from typing import Literal
|
|
|
8
9
|
class LabelMatrix:
|
|
9
10
|
def __init__(self):
|
|
10
11
|
self.labels_ = None
|
|
12
|
+
self.control_label = None
|
|
13
|
+
self.sep_pattern = None
|
|
11
14
|
|
|
12
15
|
def fit_transform(self, labels, control_label=None, sep_pattern=r'[,;_\s]', speedup: Literal['none','vectorize','parallel']='none'):
|
|
13
16
|
if speedup=='none':
|
|
@@ -24,8 +27,31 @@ class LabelMatrix:
|
|
|
24
27
|
mat = np.delete(mat, idx, axis=1)
|
|
25
28
|
self.labels_ = np.delete(self.labels_, idx)
|
|
26
29
|
|
|
30
|
+
self.control_label = control_label
|
|
31
|
+
self.sep_pattern=sep_pattern
|
|
32
|
+
|
|
27
33
|
return mat
|
|
28
|
-
|
|
34
|
+
|
|
35
|
+
def transform(self, labels, speedup: Literal['none','vectorize','parallel']='none'):
|
|
36
|
+
sep_pattern = self.sep_pattern
|
|
37
|
+
if speedup=='none':
|
|
38
|
+
mat, labels_ = label_to_matrix(labels=labels, sep_pattern=sep_pattern)
|
|
39
|
+
elif speedup=='vectorize':
|
|
40
|
+
mat, labels_ = vectorized_label_to_matrix(labels=labels, sep_pattern=sep_pattern)
|
|
41
|
+
elif speedup=='parallel':
|
|
42
|
+
mat, labels_ = parallel_label_to_matrix(labels=labels, sep_pattern=sep_pattern)
|
|
43
|
+
|
|
44
|
+
mat_df = pd.DataFrame(mat, columns=labels_)
|
|
45
|
+
|
|
46
|
+
labels_valid = [x for x in labels_ if x in self.labels_]
|
|
47
|
+
mat_df = mat_df[labels_valid]
|
|
48
|
+
|
|
49
|
+
mat_valid = np.zeros([mat.shape[0], len(self.labels_)])
|
|
50
|
+
mat_valid_df = pd.DataFrame(mat_valid, columns=self.labels_)
|
|
51
|
+
mat_valid_df[labels_valid] = mat_df
|
|
52
|
+
|
|
53
|
+
return mat_valid_df.values
|
|
54
|
+
|
|
29
55
|
def inverse_transform(self, matrix):
|
|
30
56
|
return matrix_to_labels(matrix=matrix, unique_labels=self.labels_)
|
|
31
57
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
SURE/
|
|
2
|
-
SURE/SURE.py,sha256=
|
|
3
|
-
SURE/__init__.py,sha256=
|
|
1
|
+
SURE/DensityFlow.py,sha256=p5Pt3KrsdF_NTLFx0p1cUPuXkIac6wQED1LsLJRG7mI,56124
|
|
2
|
+
SURE/SURE.py,sha256=MXs7iuvcj-lU4dJ_MwKegpL2Rqk2HB4eFfAgHRA3RtA,47744
|
|
3
|
+
SURE/__init__.py,sha256=NVp22RCHrhSwHNMomABC-eftoCYvt7vV1XOzim-UZHE,293
|
|
4
4
|
SURE/assembly/__init__.py,sha256=jxZLURXKPzXe21LhrZ09LgZr33iqdjlQy4oSEj5gR2Q,172
|
|
5
5
|
SURE/assembly/assembly.py,sha256=6IMdelPOiRO4mUb4dC7gVCoF1Uvfw86-Map8P_jnUag,21477
|
|
6
6
|
SURE/assembly/atlas.py,sha256=ALjmVWutm_tOHTcT1aqOxmuCEQw-XzrtDoMCV_8oXLk,21794
|
|
@@ -9,17 +9,17 @@ SURE/atac/utils.py,sha256=m4NYwpy9O5T1pXTzgCOCcmlwrC6GTi-cQ5sm2wZu2O8,4354
|
|
|
9
9
|
SURE/codebook/__init__.py,sha256=2T5gjp8JIaBayrXAnOJYSebQHsWprOs87difpR1OPNw,243
|
|
10
10
|
SURE/codebook/codebook.py,sha256=ZlN6gRX9Gj2D2u3P5KeOsbZri0MoMAiJo9lNeL-MK-I,17117
|
|
11
11
|
SURE/flow/__init__.py,sha256=rsAjYsh1xVIrxBCuwOE0Q_6N5th1wBgjJceV0ABPG3c,183
|
|
12
|
-
SURE/flow/flow_stats.py,sha256=
|
|
12
|
+
SURE/flow/flow_stats.py,sha256=6SzNMT59WRFRP1nC6bvpBPF7BugWnkIS_DSlr4S-Ez0,11338
|
|
13
13
|
SURE/flow/plot_quiver.py,sha256=UbmuScUcgbQHeMmjKmgqxjrIjHhiHx0VWct16UMMwuE,8110
|
|
14
14
|
SURE/perturb/__init__.py,sha256=8TP1dSUhXiZzKpFebHZmm8XMMGbUz_OfQ10xu-6uPPY,43
|
|
15
|
-
SURE/perturb/perturb.py,sha256=
|
|
15
|
+
SURE/perturb/perturb.py,sha256=ey7cxsM1tO1MW4UaE_MLpLHK87CjvXzn2CBPtvv1VZ0,6116
|
|
16
16
|
SURE/utils/__init__.py,sha256=YF5jB-PAHJQ40OlcZ7BCZbsN2q1JKuPT6EppilRXQqM,680
|
|
17
17
|
SURE/utils/custom_mlp.py,sha256=HuNb7f8-6RFjsvfEu1XOuNpLrHZkGYHgf8TpJfPSNO0,9382
|
|
18
18
|
SURE/utils/queue.py,sha256=E_5PA5EWcBoGAZj8BkKQnkCK0p4C-4-xcTPqdIXaPXU,1892
|
|
19
19
|
SURE/utils/utils.py,sha256=IUHjDDtYaAYllCWsZyIzqQwaLul6fJRvHRH4vIYcR-c,8462
|
|
20
|
-
sure_tools-2.
|
|
21
|
-
sure_tools-2.
|
|
22
|
-
sure_tools-2.
|
|
23
|
-
sure_tools-2.
|
|
24
|
-
sure_tools-2.
|
|
25
|
-
sure_tools-2.
|
|
20
|
+
sure_tools-2.2.23.dist-info/licenses/LICENSE,sha256=TFHKwmrAViXQbSX5W-NDItkWFjm45HWOeUniDrqmnu0,1065
|
|
21
|
+
sure_tools-2.2.23.dist-info/METADATA,sha256=ckAOsGL19y8unUmL2zYK4yeTRGFyALbaN_3hM18u0tw,2678
|
|
22
|
+
sure_tools-2.2.23.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
23
|
+
sure_tools-2.2.23.dist-info/entry_points.txt,sha256=-nJI8rVe_qqrR0HmfAODzj-JNfEqCcSsyVh6okSqyHk,83
|
|
24
|
+
sure_tools-2.2.23.dist-info/top_level.txt,sha256=BtFTebdiJeqra4r6mm-uEtwVRFLZ_IjYsQ7OnalrOvY,5
|
|
25
|
+
sure_tools-2.2.23.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|