Rhapso 0.1.99__py3-none-any.whl → 0.1.991__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Rhapso
3
- Version: 0.1.99
3
+ Version: 0.1.991
4
4
  Summary: A python package for aligning and stitching light sheet fluorescence microscopy images
5
5
  Author: ND
6
6
  Author-email: sean.fite@alleninstitute.org
@@ -46,7 +46,7 @@ Dynamic: summary
46
46
 
47
47
  # Rhapso
48
48
 
49
- This is the code base for **Rhapso**, a modular Python toolkit for the alignment and stitching of large-scale microscopy datasets.
49
+ This is the official code base for **Rhapso**, a modular Python toolkit for the alignment and stitching of large-scale microscopy datasets.
50
50
 
51
51
  [![License](https://img.shields.io/badge/license-MIT-brightgreen)](LICENSE)
52
52
  [![Python Version](https://img.shields.io/badge/python-3.10-blue.svg)](https://www.python.org/downloads/release/python-3100/)
@@ -64,6 +64,8 @@ This is the code base for **Rhapso**, a modular Python toolkit for the alignment
64
64
  - [Performance](#performance)
65
65
  - [Layout](#layout)
66
66
  - [Installation](#installation)
67
+ - [How To Start](#how-to-start)
68
+ - [Try Rhapso on Sample Data](#try-rhapso-on-sample-data)
67
69
  - [Ray](#ray)
68
70
  - [Run Locally w/ Ray](#run-locally-with-ray)
69
71
  - [Run on AWS Cluster w/ Ray](#run-on-aws-cluster-with-ray)
@@ -88,13 +90,7 @@ Rhapso is still loading... and while we wrap up development, a couple things to
88
90
  ## Summary
89
91
  Rhapso is a set of Python components used to register, align, and stitch large-scale, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
90
92
 
91
- Rhapso is published on PyPI and can be installed with:
92
-
93
- ```bash
94
- pip install Rhapso
95
- ```
96
-
97
- <br>
93
+ Rhapso is published on PyPI.
98
94
 
99
95
  Rhapso was developed by the Allen Institute for Neural Dynamics.
100
96
 
@@ -213,6 +209,24 @@ A good way to get started:
213
209
 
214
210
  <br>
215
211
 
212
+ ## Try Rhapso on Sample Data
213
+
214
+ The quickest way to get familiar with Rhapso is to run it on a real dataset. We have a small (10GB) Z1 example hosted in a public S3 bucket, so you can access it without special permissions. It’s a good starting point to copy and adapt for your own alignment workflows.
215
+
216
+ XML (input)
217
+ - s3://aind-open-data/HCR_802704_2025-08-30_02-00-00_processed_2025-10-01_21-09-24/image_tile_alignment/single_channel_xmls/channel_488.xml
218
+
219
+ Image prefix (referenced by the XML)
220
+ - s3://aind-open-data/HCR_802704_2025-08-30_02-00-00_processed_2025-10-01_21-09-24/image_radial_correction/
221
+
222
+ <br>
223
+
224
+ **Note:** Occasionally we clean up our aind-open-data bucket. If you find this dataset does not exist, please create an issue and we will replace it.
225
+
226
+ ---
227
+
228
+ <br>
229
+
216
230
  ## High Level Approach to Registration, Alignment, and Fusion
217
231
 
218
232
  This process has a lot of knobs and variations, and when used correctly, can work for a broad range of datasets.
@@ -90,12 +90,12 @@ Rhapso/split_dataset/save_points.py,sha256=k-jH-slmxkbrxDl-uJvDkwOedi6cg7md3kg_a
90
90
  Rhapso/split_dataset/save_xml.py,sha256=Iq1UdFa8sdnWGygfIpDi4F5In-SCWggpl7lnuDTxkHE,14280
91
91
  Rhapso/split_dataset/split_images.py,sha256=2RzAi0btV1tmh4le9QotRif1IYUU6_4pLcGGpFBM9zk,22434
92
92
  Rhapso/split_dataset/xml_to_dataframe_split.py,sha256=ByaLzJ4sqT417UiCQU31_CS_V4Jms7pjMbBl0ZdSNNA,8570
93
- rhapso-0.1.99.dist-info/licenses/LICENSE,sha256=U0Y7B3gZJHXpjJVLgTQjM8e_c8w4JJpLgGhIdsoFR1Y,1092
93
+ rhapso-0.1.991.dist-info/licenses/LICENSE,sha256=U0Y7B3gZJHXpjJVLgTQjM8e_c8w4JJpLgGhIdsoFR1Y,1092
94
94
  tests/__init__.py,sha256=LYf6ZGyYRcduFFSaOLmnw3rTyfS3XLib0dsTHDWH0jo,37
95
95
  tests/test_detection.py,sha256=NtFYR_du9cbKrclQcNiJYsKzyqly6ivF61pw6_NICcM,440
96
96
  tests/test_matching.py,sha256=QX0ekSdyIkPpAsXHfSMqJUUlNZg09caSlhhUM63MduM,697
97
97
  tests/test_solving.py,sha256=t8I9XPV_4ZFM-DJpgvdYXxkG2_4DQgqs-FFyE5w8Nfg,695
98
- rhapso-0.1.99.dist-info/METADATA,sha256=kqyfZB6PEVsMDtjj-8QH_P1VxJvAQxMG4wUdmvVXeYY,18488
99
- rhapso-0.1.99.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
- rhapso-0.1.99.dist-info/top_level.txt,sha256=NXvsrsTfdowWbM7MxEjkDZE2Jo74lmq7ruWkp70JjSw,13
101
- rhapso-0.1.99.dist-info/RECORD,,
98
+ rhapso-0.1.991.dist-info/METADATA,sha256=QjjEf8EIF1t2I1mvBmN22MSawRvJNQLWV_pnh08YlZ0,19294
99
+ rhapso-0.1.991.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
+ rhapso-0.1.991.dist-info/top_level.txt,sha256=NXvsrsTfdowWbM7MxEjkDZE2Jo74lmq7ruWkp70JjSw,13
101
+ rhapso-0.1.991.dist-info/RECORD,,