Rhapso 0.1.96__py3-none-any.whl → 0.1.97__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {rhapso-0.1.96.dist-info → rhapso-0.1.97.dist-info}/METADATA +6 -10
- {rhapso-0.1.96.dist-info → rhapso-0.1.97.dist-info}/RECORD +5 -5
- {rhapso-0.1.96.dist-info → rhapso-0.1.97.dist-info}/WHEEL +0 -0
- {rhapso-0.1.96.dist-info → rhapso-0.1.97.dist-info}/licenses/LICENSE +0 -0
- {rhapso-0.1.96.dist-info → rhapso-0.1.97.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: Rhapso
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.97
|
|
4
4
|
Summary: A python package for aligning and stitching light sheet fluorescence microscopy images together
|
|
5
5
|
Author: ND
|
|
6
6
|
Author-email: sean.fite@alleninstitute.org
|
|
@@ -86,7 +86,7 @@ Rhapso is still loading... and while we wrap up development, a couple things to
|
|
|
86
86
|
<br>
|
|
87
87
|
|
|
88
88
|
## Summary
|
|
89
|
-
Rhapso is a set of Python components used to register, align, and stitch large-scale,
|
|
89
|
+
Rhapso is a set of Python components used to register, align, and stitch large-scale, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
|
|
90
90
|
|
|
91
91
|
Rhapso is published on PyPI and can be installed with:
|
|
92
92
|
|
|
@@ -109,7 +109,7 @@ Questions or want to contribute? Please open an issue..
|
|
|
109
109
|
- **Global Optimization** - Align matched features between tile pairs globally
|
|
110
110
|
- **Validation and Visualization Tools** - Validate component specific results for the best output
|
|
111
111
|
- **ZARR** - Zarr data as input
|
|
112
|
-
- **TIFF** -
|
|
112
|
+
- **TIFF** - TIFF data as input
|
|
113
113
|
- **AWS** - AWS S3 based input/output and Ray based EC2 instances
|
|
114
114
|
- **Scale** - Tested on 200 TB of data without downsampling
|
|
115
115
|
|
|
@@ -123,21 +123,17 @@ This process has a lot of knobs and variations, and when used correctly, can wor
|
|
|
123
123
|
|
|
124
124
|
**First, figure out what type of alignment you need.**
|
|
125
125
|
- Are there translations to shift to?
|
|
126
|
-
- If so, you’ll likely want to start with a rigid alignment
|
|
127
|
-
|
|
128
|
-
**A very important thing to keep in mind:** interest-point–based alignment will not work well if you don’t find enough high-quality points that can be matched.
|
|
129
|
-
- Too few, even if they’re very good, will lead to poor alignment.
|
|
130
|
-
- The same is true if you have lots of low-quality matches.
|
|
126
|
+
- If so, you’ll likely want to start with a rigid alignment.
|
|
131
127
|
|
|
132
128
|
Once you’ve run the rigid step, how does your data look?
|
|
133
129
|
- Did the required translations shrink to an acceptable level?
|
|
134
130
|
- If not, try again with new parameters, keeping the questions above in mind.
|
|
135
131
|
|
|
136
|
-
At this point, the translational part of your alignment should be in good shape. Now ask: **are
|
|
132
|
+
At this point, the translational part of your alignment should be in good shape. Now ask: **are transformations needed?** If so, you likely need an affine alignment next.
|
|
137
133
|
|
|
138
134
|
Your dataset should be correctly aligned at this point. If not, there are a number of reasons why, and we have listed some common recurrences and will keep this up to date.
|
|
139
135
|
|
|
140
|
-
There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into
|
|
136
|
+
There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into chunks. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
|
|
141
137
|
|
|
142
138
|
**Common Causes of Poor Alignment**
|
|
143
139
|
- Not enough quality matches (adjust sigma threshold until you do)
|
|
@@ -90,12 +90,12 @@ Rhapso/split_dataset/save_points.py,sha256=k-jH-slmxkbrxDl-uJvDkwOedi6cg7md3kg_a
|
|
|
90
90
|
Rhapso/split_dataset/save_xml.py,sha256=Iq1UdFa8sdnWGygfIpDi4F5In-SCWggpl7lnuDTxkHE,14280
|
|
91
91
|
Rhapso/split_dataset/split_images.py,sha256=2RzAi0btV1tmh4le9QotRif1IYUU6_4pLcGGpFBM9zk,22434
|
|
92
92
|
Rhapso/split_dataset/xml_to_dataframe_split.py,sha256=ByaLzJ4sqT417UiCQU31_CS_V4Jms7pjMbBl0ZdSNNA,8570
|
|
93
|
-
rhapso-0.1.
|
|
93
|
+
rhapso-0.1.97.dist-info/licenses/LICENSE,sha256=U0Y7B3gZJHXpjJVLgTQjM8e_c8w4JJpLgGhIdsoFR1Y,1092
|
|
94
94
|
tests/__init__.py,sha256=LYf6ZGyYRcduFFSaOLmnw3rTyfS3XLib0dsTHDWH0jo,37
|
|
95
95
|
tests/test_detection.py,sha256=NtFYR_du9cbKrclQcNiJYsKzyqly6ivF61pw6_NICcM,440
|
|
96
96
|
tests/test_matching.py,sha256=QX0ekSdyIkPpAsXHfSMqJUUlNZg09caSlhhUM63MduM,697
|
|
97
97
|
tests/test_solving.py,sha256=t8I9XPV_4ZFM-DJpgvdYXxkG2_4DQgqs-FFyE5w8Nfg,695
|
|
98
|
-
rhapso-0.1.
|
|
99
|
-
rhapso-0.1.
|
|
100
|
-
rhapso-0.1.
|
|
101
|
-
rhapso-0.1.
|
|
98
|
+
rhapso-0.1.97.dist-info/METADATA,sha256=-3l9w5DW2R4G9M6L3DdsqRscNhYipGIsDYaTxogB--A,17308
|
|
99
|
+
rhapso-0.1.97.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
100
|
+
rhapso-0.1.97.dist-info/top_level.txt,sha256=NXvsrsTfdowWbM7MxEjkDZE2Jo74lmq7ruWkp70JjSw,13
|
|
101
|
+
rhapso-0.1.97.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|