RadGEEToolbox 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,7 @@
1
1
  import ee
2
2
  import pandas as pd
3
3
  import numpy as np
4
+ import warnings
4
5
 
5
6
 
6
7
  # ---- Reflectance scaling for Sentinel-2 L2A (HARMONIZED) ----
@@ -68,7 +69,7 @@ class Sentinel2Collection:
68
69
  ... cloud_percentage_threshold=20,
69
70
  ... nodata_threshold=10,
70
71
  ... )
71
- >>> mosaic_collection = image_collection.MosaicByDate #mosaic images/tiles with same date
72
+ >>> mosaic_collection = image_collection.mosaicByDate #mosaic images/tiles with same date
72
73
  >>> cloud_masked = mosaic_collection.masked_clouds_collection #mask out clouds
73
74
  >>> latest_image = cloud_masked.image_grab(-1) #grab latest image for viewing
74
75
  >>> ndwi_collection = cloud_masked.ndwi #calculate ndwi for all images
@@ -196,6 +197,14 @@ class Sentinel2Collection:
196
197
  self._PixelAreaSumCollection = None
197
198
  self._Reflectance = None
198
199
 
200
+ def __call__(self):
201
+ """
202
+ Allows the object to be called as a function, returning itself.
203
+ This enables property-like methods to be accessed with or without parentheses
204
+ (e.g., .mosaicByDate or .mosaicByDate()).
205
+ """
206
+ return self
207
+
199
208
  @staticmethod
200
209
  def image_dater(image):
201
210
  """
@@ -564,7 +573,7 @@ class Sentinel2Collection:
564
573
  return image.addBands(anomaly_image, overwrite=True)
565
574
 
566
575
  @staticmethod
567
- def MaskCloudsS2(image):
576
+ def maskClouds(image):
568
577
  """
569
578
  Function to mask clouds using SCL band data.
570
579
 
@@ -579,7 +588,14 @@ class Sentinel2Collection:
579
588
  return image.updateMask(CloudMask).copyProperties(image).set('system:time_start', image.get('system:time_start'))
580
589
 
581
590
  @staticmethod
582
- def MaskShadowsS2(image):
591
+ def MaskCloudsS2(image):
592
+ warnings.warn("MaskCloudsS2 is deprecated. Please use maskClouds instead.",
593
+ DeprecationWarning,
594
+ stacklevel=2)
595
+ return Sentinel2Collection.maskClouds(image)
596
+
597
+ @staticmethod
598
+ def maskShadows(image):
583
599
  """
584
600
  Function to mask cloud shadows using SCL band data.
585
601
 
@@ -592,9 +608,16 @@ class Sentinel2Collection:
592
608
  SCL = image.select("SCL")
593
609
  ShadowMask = SCL.neq(3)
594
610
  return image.updateMask(ShadowMask).copyProperties(image).set('system:time_start', image.get('system:time_start'))
611
+
612
+ @staticmethod
613
+ def MaskShadowsS2(image):
614
+ warnings.warn("MaskShadowsS2 is deprecated. Please use maskShadows instead.",
615
+ DeprecationWarning,
616
+ stacklevel=2)
617
+ return Sentinel2Collection.maskShadows(image)
595
618
 
596
619
  @staticmethod
597
- def MaskWaterS2(image):
620
+ def maskWater(image):
598
621
  """
599
622
  Function to mask water pixels using SCL band data.
600
623
 
@@ -607,9 +630,16 @@ class Sentinel2Collection:
607
630
  SCL = image.select("SCL")
608
631
  WaterMask = SCL.neq(6)
609
632
  return image.updateMask(WaterMask).copyProperties(image).set('system:time_start', image.get('system:time_start'))
633
+
634
+ @staticmethod
635
+ def MaskWaterS2(image):
636
+ warnings.warn("MaskWaterS2 is deprecated. Please use maskWater instead.",
637
+ DeprecationWarning,
638
+ stacklevel=2)
639
+ return Sentinel2Collection.maskWater(image)
610
640
 
611
641
  @staticmethod
612
- def MaskWaterS2ByNDWI(image, threshold):
642
+ def maskWaterByNDWI(image, threshold):
613
643
  """
614
644
  Function to mask water pixels (mask land and cloud pixels) for all bands based on NDWI and a set threshold where
615
645
  all pixels less than NDWI threshold are masked out.
@@ -626,9 +656,16 @@ class Sentinel2Collection:
626
656
  ) # green-NIR / green+NIR -- full NDWI image
627
657
  water = image.updateMask(ndwi_calc.lt(threshold)).copyProperties(image).set('system:time_start', image.get('system:time_start'))
628
658
  return water
659
+
660
+ @staticmethod
661
+ def MaskWaterS2ByNDWI(image, threshold):
662
+ warnings.warn("MaskWaterS2ByNDWI is deprecated. Please use maskWaterByNDWI instead.",
663
+ DeprecationWarning,
664
+ stacklevel=2)
665
+ return Sentinel2Collection.maskWaterByNDWI(image, threshold)
629
666
 
630
667
  @staticmethod
631
- def MaskToWaterS2(image):
668
+ def maskToWater(image):
632
669
  """
633
670
  Function to mask to water pixels (mask land and cloud pixels) using SCL band data.
634
671
 
@@ -641,6 +678,13 @@ class Sentinel2Collection:
641
678
  SCL = image.select("SCL")
642
679
  WaterMask = SCL.eq(6)
643
680
  return image.updateMask(WaterMask).copyProperties(image).set('system:time_start', image.get('system:time_start'))
681
+
682
+ @staticmethod
683
+ def MaskToWaterS2(image):
684
+ warnings.warn("MaskToWaterS2 is deprecated. Please use maskToWater instead.",
685
+ DeprecationWarning,
686
+ stacklevel=2)
687
+ return Sentinel2Collection.maskToWater(image)
644
688
 
645
689
  @staticmethod
646
690
  def halite_mask(image, threshold):
@@ -748,7 +792,7 @@ class Sentinel2Collection:
748
792
  return band_to_mask_image.updateMask(mask).rename(band_to_mask).copyProperties(image_to_mask).set('system:time_start', image_to_mask.get('system:time_start'))
749
793
 
750
794
  @staticmethod
751
- def MaskToWaterS2ByNDWI(image, threshold):
795
+ def maskToWaterByNDWI(image, threshold):
752
796
  """
753
797
  Function to mask all bands to water pixels (mask land and cloud pixels) based on NDWI.
754
798
 
@@ -764,9 +808,16 @@ class Sentinel2Collection:
764
808
  ) # green-NIR / green+NIR -- full NDWI image
765
809
  water = image.updateMask(ndwi_calc.gte(threshold)).copyProperties(image).set('system:time_start', image.get('system:time_start'))
766
810
  return water
811
+
812
+ @staticmethod
813
+ def MaskToWaterS2ByNDWI(image, threshold):
814
+ warnings.warn("MaskToWaterS2ByNDWI is deprecated. Please use maskToWaterByNDWI instead.",
815
+ DeprecationWarning,
816
+ stacklevel=2)
817
+ return Sentinel2Collection.maskToWaterByNDWI(image, threshold)
767
818
 
768
819
  @staticmethod
769
- def PixelAreaSum(
820
+ def pixelAreaSum(
770
821
  image, band_name, geometry, threshold=-1, scale=10, maxPixels=1e12
771
822
  ):
772
823
  """
@@ -825,8 +876,17 @@ class Sentinel2Collection:
825
876
  # Call to iterate the calculate_and_set_area function over the list of bands, starting with the original image
826
877
  final_image = ee.Image(bands.iterate(calculate_and_set_area, image))
827
878
  return final_image
879
+
880
+ @staticmethod
881
+ def PixelAreaSum(
882
+ image, band_name, geometry, threshold=-1, scale=10, maxPixels=1e12
883
+ ):
884
+ warnings.warn("PixelAreaSum is deprecated. Please use pixelAreaSum instead.",
885
+ DeprecationWarning,
886
+ stacklevel=2)
887
+ return Sentinel2Collection.pixelAreaSum(image, band_name, geometry, threshold, scale, maxPixels)
828
888
 
829
- def PixelAreaSumCollection(
889
+ def pixelAreaSumCollection(
830
890
  self, band_name, geometry, threshold=-1, scale=10, maxPixels=1e12, output_type='ImageCollection', area_data_export_path=None
831
891
  ):
832
892
  """
@@ -853,7 +913,7 @@ class Sentinel2Collection:
853
913
  collection = self.collection
854
914
  # Area calculation for each image in the collection, using the PixelAreaSum function
855
915
  AreaCollection = collection.map(
856
- lambda image: Sentinel2Collection.PixelAreaSum(
916
+ lambda image: Sentinel2Collection.pixelAreaSum(
857
917
  image,
858
918
  band_name=band_name,
859
919
  geometry=geometry,
@@ -869,17 +929,25 @@ class Sentinel2Collection:
869
929
 
870
930
  # If an export path is provided, the area data will be exported to a CSV file
871
931
  if area_data_export_path:
872
- Sentinel2Collection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=prop_names, file_path=area_data_export_path+'.csv')
932
+ Sentinel2Collection(collection=self._PixelAreaSumCollection).exportProperties(property_names=prop_names, file_path=area_data_export_path+'.csv')
873
933
  # Returning the result in the desired format based on output_type argument or raising an error for invalid input
874
934
  if output_type == 'ImageCollection' or output_type == 'ee.ImageCollection':
875
935
  return self._PixelAreaSumCollection
876
936
  elif output_type == 'Sentinel2Collection':
877
937
  return Sentinel2Collection(collection=self._PixelAreaSumCollection)
878
938
  elif output_type == 'DataFrame' or output_type == 'Pandas' or output_type == 'pd' or output_type == 'dataframe' or output_type == 'df':
879
- return Sentinel2Collection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=prop_names)
939
+ return Sentinel2Collection(collection=self._PixelAreaSumCollection).exportProperties(property_names=prop_names)
880
940
  else:
881
941
  raise ValueError("Incorrect `output_type`. The `output_type` argument must be one of the following: 'ImageCollection', 'ee.ImageCollection', 'Sentinel2Collection', 'DataFrame', 'Pandas', 'pd', 'dataframe', or 'df'.")
882
942
 
943
+ def PixelAreaSumCollection(
944
+ self, band_name, geometry, threshold=-1, scale=10, maxPixels=1e12, output_type='ImageCollection', area_data_export_path=None
945
+ ):
946
+ warnings.warn("PixelAreaSumCollection is deprecated. Please use pixelAreaSumCollection instead.",
947
+ DeprecationWarning,
948
+ stacklevel=2)
949
+ return self.pixelAreaSumCollection(band_name, geometry, threshold, scale, maxPixels, output_type, area_data_export_path)
950
+
883
951
  @staticmethod
884
952
  def add_month_property_fn(image):
885
953
  """
@@ -960,8 +1028,13 @@ class Sentinel2Collection:
960
1028
  return Sentinel2Collection(collection=ee.ImageCollection(paired.map(_pair_two)))
961
1029
 
962
1030
  # Preferred path: merge many singleband products into the parent
963
- if not isinstance(collections, list) or len(collections) == 0:
964
- raise ValueError("Provide a non-empty list of Sentinel2Collection objects in `collections`.")
1031
+ # if not isinstance(collections, list) or len(collections) == 0:
1032
+ # raise ValueError("Provide a non-empty list of Sentinel2Collection objects in `collections`.")
1033
+ if not isinstance(collections, list):
1034
+ collections = [collections]
1035
+
1036
+ if len(collections) == 0:
1037
+ raise ValueError("Provide a non-empty list of LandsatCollection objects in `collections`.")
965
1038
 
966
1039
  result = self.collection
967
1040
  for extra in collections:
@@ -1018,7 +1091,7 @@ class Sentinel2Collection:
1018
1091
  self._dates = dates
1019
1092
  return self._dates
1020
1093
 
1021
- def ExportProperties(self, property_names, file_path=None):
1094
+ def exportProperties(self, property_names, file_path=None):
1022
1095
  """
1023
1096
  Fetches and returns specified properties from each image in the collection as a list, and returns a pandas DataFrame and optionally saves the results to a csv file.
1024
1097
 
@@ -1073,6 +1146,13 @@ class Sentinel2Collection:
1073
1146
  print(f"Properties saved to {file_path}")
1074
1147
 
1075
1148
  return df
1149
+
1150
+ def ExportProperties(self, property_names, file_path=None):
1151
+ warnings.warn(
1152
+ "The `ExportProperties` method is deprecated and will be removed in future versions. Please use the `exportProperties` method instead.",
1153
+ DeprecationWarning,
1154
+ stacklevel=2)
1155
+ return self.exportProperties(property_names, file_path)
1076
1156
 
1077
1157
  def get_filtered_collection(self):
1078
1158
  """
@@ -2678,7 +2758,7 @@ class Sentinel2Collection:
2678
2758
  Sentinel2Collection: Sentinel2Collection image collection.
2679
2759
  """
2680
2760
  if self._masked_water_collection is None:
2681
- col = self.collection.map(Sentinel2Collection.MaskWaterS2)
2761
+ col = self.collection.map(Sentinel2Collection.maskWater)
2682
2762
  self._masked_water_collection = Sentinel2Collection(collection=col)
2683
2763
  return self._masked_water_collection
2684
2764
 
@@ -2690,7 +2770,7 @@ class Sentinel2Collection:
2690
2770
  Sentinel2Collection: Sentinel2Collection image collection.
2691
2771
  """
2692
2772
  col = self.collection.map(
2693
- lambda image: Sentinel2Collection.MaskWaterS2ByNDWI(
2773
+ lambda image: Sentinel2Collection.maskWaterByNDWI(
2694
2774
  image, threshold=threshold
2695
2775
  )
2696
2776
  )
@@ -2705,7 +2785,7 @@ class Sentinel2Collection:
2705
2785
  Sentinel2Collection: Sentinel2Collection image collection.
2706
2786
  """
2707
2787
  if self._masked_to_water_collection is None:
2708
- col = self.collection.map(Sentinel2Collection.MaskToWaterS2)
2788
+ col = self.collection.map(Sentinel2Collection.maskToWater)
2709
2789
  self._masked_water_collection = Sentinel2Collection(collection=col)
2710
2790
  return self._masked_water_collection
2711
2791
 
@@ -2717,7 +2797,7 @@ class Sentinel2Collection:
2717
2797
  Sentinel2Collection: Sentinel2Collection image collection.
2718
2798
  """
2719
2799
  col = self.collection.map(
2720
- lambda image: Sentinel2Collection.MaskToWaterS2ByNDWI(
2800
+ lambda image: Sentinel2Collection.maskToWaterByNDWI(
2721
2801
  image, threshold=threshold
2722
2802
  )
2723
2803
  )
@@ -2732,7 +2812,7 @@ class Sentinel2Collection:
2732
2812
  Sentinel2Collection: masked Sentinel2Collection image collection.
2733
2813
  """
2734
2814
  if self._masked_clouds_collection is None:
2735
- col = self.collection.map(Sentinel2Collection.MaskCloudsS2)
2815
+ col = self.collection.map(Sentinel2Collection.maskClouds)
2736
2816
  self._masked_clouds_collection = Sentinel2Collection(collection=col)
2737
2817
  return self._masked_clouds_collection
2738
2818
 
@@ -2745,7 +2825,7 @@ class Sentinel2Collection:
2745
2825
  Sentinel2Collection: Sentinel2Collection image collection
2746
2826
  """
2747
2827
  if self._masked_shadows_collection is None:
2748
- col = self.collection.map(Sentinel2Collection.MaskShadowsS2)
2828
+ col = self.collection.map(Sentinel2Collection.maskShadows)
2749
2829
  self._masked_shadows_collection = Sentinel2Collection(collection=col)
2750
2830
  return self._masked_shadows_collection
2751
2831
 
@@ -2760,20 +2840,15 @@ class Sentinel2Collection:
2760
2840
  Sentinel2Collection: masked Sentinel2Collection image collection.
2761
2841
 
2762
2842
  """
2763
- if self._geometry_masked_collection is None:
2764
- # Convert the polygon to a mask
2765
- mask = ee.Image.constant(1).clip(polygon)
2843
+ # Convert the polygon to a mask
2844
+ mask = ee.Image.constant(1).clip(polygon)
2766
2845
 
2767
- # Update the mask of each image in the collection
2768
- masked_collection = self.collection.map(lambda img: img.updateMask(mask))
2769
-
2770
- # Update the internal collection state
2771
- self._geometry_masked_collection = Sentinel2Collection(
2772
- collection=masked_collection
2773
- )
2846
+ # Update the mask of each image in the collection
2847
+ masked_collection = self.collection.map(lambda img: img.updateMask(mask)\
2848
+ .copyProperties(img).set('system:time_start', img.get('system:time_start')))
2774
2849
 
2775
2850
  # Return the updated object
2776
- return self._geometry_masked_collection
2851
+ return Sentinel2Collection(collection=masked_collection)
2777
2852
 
2778
2853
  def mask_out_polygon(self, polygon):
2779
2854
  """
@@ -2786,23 +2861,17 @@ class Sentinel2Collection:
2786
2861
  Sentinel2Collection: masked Sentinel2Collection image collection.
2787
2862
 
2788
2863
  """
2789
- if self._geometry_masked_out_collection is None:
2790
- # Convert the polygon to a mask
2791
- full_mask = ee.Image.constant(1)
2792
-
2793
- # Use paint to set pixels inside polygon as 0
2794
- area = full_mask.paint(polygon, 0)
2864
+ # Convert the polygon to a mask
2865
+ full_mask = ee.Image.constant(1)
2795
2866
 
2796
- # Update the mask of each image in the collection
2797
- masked_collection = self.collection.map(lambda img: img.updateMask(area))
2798
-
2799
- # Update the internal collection state
2800
- self._geometry_masked_out_collection = Sentinel2Collection(
2801
- collection=masked_collection
2802
- )
2867
+ # Use paint to set pixels inside polygon as 0
2868
+ area = full_mask.paint(polygon, 0)
2803
2869
 
2870
+ # Update the mask of each image in the collection
2871
+ masked_collection = self.collection.map(lambda img: img.updateMask(area)\
2872
+ .copyProperties(img).set('system:time_start', img.get('system:time_start')))
2804
2873
  # Return the updated object
2805
- return self._geometry_masked_out_collection
2874
+ return Sentinel2Collection(collection=masked_collection)
2806
2875
 
2807
2876
  def mask_halite(self, threshold):
2808
2877
  """
@@ -2977,6 +3046,9 @@ class Sentinel2Collection:
2977
3046
 
2978
3047
  if geometry is not None and not isinstance(geometry, ee.Geometry):
2979
3048
  raise ValueError(f'The chosen `geometry`: {geometry} is not a valid ee.Geometry object.')
3049
+
3050
+ native_projection = image_collection.first().select(target_band).projection()
3051
+
2980
3052
  # define the join, which will join all images newer than the current image
2981
3053
  # use system:time_start if the image does not have a Date_Filter property
2982
3054
  if join_method == 'system:time_start':
@@ -3032,7 +3104,7 @@ class Sentinel2Collection:
3032
3104
  # convert the image collection to an image of s_statistic values per pixel
3033
3105
  # where the s_statistic is the sum of partial s values
3034
3106
  # renaming the band as 's_statistic' for later usage
3035
- final_s_image = partial_s_col.sum().rename('s_statistic')
3107
+ final_s_image = partial_s_col.sum().rename('s_statistic').setDefaultProjection(native_projection)
3036
3108
 
3037
3109
 
3038
3110
  ########## PART 2 - VARIANCE and Z-SCORE ##########
@@ -3095,7 +3167,7 @@ class Sentinel2Collection:
3095
3167
  mask = ee.Image(1).clip(geometry)
3096
3168
  final_image = final_image.updateMask(mask)
3097
3169
 
3098
- return final_image
3170
+ return final_image.setDefaultProjection(native_projection)
3099
3171
 
3100
3172
  def sens_slope_trend(self, target_band=None, join_method='system:time_start', geometry=None):
3101
3173
  """
@@ -3130,6 +3202,8 @@ class Sentinel2Collection:
3130
3202
 
3131
3203
  if geometry is not None and not isinstance(geometry, ee.Geometry):
3132
3204
  raise ValueError(f'The chosen `geometry`: {geometry} is not a valid ee.Geometry object.')
3205
+
3206
+ native_projection = image_collection.first().select(target_band).projection()
3133
3207
 
3134
3208
  # Add Year Band (Time X-Axis)
3135
3209
  def add_year_band(image):
@@ -3158,7 +3232,7 @@ class Sentinel2Collection:
3158
3232
  mask = ee.Image(1).clip(geometry)
3159
3233
  slope_band = slope_band.updateMask(mask)
3160
3234
 
3161
- return slope_band
3235
+ return slope_band.setDefaultProjection(native_projection)
3162
3236
 
3163
3237
 
3164
3238
  def mask_via_band(self, band_to_mask, band_for_mask, threshold=-1, mask_above=True, add_band_to_original_image=False):
@@ -3302,7 +3376,7 @@ class Sentinel2Collection:
3302
3376
  new_col = self.collection.filter(ee.Filter.eq("Date_Filter", img_date))
3303
3377
  return new_col.first()
3304
3378
 
3305
- def CollectionStitch(self, img_col2):
3379
+ def collectionStitch(self, img_col2):
3306
3380
  """
3307
3381
  Function to mosaic two Sentinel2Collection objects which share image dates.
3308
3382
  Mosaics are only formed for dates where both image collections have images.
@@ -3356,8 +3430,15 @@ class Sentinel2Collection:
3356
3430
  # Return a Sentinel2Collection instance
3357
3431
  return Sentinel2Collection(collection=new_col)
3358
3432
 
3433
+ def CollectionStitch(self, img_col2):
3434
+ warnings.warn(
3435
+ "The `CollectionStitch` method is deprecated and will be removed in future versions. Please use the `collectionStitch` method instead.",
3436
+ DeprecationWarning,
3437
+ stacklevel=2)
3438
+ return self.collectionStitch(img_col2)
3439
+
3359
3440
  @property
3360
- def MosaicByDate(self):
3441
+ def mosaicByDateDepr(self):
3361
3442
  """
3362
3443
  Property attribute function to mosaic collection images that share the same date. The properties CLOUD_PIXEL_PERCENTAGE and NODATA_PIXEL_PERCENTAGE
3363
3444
  for each image are used to calculate an overall mean, which replaces the CLOUD_PIXEL_PERCENTAGE and NODATA_PIXEL_PERCENTAGE for each mosaiced image.
@@ -3423,6 +3504,76 @@ class Sentinel2Collection:
3423
3504
  self._MosaicByDate = col
3424
3505
 
3425
3506
  return self._MosaicByDate
3507
+
3508
+ @property
3509
+ def mosaicByDate(self):
3510
+ """
3511
+ Property attribute function to mosaic collection images that share the same date.
3512
+
3513
+ The property CLOUD_COVER for each image is used to calculate an overall mean,
3514
+ which replaces the CLOUD_COVER property for each mosaiced image.
3515
+ Server-side friendly.
3516
+
3517
+ NOTE: if images are removed from the collection from cloud filtering, you may have mosaics composed of only one image.
3518
+
3519
+ Returns:
3520
+ LandsatCollection: LandsatCollection image collection with mosaiced imagery and mean CLOUD_COVER as a property
3521
+ """
3522
+ if self._MosaicByDate is None:
3523
+ distinct_dates = self.collection.distinct("Date_Filter")
3524
+
3525
+ # Define a join to link images by Date_Filter
3526
+ filter_date = ee.Filter.equals(leftField="Date_Filter", rightField="Date_Filter")
3527
+ join = ee.Join.saveAll(matchesKey="date_matches")
3528
+
3529
+ # Apply the join
3530
+ # Primary: Distinct dates collection
3531
+ # Secondary: The full original collection
3532
+ joined_col = ee.ImageCollection(join.apply(distinct_dates, self.collection, filter_date))
3533
+
3534
+ # Define the mosaicking function
3535
+ def _mosaic_day(img):
3536
+ # Recover the list of images for this day
3537
+ daily_list = ee.List(img.get("date_matches"))
3538
+ daily_col = ee.ImageCollection.fromImages(daily_list)
3539
+
3540
+ # Create the mosaic
3541
+ mosaic = daily_col.mosaic().setDefaultProjection(img.projection())
3542
+
3543
+ # Calculate means for Sentinel-2 specific props
3544
+ cloud_pct = daily_col.aggregate_mean("CLOUDY_PIXEL_PERCENTAGE")
3545
+ nodata_pct = daily_col.aggregate_mean("NODATA_PIXEL_PERCENTAGE")
3546
+
3547
+ # Properties to preserve from the representative image
3548
+ props_of_interest = [
3549
+ "SPACECRAFT_NAME",
3550
+ "SENSING_ORBIT_NUMBER",
3551
+ "SENSING_ORBIT_DIRECTION",
3552
+ "MISSION_ID",
3553
+ "PLATFORM_IDENTIFIER",
3554
+ "system:time_start"
3555
+ ]
3556
+
3557
+ # Return mosaic with properties set
3558
+ return mosaic.copyProperties(img, props_of_interest).set({
3559
+ "CLOUDY_PIXEL_PERCENTAGE": cloud_pct,
3560
+ "NODATA_PIXEL_PERCENTAGE": nodata_pct
3561
+ })
3562
+
3563
+ # 5. Map the function and wrap the result
3564
+ mosaiced_col = joined_col.map(_mosaic_day)
3565
+ self._MosaicByDate = Sentinel2Collection(collection=mosaiced_col)
3566
+
3567
+ # Convert the list of mosaics to an ImageCollection
3568
+ return self._MosaicByDate
3569
+
3570
+ @property
3571
+ def MosaicByDate(self):
3572
+ warnings.warn(
3573
+ "The `MosaicByDate` property is deprecated and will be removed in future versions. Please use the `mosaicByDate` property instead.",
3574
+ DeprecationWarning,
3575
+ stacklevel=2)
3576
+ return self.mosaicByDate
3426
3577
 
3427
3578
  @staticmethod
3428
3579
  def ee_to_df(
RadGEEToolbox/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
- __version__ = "1.7.3"
1
+ __version__ = "1.7.4"
2
2
 
3
- from .CollectionStitch import CollectionStitch, MosaicByDate
3
+ from .CollectionStitch import collectionStitch, mosaicByDate
4
4
  from .Export import ExportToDrive
5
5
  from .GetPalette import get_palette
6
6
  from .LandsatCollection import LandsatCollection
@@ -10,9 +10,9 @@ from .GenericCollection import GenericCollection
10
10
  from .VisParams import get_visualization_params
11
11
 
12
12
  __all__ = [
13
- "CollectionStitch",
13
+ "collectionStitch",
14
14
  "ExportToDrive",
15
- "MosaicByDate",
15
+ "mosaicByDate",
16
16
  "get_palette",
17
17
  "LandsatCollection",
18
18
  "Sentinel1Collection",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: RadGEEToolbox
3
- Version: 1.7.3
3
+ Version: 1.7.4
4
4
  Summary: Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API
5
5
  Home-page: https://github.com/radwinskis/RadGEEToolbox
6
6
  Author: Mark Radwin
@@ -43,7 +43,7 @@ Designed for both new and advanced users of Google Earth Engine, RadGEEToolbox m
43
43
 
44
44
  Although similar packages exist (eemont, geetools, etc.), `RadGEEToolbox` extends functionality and provides cohesive, chainable methods for research oriented projects working with Landsat TM & OLI, Sentinel-1 SAR, and/or Sentinel-2 MSI datasets (Table 1). The ultimate goal of `RadGEEToolbox` is to make satellite image processing easier and faster for real world applications relying on the most commonly utilized remote sensing platforms.
45
45
 
46
- As of version `1.7.3`, `RadGEEToolbox` supports any generic image collection via the `GenericCollection` module which allows for utilization of the same data management, temporal reduction, zonal statistics, and data export tools available for the `LandsatCollection`, `Sentinel1Collection`, and `Sentinel2Collection` modules. This allows users to provide their own image collection of choice, such as PRISM or MODIS data, to benefit from the tools available with `RadGEEToolbox`.
46
+ As of version `1.7.4`, `RadGEEToolbox` supports any generic image collection via the `GenericCollection` module which allows for utilization of the same data management, temporal reduction, zonal statistics, and data export tools available for the `LandsatCollection`, `Sentinel1Collection`, and `Sentinel2Collection` modules. This allows users to provide their own image collection of choice, such as PRISM or MODIS data, to benefit from the tools available with `RadGEEToolbox`.
47
47
 
48
48
  ***Table 1.*** *Comparison of functionality between RadGEEToolbox, eemont, and geetools.*
49
49
 
@@ -185,15 +185,15 @@ _____________
185
185
 
186
186
  ### Installing via pip
187
187
 
188
- To install `RadGEEToolbox` version 1.7.3 using pip (NOTE: it is recommended to create a new virtual environment):
188
+ To install `RadGEEToolbox` version 1.7.4 using pip (NOTE: it is recommended to create a new virtual environment):
189
189
 
190
190
  ```bash
191
- pip install RadGEEToolbox==1.7.3
191
+ pip install RadGEEToolbox==1.7.4
192
192
  ```
193
193
 
194
194
  ### Installing via Conda
195
195
 
196
- To install `RadGEEToolbox` version 1.7.3 using conda-forge (NOTE: it is recommended to create a new virtual environment):
196
+ To install `RadGEEToolbox` version 1.7.4 using conda-forge (NOTE: it is recommended to create a new virtual environment):
197
197
 
198
198
  ```bash
199
199
  conda install conda-forge::radgeetoolbox
@@ -224,7 +224,7 @@ To verify that `RadGEEToolbox` was installed correctly:
224
224
  python -c "import RadGEEToolbox; print(RadGEEToolbox.__version__)"
225
225
  ```
226
226
 
227
- You should see `1.7.3` printed as the version number.
227
+ You should see `1.7.4` printed as the version number.
228
228
 
229
229
  ### Want to Visualize Data? Install These Too
230
230
 
@@ -0,0 +1,14 @@
1
+ RadGEEToolbox/CollectionStitch.py,sha256=za_UHSgPqkflNcapg42ruu8-Mk6QCeRNQi3fPx2SMvU,4399
2
+ RadGEEToolbox/Export.py,sha256=FLQZw6Hy3iwYxsLqV1HomGex3pZo9ynUr5FoiP15Cfk,11017
3
+ RadGEEToolbox/GenericCollection.py,sha256=pUdjxsFCXBjYDBxqbvnIx3N7XBvzUhqvTBDEoG0ZW4k,174261
4
+ RadGEEToolbox/GetPalette.py,sha256=Ve7vYzs0EYHZyvFwaB_k8FR4uo5RRDy4pcq7eBK9yM0,7145
5
+ RadGEEToolbox/LandsatCollection.py,sha256=i6OAeFMp2iWPrmhdsBMukW2GkAeK0XV_vNEHkaZbHSs,246222
6
+ RadGEEToolbox/Sentinel1Collection.py,sha256=J73mcL0sjVTUYxs7x7nzBtMMRAbSkQOpMEzqbZZNqPU,164138
7
+ RadGEEToolbox/Sentinel2Collection.py,sha256=rvkBmr3se6nHCaduuNaKjkZ172p5tOZug_NBRMnSzZ8,213228
8
+ RadGEEToolbox/VisParams.py,sha256=ONjnJd83jfaM1r-hbtlcIxiBOGMoJGtdHF0mw1iaw5c,8183
9
+ RadGEEToolbox/__init__.py,sha256=Z-zYmSkUHwNTz4X5FQP1bBzAGprcF-pwH50yFyJ388c,663
10
+ radgeetoolbox-1.7.4.dist-info/licenses/LICENSE.txt,sha256=5Xj9dwVkawz6d8zhCwJy0SmXvm0U4K_msJnOrkHLO1w,1089
11
+ radgeetoolbox-1.7.4.dist-info/METADATA,sha256=E19ilMYT7Scq8ImzeOXZkfH65ib4fOM0mH7QDfehMeA,17737
12
+ radgeetoolbox-1.7.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
13
+ radgeetoolbox-1.7.4.dist-info/top_level.txt,sha256=W2E520tugQoptDkhctKFbzsheL2l_DyYLKqKXkD9G_E,14
14
+ radgeetoolbox-1.7.4.dist-info/RECORD,,
@@ -1,14 +0,0 @@
1
- RadGEEToolbox/CollectionStitch.py,sha256=dLRzJZLZ1QTJqqbWPElyTjxb1m0T_WuBTo6wNzcCXq4,3884
2
- RadGEEToolbox/Export.py,sha256=H815I3uqs3M-pPcStRiseDbK1y3VWhIMRmH0XuCqGA4,10470
3
- RadGEEToolbox/GenericCollection.py,sha256=MF8kBNEf1PjlzVTKMQ9IKVGISrxDgudvxrOMpxv7KMI,169993
4
- RadGEEToolbox/GetPalette.py,sha256=Ve7vYzs0EYHZyvFwaB_k8FR4uo5RRDy4pcq7eBK9yM0,7145
5
- RadGEEToolbox/LandsatCollection.py,sha256=JhkTfISIvSCHQ853MKi7Lgh8bv9vpwZC018pwzkzo6s,237720
6
- RadGEEToolbox/Sentinel1Collection.py,sha256=IZqC33vW3m5pO8zRuKanISElB10dEVgCZEYAt_v_qhY,158637
7
- RadGEEToolbox/Sentinel2Collection.py,sha256=bKwfSccjX-mvIf3awiSLBVGKFXaVZEXAMEu9O39aBy4,206150
8
- RadGEEToolbox/VisParams.py,sha256=ONjnJd83jfaM1r-hbtlcIxiBOGMoJGtdHF0mw1iaw5c,8183
9
- RadGEEToolbox/__init__.py,sha256=cWtHRpPpNh1vo3DWsp_4d96QRZwMe25mS-Zz0bvoOSE,663
10
- radgeetoolbox-1.7.3.dist-info/licenses/LICENSE.txt,sha256=5Xj9dwVkawz6d8zhCwJy0SmXvm0U4K_msJnOrkHLO1w,1089
11
- radgeetoolbox-1.7.3.dist-info/METADATA,sha256=vQig4v_Ie9opc7LCvXjXPCDRpxMW-G1qUKXh5vGQu5k,17737
12
- radgeetoolbox-1.7.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
13
- radgeetoolbox-1.7.3.dist-info/top_level.txt,sha256=W2E520tugQoptDkhctKFbzsheL2l_DyYLKqKXkD9G_E,14
14
- radgeetoolbox-1.7.3.dist-info/RECORD,,