RadGEEToolbox 1.7.1__py3-none-any.whl → 1.7.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- RadGEEToolbox/Export.py +233 -0
- RadGEEToolbox/GenericCollection.py +643 -15
- RadGEEToolbox/LandsatCollection.py +698 -67
- RadGEEToolbox/Sentinel1Collection.py +633 -10
- RadGEEToolbox/Sentinel2Collection.py +676 -30
- RadGEEToolbox/__init__.py +3 -1
- {radgeetoolbox-1.7.1.dist-info → radgeetoolbox-1.7.3.dist-info}/METADATA +11 -7
- radgeetoolbox-1.7.3.dist-info/RECORD +14 -0
- radgeetoolbox-1.7.1.dist-info/RECORD +0 -13
- {radgeetoolbox-1.7.1.dist-info → radgeetoolbox-1.7.3.dist-info}/WHEEL +0 -0
- {radgeetoolbox-1.7.1.dist-info → radgeetoolbox-1.7.3.dist-info}/licenses/LICENSE.txt +0 -0
- {radgeetoolbox-1.7.1.dist-info → radgeetoolbox-1.7.3.dist-info}/top_level.txt +0 -0
|
@@ -218,6 +218,11 @@ class Sentinel1Collection:
|
|
|
218
218
|
self._monthly_max = None
|
|
219
219
|
self._monthly_min = None
|
|
220
220
|
self._monthly_sum = None
|
|
221
|
+
self._yearly_median = None
|
|
222
|
+
self._yearly_mean = None
|
|
223
|
+
self._yearly_max = None
|
|
224
|
+
self._yearly_min = None
|
|
225
|
+
self._yearly_sum = None
|
|
221
226
|
self._MosaicByDate = None
|
|
222
227
|
self._PixelAreaSumCollection = None
|
|
223
228
|
self._speckle_filter = None
|
|
@@ -339,17 +344,18 @@ class Sentinel1Collection:
|
|
|
339
344
|
# Storing the result in the instance variable to avoid redundant calculations
|
|
340
345
|
self._PixelAreaSumCollection = AreaCollection
|
|
341
346
|
|
|
347
|
+
prop_names = band_name if isinstance(band_name, list) else [band_name]
|
|
348
|
+
|
|
342
349
|
# If an export path is provided, the area data will be exported to a CSV file
|
|
343
350
|
if area_data_export_path:
|
|
344
|
-
Sentinel1Collection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=
|
|
345
|
-
|
|
351
|
+
Sentinel1Collection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=prop_names, file_path=area_data_export_path+'.csv')
|
|
346
352
|
# Returning the result in the desired format based on output_type argument or raising an error for invalid input
|
|
347
353
|
if output_type == 'ImageCollection' or output_type == 'ee.ImageCollection':
|
|
348
354
|
return self._PixelAreaSumCollection
|
|
349
355
|
elif output_type == 'Sentinel1Collection':
|
|
350
356
|
return Sentinel1Collection(collection=self._PixelAreaSumCollection)
|
|
351
357
|
elif output_type == 'DataFrame' or output_type == 'Pandas' or output_type == 'pd' or output_type == 'dataframe' or output_type == 'df':
|
|
352
|
-
return Sentinel1Collection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=
|
|
358
|
+
return Sentinel1Collection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=prop_names)
|
|
353
359
|
else:
|
|
354
360
|
raise ValueError("Incorrect `output_type`. The `output_type` argument must be one of the following: 'ImageCollection', 'ee.ImageCollection', 'Sentinel1Collection', 'DataFrame', 'Pandas', 'pd', 'dataframe', or 'df'.")
|
|
355
361
|
|
|
@@ -426,7 +432,7 @@ class Sentinel1Collection:
|
|
|
426
432
|
# Overwrite on name collision
|
|
427
433
|
merged = a.addBands(b, None, True)
|
|
428
434
|
# Keep parent props + date key
|
|
429
|
-
merged = merged.copyProperties(a, a.propertyNames())
|
|
435
|
+
merged = merged.copyProperties(a, a.propertyNames()).set('system:time_start', a.get('system:time_start'))
|
|
430
436
|
merged = merged.set(date_key, a.get(date_key))
|
|
431
437
|
return ee.Image(merged)
|
|
432
438
|
|
|
@@ -454,7 +460,7 @@ class Sentinel1Collection:
|
|
|
454
460
|
# Add the single band; overwrite if the name already exists in parent
|
|
455
461
|
merged = parent.addBands(sb.select([bname]).rename([bname]), None, True)
|
|
456
462
|
# Preserve parent props + date key
|
|
457
|
-
merged = merged.copyProperties(parent, parent.propertyNames())
|
|
463
|
+
merged = merged.copyProperties(parent, parent.propertyNames()).set('system:time_start', parent.get('system:time_start'))
|
|
458
464
|
merged = merged.set(date_key, parent.get(date_key))
|
|
459
465
|
return ee.Image(merged)
|
|
460
466
|
|
|
@@ -669,7 +675,7 @@ class Sentinel1Collection:
|
|
|
669
675
|
xHat = image.select(bandNames).updateMask(retainPixel).unmask(xHat)
|
|
670
676
|
output = ee.Image(xHat).rename(bandNames)
|
|
671
677
|
# return image.addBands(output, None, True)
|
|
672
|
-
return output.copyProperties(image)
|
|
678
|
+
return output.copyProperties(image).set('system:time_start', image.get('system:time_start'))
|
|
673
679
|
|
|
674
680
|
def speckle_filter(self, KERNEL_SIZE, geometry=None, Tk=7, sigma=0.9, looks=1):
|
|
675
681
|
"""
|
|
@@ -717,6 +723,7 @@ class Sentinel1Collection:
|
|
|
717
723
|
.pow(image.divide(ee.Image(10)))
|
|
718
724
|
.rename(band_names)
|
|
719
725
|
.copyProperties(image)
|
|
726
|
+
.set('system:time_start', image.get('system:time_start'))
|
|
720
727
|
)
|
|
721
728
|
return sigma_nought
|
|
722
729
|
|
|
@@ -743,6 +750,7 @@ class Sentinel1Collection:
|
|
|
743
750
|
.multiply(image.log10())
|
|
744
751
|
.rename(band_names)
|
|
745
752
|
.copyProperties(image)
|
|
753
|
+
.set('system:time_start', image.get('system:time_start'))
|
|
746
754
|
)
|
|
747
755
|
return dB
|
|
748
756
|
|
|
@@ -808,7 +816,7 @@ class Sentinel1Collection:
|
|
|
808
816
|
if replace:
|
|
809
817
|
return anomaly_image.copyProperties(image).set('system:time_start', image.get('system:time_start'))
|
|
810
818
|
else:
|
|
811
|
-
return image.addBands(anomaly_image, overwrite=True)
|
|
819
|
+
return image.addBands(anomaly_image, overwrite=True).copyProperties(image).set('system:time_start', image.get('system:time_start'))
|
|
812
820
|
|
|
813
821
|
@property
|
|
814
822
|
def dates_list(self):
|
|
@@ -853,6 +861,8 @@ class Sentinel1Collection:
|
|
|
853
861
|
# Ensure property_names is a list for consistent processing
|
|
854
862
|
if isinstance(property_names, str):
|
|
855
863
|
property_names = [property_names]
|
|
864
|
+
elif isinstance(property_names, list):
|
|
865
|
+
property_names = property_names
|
|
856
866
|
|
|
857
867
|
# Ensure properties are included without duplication, including 'Date_Filter'
|
|
858
868
|
all_properties_to_fetch = list(set(['Date_Filter'] + property_names))
|
|
@@ -1460,6 +1470,391 @@ class Sentinel1Collection:
|
|
|
1460
1470
|
|
|
1461
1471
|
return self._monthly_min
|
|
1462
1472
|
|
|
1473
|
+
def yearly_mean_collection(self, start_month=1, end_month=12):
|
|
1474
|
+
"""
|
|
1475
|
+
Creates a yearly mean composite from the collection, with optional monthly filtering.
|
|
1476
|
+
|
|
1477
|
+
This function computes the mean for each year within the collection's date range.
|
|
1478
|
+
You can specify a range of months (e.g., start_month=6, end_month=10 for June-October)
|
|
1479
|
+
to calculate the mean only using imagery from that specific season for each year.
|
|
1480
|
+
|
|
1481
|
+
The resulting images have 'system:time_start', 'year', 'image_count', 'season_start',
|
|
1482
|
+
'season_end', and 'Date_Filter' properties. Years with no images (after filtering) are excluded.
|
|
1483
|
+
|
|
1484
|
+
Args:
|
|
1485
|
+
start_month (int): The starting month (1-12) for the filter. Defaults to 1 (January).
|
|
1486
|
+
end_month (int): The ending month (1-12) for the filter. Defaults to 12 (December).
|
|
1487
|
+
|
|
1488
|
+
Returns:
|
|
1489
|
+
Object: A new instance of the same class (e.g., Sentinel1Collection) containing the yearly mean composites.
|
|
1490
|
+
"""
|
|
1491
|
+
if self._yearly_mean is None:
|
|
1492
|
+
|
|
1493
|
+
date_range = self.collection.reduceColumns(ee.Reducer.minMax(), ["system:time_start"])
|
|
1494
|
+
start_date_full = ee.Date(date_range.get('min'))
|
|
1495
|
+
end_date_full = ee.Date(date_range.get('max'))
|
|
1496
|
+
|
|
1497
|
+
start_year = start_date_full.get('year')
|
|
1498
|
+
end_year = end_date_full.get('year')
|
|
1499
|
+
|
|
1500
|
+
if start_month != 1 or end_month != 12:
|
|
1501
|
+
processing_collection = self.collection.filter(ee.Filter.calendarRange(start_month, end_month, 'month'))
|
|
1502
|
+
else:
|
|
1503
|
+
processing_collection = self.collection
|
|
1504
|
+
|
|
1505
|
+
# Capture projection from the first image to restore it after reduction
|
|
1506
|
+
target_proj = self.collection.first().projection()
|
|
1507
|
+
|
|
1508
|
+
years = ee.List.sequence(start_year, end_year)
|
|
1509
|
+
|
|
1510
|
+
def create_yearly_composite(year):
|
|
1511
|
+
year = ee.Number(year)
|
|
1512
|
+
# Define the full calendar year range
|
|
1513
|
+
start_of_year = ee.Date.fromYMD(year, 1, 1)
|
|
1514
|
+
end_of_year = start_of_year.advance(1, 'year')
|
|
1515
|
+
|
|
1516
|
+
yearly_subset = processing_collection.filterDate(start_of_year, end_of_year)
|
|
1517
|
+
|
|
1518
|
+
# Calculate stats
|
|
1519
|
+
image_count = yearly_subset.size()
|
|
1520
|
+
yearly_reduction = yearly_subset.mean()
|
|
1521
|
+
|
|
1522
|
+
# Define the timestamp for the composite.
|
|
1523
|
+
# We use the start_month of that year to accurately reflect the data start time.
|
|
1524
|
+
composite_date = ee.Date.fromYMD(year, start_month, 1)
|
|
1525
|
+
|
|
1526
|
+
return yearly_reduction.set({
|
|
1527
|
+
'system:time_start': composite_date.millis(),
|
|
1528
|
+
'year': year,
|
|
1529
|
+
'month': start_month,
|
|
1530
|
+
'Date_Filter': composite_date.format('YYYY-MM-dd'),
|
|
1531
|
+
'image_count': image_count,
|
|
1532
|
+
'season_start': start_month,
|
|
1533
|
+
'season_end': end_month
|
|
1534
|
+
}).reproject(target_proj)
|
|
1535
|
+
|
|
1536
|
+
# Map the function over the years list
|
|
1537
|
+
yearly_composites_list = years.map(create_yearly_composite)
|
|
1538
|
+
|
|
1539
|
+
# Convert to Collection
|
|
1540
|
+
yearly_collection = ee.ImageCollection.fromImages(yearly_composites_list)
|
|
1541
|
+
|
|
1542
|
+
# Filter out any composites that were created from zero images.
|
|
1543
|
+
final_collection = yearly_collection.filter(ee.Filter.gt('image_count', 0))
|
|
1544
|
+
|
|
1545
|
+
self._yearly_mean = Sentinel1Collection(collection=final_collection)
|
|
1546
|
+
else:
|
|
1547
|
+
pass
|
|
1548
|
+
return self._yearly_mean
|
|
1549
|
+
|
|
1550
|
+
def yearly_median_collection(self, start_month=1, end_month=12):
|
|
1551
|
+
"""
|
|
1552
|
+
Creates a yearly median composite from the collection, with optional monthly filtering.
|
|
1553
|
+
|
|
1554
|
+
This function computes the median for each year within the collection's date range.
|
|
1555
|
+
You can specify a range of months (e.g., start_month=6, end_month=10 for June-October)
|
|
1556
|
+
to calculate the median only using imagery from that specific season for each year.
|
|
1557
|
+
The resulting images have 'system:time_start', 'year', 'image_count', 'season_start',
|
|
1558
|
+
'season_end', and 'Date_Filter' properties. Years with no images (after filtering) are excluded.
|
|
1559
|
+
|
|
1560
|
+
Args:
|
|
1561
|
+
start_month (int): The starting month (1-12) for the filter. Defaults to 1 (January).
|
|
1562
|
+
end_month (int): The ending month (1-12) for the filter. Defaults to 12 (December).
|
|
1563
|
+
|
|
1564
|
+
Returns:
|
|
1565
|
+
Object: A new instance of the same class (e.g., Sentinel1Collection) containing the yearly median composites.
|
|
1566
|
+
"""
|
|
1567
|
+
if self._yearly_median is None:
|
|
1568
|
+
|
|
1569
|
+
date_range = self.collection.reduceColumns(ee.Reducer.minMax(), ["system:time_start"])
|
|
1570
|
+
start_date_full = ee.Date(date_range.get('min'))
|
|
1571
|
+
end_date_full = ee.Date(date_range.get('max'))
|
|
1572
|
+
|
|
1573
|
+
start_year = start_date_full.get('year')
|
|
1574
|
+
end_year = end_date_full.get('year')
|
|
1575
|
+
|
|
1576
|
+
if start_month != 1 or end_month != 12:
|
|
1577
|
+
processing_collection = self.collection.filter(ee.Filter.calendarRange(start_month, end_month, 'month'))
|
|
1578
|
+
else:
|
|
1579
|
+
processing_collection = self.collection
|
|
1580
|
+
|
|
1581
|
+
# Capture projection from the first image to restore it after reduction
|
|
1582
|
+
target_proj = self.collection.first().projection()
|
|
1583
|
+
|
|
1584
|
+
years = ee.List.sequence(start_year, end_year)
|
|
1585
|
+
|
|
1586
|
+
def create_yearly_composite(year):
|
|
1587
|
+
year = ee.Number(year)
|
|
1588
|
+
# Define the full calendar year range
|
|
1589
|
+
start_of_year = ee.Date.fromYMD(year, 1, 1)
|
|
1590
|
+
end_of_year = start_of_year.advance(1, 'year')
|
|
1591
|
+
|
|
1592
|
+
# Filter to the specific year using the PRE-FILTERED seasonal collection
|
|
1593
|
+
yearly_subset = processing_collection.filterDate(start_of_year, end_of_year)
|
|
1594
|
+
|
|
1595
|
+
# Calculate stats
|
|
1596
|
+
image_count = yearly_subset.size()
|
|
1597
|
+
yearly_reduction = yearly_subset.median()
|
|
1598
|
+
|
|
1599
|
+
# Define the timestamp for the composite.
|
|
1600
|
+
# We use the start_month of that year to accurately reflect the data start time.
|
|
1601
|
+
composite_date = ee.Date.fromYMD(year, start_month, 1)
|
|
1602
|
+
|
|
1603
|
+
return yearly_reduction.set({
|
|
1604
|
+
'system:time_start': composite_date.millis(),
|
|
1605
|
+
'year': year,
|
|
1606
|
+
'month': start_month,
|
|
1607
|
+
'Date_Filter': composite_date.format('YYYY-MM-dd'),
|
|
1608
|
+
'image_count': image_count,
|
|
1609
|
+
'season_start': start_month,
|
|
1610
|
+
'season_end': end_month
|
|
1611
|
+
}).reproject(target_proj)
|
|
1612
|
+
|
|
1613
|
+
# Map the function over the years list
|
|
1614
|
+
yearly_composites_list = years.map(create_yearly_composite)
|
|
1615
|
+
|
|
1616
|
+
# Convert to Collection
|
|
1617
|
+
yearly_collection = ee.ImageCollection.fromImages(yearly_composites_list)
|
|
1618
|
+
|
|
1619
|
+
# Filter out any composites that were created from zero images.
|
|
1620
|
+
final_collection = yearly_collection.filter(ee.Filter.gt('image_count', 0))
|
|
1621
|
+
|
|
1622
|
+
self._yearly_median = Sentinel1Collection(collection=final_collection)
|
|
1623
|
+
else:
|
|
1624
|
+
pass
|
|
1625
|
+
return self._yearly_median
|
|
1626
|
+
|
|
1627
|
+
def yearly_max_collection(self, start_month=1, end_month=12):
|
|
1628
|
+
"""
|
|
1629
|
+
Creates a yearly max composite from the collection, with optional monthly filtering.
|
|
1630
|
+
|
|
1631
|
+
This function computes the max for each year within the collection's date range.
|
|
1632
|
+
You can specify a range of months (e.g., start_month=6, end_month=10 for June-October)
|
|
1633
|
+
to calculate the max only using imagery from that specific season for each year.
|
|
1634
|
+
The resulting images have 'system:time_start', 'year', 'image_count', 'season_start',
|
|
1635
|
+
'season_end', and 'Date_Filter' properties. Years with no images (after filtering) are excluded.
|
|
1636
|
+
|
|
1637
|
+
Args:
|
|
1638
|
+
start_month (int): The starting month (1-12) for the filter. Defaults to 1 (January).
|
|
1639
|
+
end_month (int): The ending month (1-12) for the filter. Defaults to 12 (December).
|
|
1640
|
+
|
|
1641
|
+
Returns:
|
|
1642
|
+
Object: A new instance of the same class (e.g., Sentinel1Collection) containing the yearly max composites.
|
|
1643
|
+
"""
|
|
1644
|
+
if self._yearly_max is None:
|
|
1645
|
+
|
|
1646
|
+
date_range = self.collection.reduceColumns(ee.Reducer.minMax(), ["system:time_start"])
|
|
1647
|
+
start_date_full = ee.Date(date_range.get('min'))
|
|
1648
|
+
end_date_full = ee.Date(date_range.get('max'))
|
|
1649
|
+
|
|
1650
|
+
start_year = start_date_full.get('year')
|
|
1651
|
+
end_year = end_date_full.get('year')
|
|
1652
|
+
|
|
1653
|
+
if start_month != 1 or end_month != 12:
|
|
1654
|
+
processing_collection = self.collection.filter(ee.Filter.calendarRange(start_month, end_month, 'month'))
|
|
1655
|
+
else:
|
|
1656
|
+
processing_collection = self.collection
|
|
1657
|
+
|
|
1658
|
+
# Capture projection from the first image to restore it after reduction
|
|
1659
|
+
target_proj = self.collection.first().projection()
|
|
1660
|
+
|
|
1661
|
+
years = ee.List.sequence(start_year, end_year)
|
|
1662
|
+
|
|
1663
|
+
def create_yearly_composite(year):
|
|
1664
|
+
year = ee.Number(year)
|
|
1665
|
+
# Define the full calendar year range
|
|
1666
|
+
start_of_year = ee.Date.fromYMD(year, 1, 1)
|
|
1667
|
+
end_of_year = start_of_year.advance(1, 'year')
|
|
1668
|
+
|
|
1669
|
+
# Filter to the specific year using the PRE-FILTERED seasonal collection
|
|
1670
|
+
yearly_subset = processing_collection.filterDate(start_of_year, end_of_year)
|
|
1671
|
+
|
|
1672
|
+
# Calculate stats
|
|
1673
|
+
image_count = yearly_subset.size()
|
|
1674
|
+
yearly_reduction = yearly_subset.max()
|
|
1675
|
+
|
|
1676
|
+
# Define the timestamp for the composite.
|
|
1677
|
+
# We use the start_month of that year to accurately reflect the data start time.
|
|
1678
|
+
composite_date = ee.Date.fromYMD(year, start_month, 1)
|
|
1679
|
+
|
|
1680
|
+
return yearly_reduction.set({
|
|
1681
|
+
'system:time_start': composite_date.millis(),
|
|
1682
|
+
'year': year,
|
|
1683
|
+
'month': start_month,
|
|
1684
|
+
'Date_Filter': composite_date.format('YYYY-MM-dd'),
|
|
1685
|
+
'image_count': image_count,
|
|
1686
|
+
'season_start': start_month,
|
|
1687
|
+
'season_end': end_month
|
|
1688
|
+
}).reproject(target_proj)
|
|
1689
|
+
|
|
1690
|
+
# Map the function over the years list
|
|
1691
|
+
yearly_composites_list = years.map(create_yearly_composite)
|
|
1692
|
+
|
|
1693
|
+
# Convert to Collection
|
|
1694
|
+
yearly_collection = ee.ImageCollection.fromImages(yearly_composites_list)
|
|
1695
|
+
|
|
1696
|
+
# Filter out any composites that were created from zero images.
|
|
1697
|
+
final_collection = yearly_collection.filter(ee.Filter.gt('image_count', 0))
|
|
1698
|
+
|
|
1699
|
+
self._yearly_max = Sentinel1Collection(collection=final_collection)
|
|
1700
|
+
else:
|
|
1701
|
+
pass
|
|
1702
|
+
return self._yearly_max
|
|
1703
|
+
|
|
1704
|
+
def yearly_min_collection(self, start_month=1, end_month=12):
|
|
1705
|
+
"""
|
|
1706
|
+
Creates a yearly min composite from the collection, with optional monthly filtering.
|
|
1707
|
+
|
|
1708
|
+
This function computes the min for each year within the collection's date range.
|
|
1709
|
+
You can specify a range of months (e.g., start_month=6, end_month=10 for June-October)
|
|
1710
|
+
to calculate the min only using imagery from that specific season for each year.
|
|
1711
|
+
The resulting images have 'system:time_start', 'year', 'image_count', 'season_start',
|
|
1712
|
+
'season_end', and 'Date_Filter' properties. Years with no images (after filtering) are excluded.
|
|
1713
|
+
|
|
1714
|
+
Args:
|
|
1715
|
+
start_month (int): The starting month (1-12) for the filter. Defaults to 1 (January).
|
|
1716
|
+
end_month (int): The ending month (1-12) for the filter. Defaults to 12 (December).
|
|
1717
|
+
|
|
1718
|
+
Returns:
|
|
1719
|
+
Object: A new instance of the same class (e.g., Sentinel1Collection) containing the yearly min composites.
|
|
1720
|
+
"""
|
|
1721
|
+
if self._yearly_min is None:
|
|
1722
|
+
|
|
1723
|
+
date_range = self.collection.reduceColumns(ee.Reducer.minMax(), ["system:time_start"])
|
|
1724
|
+
start_date_full = ee.Date(date_range.get('min'))
|
|
1725
|
+
end_date_full = ee.Date(date_range.get('max'))
|
|
1726
|
+
|
|
1727
|
+
start_year = start_date_full.get('year')
|
|
1728
|
+
end_year = end_date_full.get('year')
|
|
1729
|
+
|
|
1730
|
+
if start_month != 1 or end_month != 12:
|
|
1731
|
+
processing_collection = self.collection.filter(ee.Filter.calendarRange(start_month, end_month, 'month'))
|
|
1732
|
+
else:
|
|
1733
|
+
processing_collection = self.collection
|
|
1734
|
+
|
|
1735
|
+
# Capture projection from the first image to restore it after reduction
|
|
1736
|
+
target_proj = self.collection.first().projection()
|
|
1737
|
+
|
|
1738
|
+
years = ee.List.sequence(start_year, end_year)
|
|
1739
|
+
|
|
1740
|
+
def create_yearly_composite(year):
|
|
1741
|
+
year = ee.Number(year)
|
|
1742
|
+
# Define the full calendar year range
|
|
1743
|
+
start_of_year = ee.Date.fromYMD(year, 1, 1)
|
|
1744
|
+
end_of_year = start_of_year.advance(1, 'year')
|
|
1745
|
+
|
|
1746
|
+
# Filter to the specific year using the PRE-FILTERED seasonal collection
|
|
1747
|
+
yearly_subset = processing_collection.filterDate(start_of_year, end_of_year)
|
|
1748
|
+
|
|
1749
|
+
# Calculate stats
|
|
1750
|
+
image_count = yearly_subset.size()
|
|
1751
|
+
yearly_reduction = yearly_subset.min()
|
|
1752
|
+
|
|
1753
|
+
# Define the timestamp for the composite.
|
|
1754
|
+
# We use the start_month of that year to accurately reflect the data start time.
|
|
1755
|
+
composite_date = ee.Date.fromYMD(year, start_month, 1)
|
|
1756
|
+
|
|
1757
|
+
return yearly_reduction.set({
|
|
1758
|
+
'system:time_start': composite_date.millis(),
|
|
1759
|
+
'year': year,
|
|
1760
|
+
'month': start_month,
|
|
1761
|
+
'Date_Filter': composite_date.format('YYYY-MM-dd'),
|
|
1762
|
+
'image_count': image_count,
|
|
1763
|
+
'season_start': start_month,
|
|
1764
|
+
'season_end': end_month
|
|
1765
|
+
}).reproject(target_proj)
|
|
1766
|
+
|
|
1767
|
+
# Map the function over the years list
|
|
1768
|
+
yearly_composites_list = years.map(create_yearly_composite)
|
|
1769
|
+
|
|
1770
|
+
# Convert to Collection
|
|
1771
|
+
yearly_collection = ee.ImageCollection.fromImages(yearly_composites_list)
|
|
1772
|
+
|
|
1773
|
+
# Filter out any composites that were created from zero images.
|
|
1774
|
+
final_collection = yearly_collection.filter(ee.Filter.gt('image_count', 0))
|
|
1775
|
+
|
|
1776
|
+
self._yearly_min = Sentinel1Collection(collection=final_collection)
|
|
1777
|
+
else:
|
|
1778
|
+
pass
|
|
1779
|
+
return self._yearly_min
|
|
1780
|
+
|
|
1781
|
+
def yearly_sum_collection(self, start_month=1, end_month=12):
|
|
1782
|
+
"""
|
|
1783
|
+
Creates a yearly sum composite from the collection, with optional monthly filtering.
|
|
1784
|
+
|
|
1785
|
+
This function computes the sum for each year within the collection's date range.
|
|
1786
|
+
You can specify a range of months (e.g., start_month=6, end_month=10 for June-October)
|
|
1787
|
+
to calculate the sum only using imagery from that specific season for each year.
|
|
1788
|
+
The resulting images have 'system:time_start', 'year', 'image_count', 'season_start',
|
|
1789
|
+
'season_end', and 'Date_Filter' properties. Years with no images (after filtering) are excluded.
|
|
1790
|
+
|
|
1791
|
+
Args:
|
|
1792
|
+
start_month (int): The starting month (1-12) for the filter. Defaults to 1 (January).
|
|
1793
|
+
end_month (int): The ending month (1-12) for the filter. Defaults to 12 (December).
|
|
1794
|
+
|
|
1795
|
+
Returns:
|
|
1796
|
+
Object: A new instance of the same class (e.g., Sentinel1Collection) containing the yearly sum composites.
|
|
1797
|
+
"""
|
|
1798
|
+
if self._yearly_sum is None:
|
|
1799
|
+
|
|
1800
|
+
date_range = self.collection.reduceColumns(ee.Reducer.minMax(), ["system:time_start"])
|
|
1801
|
+
start_date_full = ee.Date(date_range.get('min'))
|
|
1802
|
+
end_date_full = ee.Date(date_range.get('max'))
|
|
1803
|
+
|
|
1804
|
+
start_year = start_date_full.get('year')
|
|
1805
|
+
end_year = end_date_full.get('year')
|
|
1806
|
+
|
|
1807
|
+
if start_month != 1 or end_month != 12:
|
|
1808
|
+
processing_collection = self.collection.filter(ee.Filter.calendarRange(start_month, end_month, 'month'))
|
|
1809
|
+
else:
|
|
1810
|
+
processing_collection = self.collection
|
|
1811
|
+
|
|
1812
|
+
# Capture projection from the first image to restore it after reduction
|
|
1813
|
+
target_proj = self.collection.first().projection()
|
|
1814
|
+
|
|
1815
|
+
years = ee.List.sequence(start_year, end_year)
|
|
1816
|
+
|
|
1817
|
+
def create_yearly_composite(year):
|
|
1818
|
+
year = ee.Number(year)
|
|
1819
|
+
# Define the full calendar year range
|
|
1820
|
+
start_of_year = ee.Date.fromYMD(year, 1, 1)
|
|
1821
|
+
end_of_year = start_of_year.advance(1, 'year')
|
|
1822
|
+
|
|
1823
|
+
# Filter to the specific year using the PRE-FILTERED seasonal collection
|
|
1824
|
+
yearly_subset = processing_collection.filterDate(start_of_year, end_of_year)
|
|
1825
|
+
|
|
1826
|
+
# Calculate stats
|
|
1827
|
+
image_count = yearly_subset.size()
|
|
1828
|
+
yearly_reduction = yearly_subset.sum()
|
|
1829
|
+
|
|
1830
|
+
# Define the timestamp for the composite.
|
|
1831
|
+
# We use the start_month of that year to accurately reflect the data start time.
|
|
1832
|
+
composite_date = ee.Date.fromYMD(year, start_month, 1)
|
|
1833
|
+
|
|
1834
|
+
return yearly_reduction.set({
|
|
1835
|
+
'system:time_start': composite_date.millis(),
|
|
1836
|
+
'year': year,
|
|
1837
|
+
'month': start_month,
|
|
1838
|
+
'Date_Filter': composite_date.format('YYYY-MM-dd'),
|
|
1839
|
+
'image_count': image_count,
|
|
1840
|
+
'season_start': start_month,
|
|
1841
|
+
'season_end': end_month
|
|
1842
|
+
}).reproject(target_proj)
|
|
1843
|
+
|
|
1844
|
+
# Map the function over the years list
|
|
1845
|
+
yearly_composites_list = years.map(create_yearly_composite)
|
|
1846
|
+
|
|
1847
|
+
# Convert to Collection
|
|
1848
|
+
yearly_collection = ee.ImageCollection.fromImages(yearly_composites_list)
|
|
1849
|
+
|
|
1850
|
+
# Filter out any composites that were created from zero images.
|
|
1851
|
+
final_collection = yearly_collection.filter(ee.Filter.gt('image_count', 0))
|
|
1852
|
+
|
|
1853
|
+
self._yearly_sum = Sentinel1Collection(collection=final_collection)
|
|
1854
|
+
else:
|
|
1855
|
+
pass
|
|
1856
|
+
return self._yearly_sum
|
|
1857
|
+
|
|
1463
1858
|
def anomaly(self, geometry, band_name=None, anomaly_band_name=None, replace=True, scale=10):
|
|
1464
1859
|
"""
|
|
1465
1860
|
Calculates the anomaly of each image in a collection compared to the mean of each image.
|
|
@@ -1523,9 +1918,237 @@ class Sentinel1Collection:
|
|
|
1523
1918
|
raise ValueError("Threshold must be specified for binary masking.")
|
|
1524
1919
|
|
|
1525
1920
|
col = self.collection.map(
|
|
1526
|
-
lambda image: image.select(band_name).gte(threshold).rename(band_name)
|
|
1921
|
+
lambda image: image.select(band_name).gte(threshold).rename(band_name).copyProperties(image).set('system:time_start', image.get('system:time_start'))
|
|
1527
1922
|
)
|
|
1528
1923
|
return Sentinel1Collection(collection=col)
|
|
1924
|
+
|
|
1925
|
+
def mann_kendall_trend(self, target_band=None, join_method='system:time_start', geometry=None):
|
|
1926
|
+
"""
|
|
1927
|
+
Calculates the Mann-Kendall S-value, Variance, Z-Score, and Confidence Level for each pixel in the image collection, in addition to calculating
|
|
1928
|
+
the Sen's slope for each pixel in the image collection. The output is an image with the following bands: 's_statistic', 'variance', 'z_score', 'confidence', and 'slope'.
|
|
1929
|
+
|
|
1930
|
+
This function can be used to identify trends in the image collection over time, such as increasing or decreasing values in the target band, and can be used to assess the significance of these trends.
|
|
1931
|
+
Note that this function is computationally intensive and may take a long time to run for large image collections or high-resolution images.
|
|
1932
|
+
|
|
1933
|
+
The 's_statistic' band represents the Mann-Kendall S-value, which is a measure of the strength and direction of the trend.
|
|
1934
|
+
The 'variance' band represents the variance of the S-value, which is a measure of the variability of the S-value.
|
|
1935
|
+
The 'z_score' band represents the Z-Score, which is a measure of the significance of the trend.
|
|
1936
|
+
The 'confidence' band represents the confidence level of the trend based on the z_score, which is a probabilistic measure of the confidence in the trend (percentage).
|
|
1937
|
+
The 'slope' band represents the Sen's slope, which is a measure of the rate of change in the target band over time. This value can be small as multispectral indices commonly range from -1 to 1, so a slope may have values of <0.2 for most cases.
|
|
1938
|
+
|
|
1939
|
+
Be sure to select the correct band for the `target_band` parameter, as this will be used to calculate the trend statistics.
|
|
1940
|
+
You may optionally provide an ee.Geometry object for the `geometry` parameter to limit the area over which the trend statistics are calculated.
|
|
1941
|
+
The `geometry` parameter is optional and defaults to None, which means that the trend statistics will be calculated over the entire footprint of the image collection.
|
|
1942
|
+
|
|
1943
|
+
Args:
|
|
1944
|
+
image_collection (Sentinel1Collection or ee.ImageCollection): The input image collection for which the Mann-Kendall and Sen's slope trend statistics will be calculated.
|
|
1945
|
+
target_band (str): The band name to be used for the output anomaly image. e.g. 'ndvi'
|
|
1946
|
+
join_method (str, optional): The method used to join images in the collection. Options are 'system:time_start' or 'Date_Filter'. Default is 'system:time_start'.
|
|
1947
|
+
geometry (ee.Geometry, optional): An ee.Geometry object to limit the area over which the trend statistics are calculated and mask the output image. Default is None.
|
|
1948
|
+
|
|
1949
|
+
Returns:
|
|
1950
|
+
ee.Image: An image with the following bands: 's_statistic', 'variance', 'z_score', 'confidence', and 'slope'.
|
|
1951
|
+
"""
|
|
1952
|
+
########## PART 1 - S-VALUE CALCULATION ##########
|
|
1953
|
+
##### https://vsp.pnnl.gov/help/vsample/design_trend_mann_kendall.htm #####
|
|
1954
|
+
image_collection = self
|
|
1955
|
+
if isinstance(image_collection, Sentinel1Collection):
|
|
1956
|
+
image_collection = image_collection.collection
|
|
1957
|
+
elif isinstance(image_collection, ee.ImageCollection):
|
|
1958
|
+
pass
|
|
1959
|
+
else:
|
|
1960
|
+
raise ValueError(f'The chosen `image_collection`: {image_collection} is not a valid Sentinel1Collection or ee.ImageCollection object.')
|
|
1961
|
+
|
|
1962
|
+
if target_band is None:
|
|
1963
|
+
raise ValueError('The `target_band` parameter must be specified.')
|
|
1964
|
+
if not isinstance(target_band, str):
|
|
1965
|
+
raise ValueError(f'The chosen `target_band`: {target_band} is not a valid string.')
|
|
1966
|
+
|
|
1967
|
+
if geometry is not None and not isinstance(geometry, ee.Geometry):
|
|
1968
|
+
raise ValueError(f'The chosen `geometry`: {geometry} is not a valid ee.Geometry object.')
|
|
1969
|
+
# define the join, which will join all images newer than the current image
|
|
1970
|
+
# use system:time_start if the image does not have a Date_Filter property
|
|
1971
|
+
if join_method == 'system:time_start':
|
|
1972
|
+
# get all images where the leftField value is less than (before) the rightField value
|
|
1973
|
+
time_filter = ee.Filter.lessThan(leftField='system:time_start',
|
|
1974
|
+
rightField='system:time_start')
|
|
1975
|
+
elif join_method == 'Date_Filter':
|
|
1976
|
+
# get all images where the leftField value is less than (before) the rightField value
|
|
1977
|
+
time_filter = ee.Filter.lessThan(leftField='Date_Filter',
|
|
1978
|
+
rightField='Date_Filter')
|
|
1979
|
+
else:
|
|
1980
|
+
raise ValueError(f'The chosen `join_method`: {join_method} does not match the options of "system:time_start" or "Date_Filter".')
|
|
1981
|
+
|
|
1982
|
+
# for any matches during a join, set image as a property key called 'future_image'
|
|
1983
|
+
join = ee.Join.saveAll(matchesKey='future_image')
|
|
1984
|
+
|
|
1985
|
+
# apply the join on the input collection
|
|
1986
|
+
# joining all images newer than the current image with the current image
|
|
1987
|
+
joined_collection = ee.ImageCollection(join.apply(primary=image_collection,
|
|
1988
|
+
secondary=image_collection, condition=time_filter))
|
|
1989
|
+
|
|
1990
|
+
# defining a collection to calculate the partial S value for each match in the join
|
|
1991
|
+
# e.g. t4-t1, t3-t1, t2-1 if there are 4 images
|
|
1992
|
+
def calculate_partial_s(current_image):
|
|
1993
|
+
# select the target band for arithmetic
|
|
1994
|
+
current_val = current_image.select(target_band)
|
|
1995
|
+
# get the joined images from the current image properties and cast the joined images as a list
|
|
1996
|
+
future_image_list = ee.List(current_image.get('future_image'))
|
|
1997
|
+
# convert the joined list to an image collection
|
|
1998
|
+
future_image_collection = ee.ImageCollection(future_image_list)
|
|
1999
|
+
|
|
2000
|
+
# define a function that will calculate the difference between the joined images and the current image,
|
|
2001
|
+
# then calculate the partial S sign based on the value of the difference calculation
|
|
2002
|
+
def get_sign(future_image):
|
|
2003
|
+
# select the target band for arithmetic from the future image
|
|
2004
|
+
future_val = future_image.select(target_band)
|
|
2005
|
+
# calculate the difference, i.e. t2-t1
|
|
2006
|
+
difference = future_val.subtract(current_val)
|
|
2007
|
+
# determine the sign of the difference value (1 if diff > 0, 0 if 0, and -1 if diff < 0)
|
|
2008
|
+
# use .unmask(0) to set any masked pixels as 0 to avoid
|
|
2009
|
+
|
|
2010
|
+
sign = difference.signum().unmask(0)
|
|
2011
|
+
|
|
2012
|
+
return sign
|
|
2013
|
+
|
|
2014
|
+
# map the get_sign() function along the future image col
|
|
2015
|
+
# then sum the values for each pixel to get the partial S value
|
|
2016
|
+
return future_image_collection.map(get_sign).sum()
|
|
2017
|
+
|
|
2018
|
+
# calculate the partial s value for each image in the joined/input image collection
|
|
2019
|
+
partial_s_col = joined_collection.map(calculate_partial_s)
|
|
2020
|
+
|
|
2021
|
+
# convert the image collection to an image of s_statistic values per pixel
|
|
2022
|
+
# where the s_statistic is the sum of partial s values
|
|
2023
|
+
# renaming the band as 's_statistic' for later usage
|
|
2024
|
+
final_s_image = partial_s_col.sum().rename('s_statistic')
|
|
2025
|
+
|
|
2026
|
+
|
|
2027
|
+
########## PART 2 - VARIANCE and Z-SCORE ##########
|
|
2028
|
+
# to calculate variance we need to know how many pixels were involved in the partial_s calculations per pixel
|
|
2029
|
+
# we do this by using count() and turn the value to a float for later arithmetic
|
|
2030
|
+
n = image_collection.select(target_band).count().toFloat()
|
|
2031
|
+
|
|
2032
|
+
##### VARIANCE CALCULATION #####
|
|
2033
|
+
# as we are using floating point values with high precision, it is HIGHLY
|
|
2034
|
+
# unlikely that there will be multiple pixel values with the same value.
|
|
2035
|
+
# Thus, we opt to use the simplified variance calculation approach as the
|
|
2036
|
+
# impacts to the output value are negligible and the processing benefits are HUGE
|
|
2037
|
+
# variance = (n * (n - 1) * (2n + 5)) / 18
|
|
2038
|
+
var_s = n.multiply(n.subtract(1))\
|
|
2039
|
+
.multiply(n.multiply(2).add(5))\
|
|
2040
|
+
.divide(18).rename('variance')
|
|
2041
|
+
|
|
2042
|
+
z_score = ee.Image().expression(
|
|
2043
|
+
"""
|
|
2044
|
+
(s > 0) ? (s - 1) / sqrt(var) :
|
|
2045
|
+
(s < 0) ? (s + 1) / sqrt(var) :
|
|
2046
|
+
0
|
|
2047
|
+
""",
|
|
2048
|
+
{'s': final_s_image, 'var': var_s}
|
|
2049
|
+
).rename('z_score')
|
|
2050
|
+
|
|
2051
|
+
confidence = z_score.abs().divide(ee.Number(2).sqrt()).erf().rename('confidence')
|
|
2052
|
+
|
|
2053
|
+
stat_bands = ee.Image([var_s, z_score, confidence])
|
|
2054
|
+
|
|
2055
|
+
mk_stats_image = final_s_image.addBands(stat_bands)
|
|
2056
|
+
|
|
2057
|
+
########## PART 3 - Sen's Slope ##########
|
|
2058
|
+
def add_year_band(image):
|
|
2059
|
+
if join_method == 'Date_Filter':
|
|
2060
|
+
# Get the string 'YYYY-MM-DD'
|
|
2061
|
+
date_string = image.get('Date_Filter')
|
|
2062
|
+
# Parse it into an ee.Date object (handles the conversion to time math)
|
|
2063
|
+
date = ee.Date.parse('YYYY-MM-dd', date_string)
|
|
2064
|
+
else:
|
|
2065
|
+
# Standard way: assumes system:time_start exists
|
|
2066
|
+
date = image.date()
|
|
2067
|
+
years = date.difference(ee.Date('1970-01-01'), 'year')
|
|
2068
|
+
return image.addBands(ee.Image(years).float().rename('year'))
|
|
2069
|
+
|
|
2070
|
+
slope_input = image_collection.map(add_year_band).select(['year', target_band])
|
|
2071
|
+
|
|
2072
|
+
sens_slope = slope_input.reduce(ee.Reducer.sensSlope())
|
|
2073
|
+
|
|
2074
|
+
slope_band = sens_slope.select('slope')
|
|
2075
|
+
|
|
2076
|
+
# add a mask to the final image to remove pixels with less than min_observations
|
|
2077
|
+
# mainly an effort to mask pixels outside of the boundary of the input image collection
|
|
2078
|
+
min_observations = 1
|
|
2079
|
+
valid_mask = n.gte(min_observations)
|
|
2080
|
+
|
|
2081
|
+
final_image = mk_stats_image.addBands(slope_band).updateMask(valid_mask)
|
|
2082
|
+
|
|
2083
|
+
if geometry is not None:
|
|
2084
|
+
mask = ee.Image(1).clip(geometry)
|
|
2085
|
+
final_image = final_image.updateMask(mask)
|
|
2086
|
+
|
|
2087
|
+
return final_image
|
|
2088
|
+
|
|
2089
|
+
def sens_slope_trend(self, target_band=None, join_method='system:time_start', geometry=None):
|
|
2090
|
+
"""
|
|
2091
|
+
Calculates Sen's Slope (trend magnitude) for the collection.
|
|
2092
|
+
This is a lighter-weight alternative to the full `mann_kendall_trend` function if only
|
|
2093
|
+
the direction and magnitude of the trend are needed.
|
|
2094
|
+
|
|
2095
|
+
Be sure to select the correct band for the `target_band` parameter, as this will be used to calculate the trend statistics.
|
|
2096
|
+
You may optionally provide an ee.Geometry object for the `geometry` parameter to limit the area over which the trend statistics are calculated.
|
|
2097
|
+
The `geometry` parameter is optional and defaults to None, which means that the trend statistics will be calculated over the entire footprint of the image collection.
|
|
2098
|
+
|
|
2099
|
+
Args:
|
|
2100
|
+
target_band (str): The name of the band to analyze. Defaults to 'ndvi'.
|
|
2101
|
+
join_method (str): Property to use for time sorting ('system:time_start' or 'Date_Filter').
|
|
2102
|
+
geometry (ee.Geometry, optional): Geometry to mask the final output.
|
|
2103
|
+
|
|
2104
|
+
Returns:
|
|
2105
|
+
ee.Image: An image containing the 'slope' band.
|
|
2106
|
+
"""
|
|
2107
|
+
image_collection = self
|
|
2108
|
+
if isinstance(image_collection, Sentinel1Collection):
|
|
2109
|
+
image_collection = image_collection.collection
|
|
2110
|
+
elif isinstance(image_collection, ee.ImageCollection):
|
|
2111
|
+
pass
|
|
2112
|
+
else:
|
|
2113
|
+
raise ValueError(f'The chosen `image_collection`: {image_collection} is not a valid Sentinel1Collection or ee.ImageCollection object.')
|
|
2114
|
+
|
|
2115
|
+
if target_band is None:
|
|
2116
|
+
raise ValueError('The `target_band` parameter must be specified.')
|
|
2117
|
+
if not isinstance(target_band, str):
|
|
2118
|
+
raise ValueError(f'The chosen `target_band`: {target_band} is not a valid string.')
|
|
2119
|
+
|
|
2120
|
+
if geometry is not None and not isinstance(geometry, ee.Geometry):
|
|
2121
|
+
raise ValueError(f'The chosen `geometry`: {geometry} is not a valid ee.Geometry object.')
|
|
2122
|
+
|
|
2123
|
+
# Add Year Band (Time X-Axis)
|
|
2124
|
+
def add_year_band(image):
|
|
2125
|
+
# Handle user-defined date strings vs system time
|
|
2126
|
+
if join_method == 'Date_Filter':
|
|
2127
|
+
date_string = image.get('Date_Filter')
|
|
2128
|
+
date = ee.Date.parse('YYYY-MM-dd', date_string)
|
|
2129
|
+
else:
|
|
2130
|
+
date = image.date()
|
|
2131
|
+
|
|
2132
|
+
# Convert to fractional years relative to epoch
|
|
2133
|
+
years = date.difference(ee.Date('1970-01-01'), 'year')
|
|
2134
|
+
return image.addBands(ee.Image(years).float().rename('year'))
|
|
2135
|
+
|
|
2136
|
+
# Prepare Collection: Select ONLY [Year, Target]
|
|
2137
|
+
# sensSlope expects Band 0 = Independent (X), Band 1 = Dependent (Y)
|
|
2138
|
+
slope_input = self.collection.map(add_year_band).select(['year', target_band])
|
|
2139
|
+
|
|
2140
|
+
# Run the Native Reducer
|
|
2141
|
+
sens_result = slope_input.reduce(ee.Reducer.sensSlope())
|
|
2142
|
+
|
|
2143
|
+
# Extract and Mask
|
|
2144
|
+
slope_band = sens_result.select('slope')
|
|
2145
|
+
|
|
2146
|
+
if geometry is not None:
|
|
2147
|
+
mask = ee.Image(1).clip(geometry)
|
|
2148
|
+
slope_band = slope_band.updateMask(mask)
|
|
2149
|
+
|
|
2150
|
+
return slope_band
|
|
2151
|
+
|
|
1529
2152
|
|
|
1530
2153
|
def mask_to_polygon(self, polygon):
|
|
1531
2154
|
"""
|
|
@@ -1543,7 +2166,7 @@ class Sentinel1Collection:
|
|
|
1543
2166
|
mask = ee.Image.constant(1).clip(polygon)
|
|
1544
2167
|
|
|
1545
2168
|
# Update the mask of each image in the collection
|
|
1546
|
-
masked_collection = self.collection.map(lambda img: img.updateMask(mask))
|
|
2169
|
+
masked_collection = self.collection.map(lambda img: img.updateMask(mask).copyProperties(img).set('system:time_start', img.get('system:time_start')))
|
|
1547
2170
|
|
|
1548
2171
|
# Update the internal collection state
|
|
1549
2172
|
self._geometry_masked_collection = Sentinel1Collection(
|
|
@@ -1572,7 +2195,7 @@ class Sentinel1Collection:
|
|
|
1572
2195
|
area = full_mask.paint(polygon, 0)
|
|
1573
2196
|
|
|
1574
2197
|
# Update the mask of each image in the collection
|
|
1575
|
-
masked_collection = self.collection.map(lambda img: img.updateMask(area))
|
|
2198
|
+
masked_collection = self.collection.map(lambda img: img.updateMask(area).copyProperties(img).set('system:time_start', img.get('system:time_start')))
|
|
1576
2199
|
|
|
1577
2200
|
# Update the internal collection state
|
|
1578
2201
|
self._geometry_masked_out_collection = Sentinel1Collection(
|