RadGEEToolbox 1.6.7__py3-none-any.whl → 1.6.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- RadGEEToolbox/LandsatCollection.py +1043 -207
- RadGEEToolbox/Sentinel1Collection.py +543 -210
- RadGEEToolbox/Sentinel2Collection.py +937 -216
- RadGEEToolbox/VisParams.py +173 -85
- RadGEEToolbox/__init__.py +1 -1
- {radgeetoolbox-1.6.7.dist-info → radgeetoolbox-1.6.8.dist-info}/METADATA +32 -9
- radgeetoolbox-1.6.8.dist-info/RECORD +12 -0
- radgeetoolbox-1.6.7.dist-info/RECORD +0 -12
- {radgeetoolbox-1.6.7.dist-info → radgeetoolbox-1.6.8.dist-info}/WHEEL +0 -0
- {radgeetoolbox-1.6.7.dist-info → radgeetoolbox-1.6.8.dist-info}/licenses/LICENSE.txt +0 -0
- {radgeetoolbox-1.6.7.dist-info → radgeetoolbox-1.6.8.dist-info}/top_level.txt +0 -0
|
@@ -141,6 +141,12 @@ class LandsatCollection:
|
|
|
141
141
|
self.gypsum_threshold = -1
|
|
142
142
|
self.turbidity_threshold = -1
|
|
143
143
|
self.chlorophyll_threshold = -0.5
|
|
144
|
+
self.ndsi_threshold = -1
|
|
145
|
+
self.evi_threshold = -1
|
|
146
|
+
self.savi_threshold = -1.5
|
|
147
|
+
self.msavi_threshold = -1
|
|
148
|
+
self.ndmi_threshold = -1
|
|
149
|
+
self.nbr_threshold = -1
|
|
144
150
|
self._masked_clouds_collection = None
|
|
145
151
|
self._masked_water_collection = None
|
|
146
152
|
self._masked_to_water_collection = None
|
|
@@ -150,9 +156,16 @@ class LandsatCollection:
|
|
|
150
156
|
self._mean = None
|
|
151
157
|
self._max = None
|
|
152
158
|
self._min = None
|
|
159
|
+
self._albedo = None
|
|
153
160
|
self._ndwi = None
|
|
154
161
|
self._mndwi = None
|
|
155
162
|
self._ndvi = None
|
|
163
|
+
self._ndsi = None
|
|
164
|
+
self._evi = None
|
|
165
|
+
self._savi = None
|
|
166
|
+
self._msavi = None
|
|
167
|
+
self._ndmi = None
|
|
168
|
+
self._nbr = None
|
|
156
169
|
self._halite = None
|
|
157
170
|
self._gypsum = None
|
|
158
171
|
self._turbidity = None
|
|
@@ -466,6 +479,229 @@ class LandsatCollection:
|
|
|
466
479
|
)
|
|
467
480
|
return chlorophyll
|
|
468
481
|
|
|
482
|
+
@staticmethod
|
|
483
|
+
def landsat_broadband_albedo_fn(image):
|
|
484
|
+
"""
|
|
485
|
+
Calculates broadband albedo for Landsat TM and OLI images, based on Liang, 2001
|
|
486
|
+
(https://doi.org/10.1016/S0034-4257(00)00205-4) and Wang et al., 2016 (https://doi.org/10.1016/j.rse.2016.02.059).
|
|
487
|
+
|
|
488
|
+
Args:
|
|
489
|
+
image (ee.Image): input ee.Image
|
|
490
|
+
|
|
491
|
+
Returns:
|
|
492
|
+
ee.Image: broadband albedo ee.Image
|
|
493
|
+
"""
|
|
494
|
+
# Conversion using Liang, 2001 as reference
|
|
495
|
+
TM_expression = '0.356*b("SR_B2") + 0.130*b("SR_B4") + 0.373*b("SR_B5") + 0.085*b("SR_B6") + 0.072*b("SR_B8") - 0.0018'
|
|
496
|
+
# Conversion using Wang et al., 2016 as reference
|
|
497
|
+
OLI_expression = '0.2453*b("SR_B2") + 0.0508*b("SR_B3") + 0.1804*b("SR_B4") + 0.3081*b("SR_B5") + 0.1332*b("SR_B6") + 0.0521*b("SR_B7") + 0.0011'
|
|
498
|
+
# If spacecraft is Landsat 5 TM, use the correct expression,
|
|
499
|
+
# otherwise treat as OLI and copy properties after renaming band to "albedo"
|
|
500
|
+
albedo = ee.Algorithms.If(
|
|
501
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
502
|
+
image.expression(TM_expression).rename("albedo").copyProperties(image),
|
|
503
|
+
image.expression(OLI_expression).rename("albedo").copyProperties(image))
|
|
504
|
+
return albedo
|
|
505
|
+
|
|
506
|
+
@staticmethod
|
|
507
|
+
def landsat_ndsi_fn(image, threshold, ng_threshold=None):
|
|
508
|
+
"""
|
|
509
|
+
Calculates the Normalized Difference Snow Index (NDSI) for Landsat images. Masks image based on threshold. Can specify separate thresholds
|
|
510
|
+
for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5 and the ng_threshold argument applies to Landsat 8&9
|
|
511
|
+
|
|
512
|
+
Args:
|
|
513
|
+
image (ee.Image): input ee.Image
|
|
514
|
+
threshold (float): value between -1 and 1 where NDSI pixels greater than threshold will be masked, applies to landsat 5 when ng_threshold is also set.
|
|
515
|
+
ng_threshold (float, optional): integer threshold to be applied to landsat 8 or 9 where NDSI pixels greater than threshold are masked.
|
|
516
|
+
|
|
517
|
+
Returns:
|
|
518
|
+
ee.Image: NDSI ee.Image
|
|
519
|
+
"""
|
|
520
|
+
ndsi_calc = image.normalizedDifference(["SR_B3", "SR_B6"])
|
|
521
|
+
if ng_threshold != None:
|
|
522
|
+
ndsi = ee.Algorithms.If(
|
|
523
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
524
|
+
ndsi_calc.updateMask(ndsi_calc.gte(threshold))
|
|
525
|
+
.rename("ndsi")
|
|
526
|
+
.copyProperties(image)
|
|
527
|
+
.set("threshold", threshold),
|
|
528
|
+
ndsi_calc.updateMask(ndsi_calc.gte(ng_threshold))
|
|
529
|
+
.rename("ndsi")
|
|
530
|
+
.copyProperties(image)
|
|
531
|
+
.set("threshold", ng_threshold),
|
|
532
|
+
)
|
|
533
|
+
else:
|
|
534
|
+
ndsi = ndsi_calc.updateMask(ndsi_calc.gte(threshold)).rename("ndsi").copyProperties(image).set("threshold", threshold)
|
|
535
|
+
return ndsi
|
|
536
|
+
|
|
537
|
+
@staticmethod
|
|
538
|
+
def landsat_evi_fn(image, threshold, ng_threshold=None, gain_factor=2.5, l=1, c1=6, c2=7.5):
|
|
539
|
+
"""
|
|
540
|
+
Calculates the Enhanced Vegetation Index (EVI) for Landsat images. Masks image based on threshold. Can specify separate thresholds
|
|
541
|
+
for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5 and the ng_threshold argument applies to Landsat 8&9.
|
|
542
|
+
See https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index
|
|
543
|
+
|
|
544
|
+
Args:
|
|
545
|
+
image (ee.Image): input ee.Image
|
|
546
|
+
threshold (float): value between -1 and 1 where EVI pixels less than threshold will be masked, applies to landsat 5 when ng_threshold is also set.
|
|
547
|
+
ng_threshold (float, optional): integer threshold to be applied to landsat 8 or 9 where EVI pixels less than threshold are masked.
|
|
548
|
+
gain_factor (float, optional): Gain factor, typically set to 2.5. Defaults to 2.5.
|
|
549
|
+
l (float, optional): Canopy background adjustment factor, typically set to 1. Defaults to 1.
|
|
550
|
+
c1 (float, optional): Coefficient for the aerosol resistance term, typically set to 6. Defaults to 6.
|
|
551
|
+
c2 (float, optional): Coefficient for the aerosol resistance term, typically set to 7.5. Defaults to 7.5.
|
|
552
|
+
|
|
553
|
+
Returns:
|
|
554
|
+
ee.Image: EVI ee.Image
|
|
555
|
+
"""
|
|
556
|
+
evi_expression = f'{gain_factor} * ((b("SR_B5") - b("SR_B4")) / (b("SR_B5") + {c1} * b("SR_B4") - {c2} * b("SR_B2") + {l}))'
|
|
557
|
+
evi_calc = image.expression(evi_expression)
|
|
558
|
+
if ng_threshold != None:
|
|
559
|
+
evi = ee.Algorithms.If(
|
|
560
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
561
|
+
evi_calc.updateMask(evi_calc.gte(threshold))
|
|
562
|
+
.rename("evi")
|
|
563
|
+
.copyProperties(image)
|
|
564
|
+
.set("threshold", threshold),
|
|
565
|
+
evi_calc.updateMask(evi_calc.gte(ng_threshold))
|
|
566
|
+
.rename("evi")
|
|
567
|
+
.copyProperties(image)
|
|
568
|
+
.set("threshold", ng_threshold),
|
|
569
|
+
)
|
|
570
|
+
else:
|
|
571
|
+
evi = evi_calc.updateMask(evi_calc.gte(threshold)).rename("evi").copyProperties(image).set("threshold", threshold)
|
|
572
|
+
return evi
|
|
573
|
+
|
|
574
|
+
@staticmethod
|
|
575
|
+
def landsat_savi_fn(image, threshold, ng_threshold=None, l=0.5):
|
|
576
|
+
"""
|
|
577
|
+
Calculates the Soil-Adjusted Vegetation Index (SAVI) for Landsat images. Masks image based on threshold. Can specify separate thresholds
|
|
578
|
+
for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5 and the ng_threshold argument applies to Landsat 8&9.
|
|
579
|
+
See Huete, 1988 - https://doi.org/10.1016/0034-4257(88)90106-X
|
|
580
|
+
|
|
581
|
+
Args:
|
|
582
|
+
image (ee.Image): input ee.Image
|
|
583
|
+
threshold (float): value between -1 and 1 where SAVI pixels less than threshold will be masked, applies to landsat 5 when ng_threshold is also set.
|
|
584
|
+
ng_threshold (float, optional): integer threshold to be applied to landsat 8 or 9 where SAVI pixels less than threshold are masked.
|
|
585
|
+
l (float, optional): Soil brightness correction factor, typically set to 0.5. Defaults to 0.5.
|
|
586
|
+
Returns:
|
|
587
|
+
ee.Image: SAVI ee.Image
|
|
588
|
+
"""
|
|
589
|
+
savi_expression = f'((b("SR_B5") - b("SR_B4")) / (b("SR_B5") + b("SR_B4") + {l})) * (1 + {l})'
|
|
590
|
+
savi_calc = image.expression(savi_expression)
|
|
591
|
+
if ng_threshold != None:
|
|
592
|
+
savi = ee.Algorithms.If(
|
|
593
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
594
|
+
savi_calc.updateMask(savi_calc.gte(threshold))
|
|
595
|
+
.rename("savi")
|
|
596
|
+
.copyProperties(image)
|
|
597
|
+
.set("threshold", threshold),
|
|
598
|
+
savi_calc.updateMask(savi_calc.gte(ng_threshold))
|
|
599
|
+
.rename("savi")
|
|
600
|
+
.copyProperties(image)
|
|
601
|
+
.set("threshold", ng_threshold),
|
|
602
|
+
)
|
|
603
|
+
else:
|
|
604
|
+
savi = savi_calc.updateMask(savi_calc.gte(threshold)).rename("savi").copyProperties(image).set("threshold", threshold)
|
|
605
|
+
return savi
|
|
606
|
+
|
|
607
|
+
@staticmethod
|
|
608
|
+
def landsat_msavi_fn(image, threshold, ng_threshold=None):
|
|
609
|
+
"""
|
|
610
|
+
Calculates the Modified Soil-Adjusted Vegetation Index (MSAVI) for Landsat images. Masks image based on threshold. Can specify separate thresholds
|
|
611
|
+
for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5 and the ng_threshold argument applies to Landsat 8&9.
|
|
612
|
+
See Qi et al., 1994 - https://doi.org/10.1016/0034-4257(94)90134-1 and https://www.usgs.gov/landsat-missions/landsat-modified-soil-adjusted-vegetation-index
|
|
613
|
+
|
|
614
|
+
Args:
|
|
615
|
+
image (ee.Image): input ee.Image
|
|
616
|
+
threshold (float): value between -1 and 1 where MSAVI pixels less than threshold will be masked, applies to landsat 5 when ng_threshold is also set.
|
|
617
|
+
ng_threshold (float, optional): integer threshold to be applied to landsat 8 or 9 where MSAVI pixels less than threshold are masked.
|
|
618
|
+
|
|
619
|
+
Returns:
|
|
620
|
+
ee.Image: MSAVI ee.Image
|
|
621
|
+
"""
|
|
622
|
+
msavi_expression = '0.5 * (2 * b("SR_B5") + 1 - ((2 * b("SR_B5") + 1) ** 2 - 8 * (b("SR_B5") - b("SR_B4"))) ** 0.5)'
|
|
623
|
+
msavi_calc = image.expression(msavi_expression)
|
|
624
|
+
if ng_threshold != None:
|
|
625
|
+
msavi = ee.Algorithms.If(
|
|
626
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
627
|
+
msavi_calc.updateMask(msavi_calc.gte(threshold))
|
|
628
|
+
.rename("msavi")
|
|
629
|
+
.copyProperties(image)
|
|
630
|
+
.set("threshold", threshold),
|
|
631
|
+
msavi_calc.updateMask(msavi_calc.gte(ng_threshold))
|
|
632
|
+
.rename("msavi")
|
|
633
|
+
.copyProperties(image)
|
|
634
|
+
.set("threshold", ng_threshold),
|
|
635
|
+
)
|
|
636
|
+
else:
|
|
637
|
+
msavi = msavi_calc.updateMask(msavi_calc.gte(threshold)).rename("msavi").copyProperties(image).set("threshold", threshold)
|
|
638
|
+
return msavi
|
|
639
|
+
|
|
640
|
+
@staticmethod
|
|
641
|
+
def landsat_ndmi_fn(image, threshold, ng_threshold=None):
|
|
642
|
+
"""
|
|
643
|
+
Calculates the Normalized Difference Moisture Index (NDMI) for Landsat images. Masks image based on threshold. Can specify separate thresholds
|
|
644
|
+
for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5 and the ng_threshold argument applies to Landsat 8&9.
|
|
645
|
+
See Wilson & Sader, 2002 - https://doi.org/10.1016/S0034-4257(02)00074-7
|
|
646
|
+
|
|
647
|
+
Args:
|
|
648
|
+
image (ee.Image): input ee.Image
|
|
649
|
+
threshold (float): value between -1 and 1 where NDMI pixels less than threshold will be masked, applies to landsat 5 when ng_threshold is also set.
|
|
650
|
+
ng_threshold (float, optional): integer threshold to be applied to landsat 8 or 9 where NDMI pixels less than threshold are masked.
|
|
651
|
+
|
|
652
|
+
Returns:
|
|
653
|
+
ee.Image: NDMI ee.Image
|
|
654
|
+
"""
|
|
655
|
+
ndmi_expression = '(b("SR_B5") - b("SR_B6")) / (b("SR_B5") + b("SR_B6"))'
|
|
656
|
+
ndmi_calc = image.expression(ndmi_expression)
|
|
657
|
+
if ng_threshold != None:
|
|
658
|
+
ndmi = ee.Algorithms.If(
|
|
659
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
660
|
+
ndmi_calc.updateMask(ndmi_calc.gte(threshold))
|
|
661
|
+
.rename("ndmi")
|
|
662
|
+
.copyProperties(image)
|
|
663
|
+
.set("threshold", threshold),
|
|
664
|
+
ndmi_calc.updateMask(ndmi_calc.gte(ng_threshold))
|
|
665
|
+
.rename("ndmi")
|
|
666
|
+
.copyProperties(image)
|
|
667
|
+
.set("threshold", ng_threshold),
|
|
668
|
+
)
|
|
669
|
+
else:
|
|
670
|
+
ndmi = ndmi_calc.updateMask(ndmi_calc.gte(threshold)).rename("ndmi").copyProperties(image).set("threshold", threshold)
|
|
671
|
+
return ndmi
|
|
672
|
+
|
|
673
|
+
@staticmethod
|
|
674
|
+
def landsat_nbr_fn(image, threshold, ng_threshold=None):
|
|
675
|
+
"""
|
|
676
|
+
Calculates the Normalized Burn Ratio (NBR) for Landsat images. Masks image based on threshold. Can specify separate thresholds
|
|
677
|
+
for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5 and the ng_threshold argument applies to Landsat 8&9.
|
|
678
|
+
|
|
679
|
+
Args:
|
|
680
|
+
image (ee.Image): input ee.Image
|
|
681
|
+
threshold (float): value between -1 and 1 where NBR pixels less than threshold will be masked, applies to landsat 5 when ng_threshold is also set.
|
|
682
|
+
ng_threshold (float, optional): integer threshold to be applied to landsat 8 or 9 where NBR pixels less than threshold are masked.
|
|
683
|
+
|
|
684
|
+
Returns:
|
|
685
|
+
ee.Image: NBR ee.Image
|
|
686
|
+
"""
|
|
687
|
+
nbr_expression = '(b("SR_B5") - b("SR_B7")) / (b("SR_B5") + b("SR_B7"))'
|
|
688
|
+
nbr_calc = image.expression(nbr_expression)
|
|
689
|
+
if ng_threshold != None:
|
|
690
|
+
nbr = ee.Algorithms.If(
|
|
691
|
+
ee.String(image.get("SPACECRAFT_ID")).equals("LANDSAT_5"),
|
|
692
|
+
nbr_calc.updateMask(nbr_calc.gte(threshold))
|
|
693
|
+
.rename("nbr")
|
|
694
|
+
.copyProperties(image)
|
|
695
|
+
.set("threshold", threshold),
|
|
696
|
+
nbr_calc.updateMask(nbr_calc.gte(ng_threshold))
|
|
697
|
+
.rename("nbr")
|
|
698
|
+
.copyProperties(image)
|
|
699
|
+
.set("threshold", ng_threshold),
|
|
700
|
+
)
|
|
701
|
+
else:
|
|
702
|
+
nbr = nbr_calc.updateMask(nbr_calc.gte(threshold)).rename("nbr").copyProperties(image).set("threshold", threshold)
|
|
703
|
+
return nbr
|
|
704
|
+
|
|
469
705
|
@staticmethod
|
|
470
706
|
def MaskWaterLandsat(image):
|
|
471
707
|
"""
|
|
@@ -729,57 +965,87 @@ class LandsatCollection:
|
|
|
729
965
|
):
|
|
730
966
|
"""
|
|
731
967
|
Calculates the summation of area for pixels of interest (above a specific threshold) in a geometry
|
|
732
|
-
and store the value as image property (matching name of chosen band).
|
|
968
|
+
and store the value as image property (matching name of chosen band). If multiple band names are provided in a list,
|
|
969
|
+
the function will calculate area for each band in the list and store each as a separate property.
|
|
970
|
+
|
|
971
|
+
NOTE: The resulting value has units of square meters.
|
|
733
972
|
|
|
734
973
|
Args:
|
|
735
974
|
image (ee.Image): input ee.Image
|
|
736
|
-
band_name (string): name of band (string) for calculating area
|
|
975
|
+
band_name (string or list of strings): name of band(s) (string) for calculating area. If providing multiple band names, pass as a list of strings.
|
|
737
976
|
geometry (ee.Geometry): ee.Geometry object denoting area to clip to for area calculation
|
|
738
|
-
threshold (float): integer threshold to specify masking of pixels below threshold (defaults to -1)
|
|
977
|
+
threshold (float): integer threshold to specify masking of pixels below threshold (defaults to -1). If providing multiple band names, the same threshold will be applied to all bands. Best practice in this case is to mask the bands prior to passing to this function and leave threshold at default of -1.
|
|
739
978
|
scale (int): integer scale of image resolution (meters) (defaults to 30)
|
|
740
979
|
maxPixels (int): integer denoting maximum number of pixels for calculations
|
|
741
980
|
|
|
742
981
|
Returns:
|
|
743
|
-
ee.Image: ee.Image with area calculation stored as property matching name of band
|
|
982
|
+
ee.Image: ee.Image with area calculation in square meters stored as property matching name of band
|
|
744
983
|
"""
|
|
984
|
+
# Ensure band_name is a server-side ee.List for consistent processing. Wrap band_name in a list if it's a single string.
|
|
985
|
+
bands = ee.List(band_name) if isinstance(band_name, list) else ee.List([band_name])
|
|
986
|
+
# Create an image representing the area of each pixel in square meters
|
|
745
987
|
area_image = ee.Image.pixelArea()
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
.
|
|
751
|
-
.
|
|
752
|
-
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
|
|
756
|
-
|
|
988
|
+
|
|
989
|
+
# Function to iterate over each band and calculate area, storing the result as a property on the image
|
|
990
|
+
def calculate_and_set_area(band, img_accumulator):
|
|
991
|
+
# Explcitly cast inputs to expected types
|
|
992
|
+
img_accumulator = ee.Image(img_accumulator)
|
|
993
|
+
band = ee.String(band)
|
|
994
|
+
|
|
995
|
+
# Create a mask from the input image for the current band
|
|
996
|
+
mask = img_accumulator.select(band).gte(threshold)
|
|
997
|
+
# Combine the original image with the area image
|
|
998
|
+
final = img_accumulator.addBands(area_image)
|
|
999
|
+
|
|
1000
|
+
# Calculation of area for a given band, utilizing other inputs
|
|
1001
|
+
stats = (
|
|
1002
|
+
final.select("area").updateMask(mask)
|
|
1003
|
+
.rename(band) # renames 'area' to band name like 'ndwi'
|
|
1004
|
+
.reduceRegion(
|
|
1005
|
+
reducer=ee.Reducer.sum(),
|
|
1006
|
+
geometry=geometry,
|
|
1007
|
+
scale=scale,
|
|
1008
|
+
maxPixels=maxPixels,
|
|
1009
|
+
)
|
|
757
1010
|
)
|
|
758
|
-
|
|
759
|
-
|
|
1011
|
+
# Retrieving the area value from the stats dictionary with stats.get(band), as the band name is now the key
|
|
1012
|
+
reduced_area = stats.get(band)
|
|
1013
|
+
# Checking whether the calculated area is valid and replaces with 0 if not. This avoids breaking the loop for erroneous images.
|
|
1014
|
+
area_value = ee.Algorithms.If(reduced_area, reduced_area, 0)
|
|
1015
|
+
|
|
1016
|
+
# Set the property on the image, named after the band
|
|
1017
|
+
return img_accumulator.set(band, area_value)
|
|
1018
|
+
|
|
1019
|
+
# Call to iterate the calculate_and_set_area function over the list of bands, starting with the original image
|
|
1020
|
+
final_image = ee.Image(bands.iterate(calculate_and_set_area, image))
|
|
1021
|
+
return final_image
|
|
760
1022
|
|
|
761
1023
|
def PixelAreaSumCollection(
|
|
762
|
-
self, band_name, geometry, threshold=-1, scale=30, maxPixels=1e12
|
|
1024
|
+
self, band_name, geometry, threshold=-1, scale=30, maxPixels=1e12, output_type='ImageCollection', area_data_export_path=None
|
|
763
1025
|
):
|
|
764
1026
|
"""
|
|
765
|
-
Calculates the summation of area for pixels of interest (above a specific threshold)
|
|
766
|
-
within a geometry and
|
|
767
|
-
image collection.
|
|
1027
|
+
Calculates the geodesic summation of area for pixels of interest (above a specific threshold)
|
|
1028
|
+
within a geometry and stores the value as an image property (matching name of chosen band) for an entire
|
|
1029
|
+
image collection. Optionally exports the area data to a CSV file.
|
|
768
1030
|
|
|
769
|
-
The resulting value has units of square meters.
|
|
1031
|
+
NOTE: The resulting value has units of square meters.
|
|
770
1032
|
|
|
771
1033
|
Args:
|
|
772
|
-
band_name (string): name of band (string) for calculating area
|
|
1034
|
+
band_name (string or list of strings): name of band(s) (string) for calculating area. If providing multiple band names, pass as a list of strings.
|
|
773
1035
|
geometry (ee.Geometry): ee.Geometry object denoting area to clip to for area calculation
|
|
774
|
-
threshold (float): integer threshold to specify masking of pixels below threshold (defaults to -1)
|
|
1036
|
+
threshold (float): integer threshold to specify masking of pixels below threshold (defaults to -1). If providing multiple band names, the same threshold will be applied to all bands. Best practice in this case is to mask the bands prior to passing to this function and leave threshold at default of -1.
|
|
775
1037
|
scale (int): integer scale of image resolution (meters) (defaults to 30)
|
|
776
1038
|
maxPixels (int): integer denoting maximum number of pixels for calculations
|
|
1039
|
+
output_type (str): 'ImageCollection' to return an ee.ImageCollection, 'LandsatCollection' to return a LandsatCollection object (defaults to 'ImageCollection')
|
|
1040
|
+
area_data_export_path (str, optional): If provided, the function will save the resulting area data to a CSV file at the specified path.
|
|
777
1041
|
|
|
778
1042
|
Returns:
|
|
779
|
-
ee.ImageCollection: Image with area calculation stored as property matching name of band.
|
|
1043
|
+
ee.ImageCollection or LandsatCollection: Image collection of images with area calculation (square meters) stored as property matching name of band. Type of output depends on output_type argument.
|
|
780
1044
|
"""
|
|
1045
|
+
# If the area calculation has not been computed for this LandsatCollection instance, the area will be calculated for the provided bands
|
|
781
1046
|
if self._PixelAreaSumCollection is None:
|
|
782
1047
|
collection = self.collection
|
|
1048
|
+
# Area calculation for each image in the collection, using the PixelAreaSum function
|
|
783
1049
|
AreaCollection = collection.map(
|
|
784
1050
|
lambda image: LandsatCollection.PixelAreaSum(
|
|
785
1051
|
image,
|
|
@@ -790,8 +1056,38 @@ class LandsatCollection:
|
|
|
790
1056
|
maxPixels=maxPixels,
|
|
791
1057
|
)
|
|
792
1058
|
)
|
|
1059
|
+
# Storing the result in the instance variable to avoid redundant calculations
|
|
793
1060
|
self._PixelAreaSumCollection = AreaCollection
|
|
794
|
-
|
|
1061
|
+
|
|
1062
|
+
# If an export path is provided, the area data will be exported to a CSV file
|
|
1063
|
+
if area_data_export_path:
|
|
1064
|
+
LandsatCollection(collection=self._PixelAreaSumCollection).ExportProperties(property_names=band_name, file_path=area_data_export_path+'.csv')
|
|
1065
|
+
|
|
1066
|
+
# Returning the result in the desired format based on output_type argument or raising an error for invalid input
|
|
1067
|
+
if output_type == 'ImageCollection':
|
|
1068
|
+
return self._PixelAreaSumCollection
|
|
1069
|
+
elif output_type == 'LandsatCollection':
|
|
1070
|
+
return LandsatCollection(collection=self._PixelAreaSumCollection)
|
|
1071
|
+
else:
|
|
1072
|
+
raise ValueError("output_type must be 'ImageCollection' or 'LandsatCollection'")
|
|
1073
|
+
|
|
1074
|
+
def merge(self, other):
|
|
1075
|
+
"""
|
|
1076
|
+
Merges the current LandsatCollection with another LandsatCollection, where images/bands with the same date are combined to a single multiband image.
|
|
1077
|
+
|
|
1078
|
+
Args:
|
|
1079
|
+
other (LandsatCollection): Another LandsatCollection to merge with current collection.
|
|
1080
|
+
|
|
1081
|
+
Returns:
|
|
1082
|
+
LandsatCollection: A new LandsatCollection containing images from both collections.
|
|
1083
|
+
"""
|
|
1084
|
+
# Checking if 'other' is an instance of LandsatCollection
|
|
1085
|
+
if not isinstance(other, LandsatCollection):
|
|
1086
|
+
raise ValueError("The 'other' parameter must be an instance of LandsatCollection.")
|
|
1087
|
+
|
|
1088
|
+
# Merging the collections using the .combine() method
|
|
1089
|
+
merged_collection = self.collection.combine(other.collection)
|
|
1090
|
+
return LandsatCollection(collection=merged_collection)
|
|
795
1091
|
|
|
796
1092
|
@staticmethod
|
|
797
1093
|
def dNDWIPixelAreaSum(image, geometry, band_name="ndwi", scale=30, maxPixels=1e12):
|
|
@@ -891,6 +1187,60 @@ class LandsatCollection:
|
|
|
891
1187
|
self._dates = dates
|
|
892
1188
|
return self._dates
|
|
893
1189
|
|
|
1190
|
+
def ExportProperties(self, property_names, file_path=None):
|
|
1191
|
+
"""
|
|
1192
|
+
Fetches and returns specified properties from each image in the collection as a list, and returns a pandas DataFrame and optionally saves the results to a csv file.
|
|
1193
|
+
|
|
1194
|
+
Args:
|
|
1195
|
+
property_names (list or str): A property name or list of property names to retrieve. The 'Date_Filter' property is always included to provide temporal context.
|
|
1196
|
+
file_path (str, optional): If provided, the function will save the resulting DataFrame to a CSV file at this path. Defaults to None.
|
|
1197
|
+
|
|
1198
|
+
Returns:
|
|
1199
|
+
pd.DataFrame: A pandas DataFrame containing the requested properties for each image, sorted chronologically by 'Date_Filter'.
|
|
1200
|
+
"""
|
|
1201
|
+
# Ensure property_names is a list for consistent processing
|
|
1202
|
+
if isinstance(property_names, str):
|
|
1203
|
+
property_names = [property_names]
|
|
1204
|
+
|
|
1205
|
+
# Ensure properties are included without duplication, including 'Date_Filter'
|
|
1206
|
+
all_properties_to_fetch = list(set(['Date_Filter'] + property_names))
|
|
1207
|
+
|
|
1208
|
+
# Defining the helper function to create features with specified properties
|
|
1209
|
+
def create_feature_with_properties(image):
|
|
1210
|
+
"""A function to map over the collection and store the image properties as an ee.Feature.
|
|
1211
|
+
Args:
|
|
1212
|
+
image (ee.Image): An image from the collection.
|
|
1213
|
+
Returns:
|
|
1214
|
+
ee.Feature: A feature containing the specified properties from the image.
|
|
1215
|
+
"""
|
|
1216
|
+
properties = image.toDictionary(all_properties_to_fetch)
|
|
1217
|
+
return ee.Feature(None, properties)
|
|
1218
|
+
|
|
1219
|
+
# Map the feature creation function over the server-side collection.
|
|
1220
|
+
# The result is an ee.FeatureCollection where each feature holds the properties of one image.
|
|
1221
|
+
mapped_collection = self.collection.map(create_feature_with_properties)
|
|
1222
|
+
# Explicitly cast to ee.FeatureCollection for clarity
|
|
1223
|
+
feature_collection = ee.FeatureCollection(mapped_collection)
|
|
1224
|
+
|
|
1225
|
+
# Use the existing ee_to_df static method. This performs the single .getInfo() call
|
|
1226
|
+
# and converts the structured result directly to a pandas DataFrame.
|
|
1227
|
+
df = LandsatCollection.ee_to_df(feature_collection, columns=all_properties_to_fetch)
|
|
1228
|
+
|
|
1229
|
+
# Sort by date for a clean, chronological output.
|
|
1230
|
+
if 'Date_Filter' in df.columns:
|
|
1231
|
+
df = df.sort_values(by='Date_Filter').reset_index(drop=True)
|
|
1232
|
+
|
|
1233
|
+
# Check condition for saving to CSV
|
|
1234
|
+
if file_path:
|
|
1235
|
+
# Check whether file_path ends with .csv, if not, append it
|
|
1236
|
+
if not file_path.lower().endswith('.csv'):
|
|
1237
|
+
file_path += '.csv'
|
|
1238
|
+
# Save DataFrame to CSV
|
|
1239
|
+
df.to_csv(file_path, index=True)
|
|
1240
|
+
print(f"Properties saved to {file_path}")
|
|
1241
|
+
|
|
1242
|
+
return df
|
|
1243
|
+
|
|
894
1244
|
def get_filtered_collection(self):
|
|
895
1245
|
"""
|
|
896
1246
|
Filters image collection based on LandsatCollection class arguments. Automatically calculated when using collection method, depending on provided class arguments (when tile info is provided).
|
|
@@ -1133,6 +1483,253 @@ class LandsatCollection:
|
|
|
1133
1483
|
)
|
|
1134
1484
|
)
|
|
1135
1485
|
return LandsatCollection(collection=col)
|
|
1486
|
+
|
|
1487
|
+
@property
|
|
1488
|
+
def evi(self):
|
|
1489
|
+
"""
|
|
1490
|
+
Property attribute to calculate and access the EVI (Enhanced Vegetation Index) imagery of the LandsatCollection.
|
|
1491
|
+
This property initiates the calculation of EVI and caches the result. The calculation is performed only once when
|
|
1492
|
+
the property is first accessed, and the cached result is returned on subsequent accesses.
|
|
1493
|
+
|
|
1494
|
+
Returns:
|
|
1495
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1496
|
+
"""
|
|
1497
|
+
if self._evi is None:
|
|
1498
|
+
self._evi = self.evi_collection(self.evi_threshold)
|
|
1499
|
+
return self._evi
|
|
1500
|
+
|
|
1501
|
+
def evi_collection(self, threshold, ng_threshold=None):
|
|
1502
|
+
"""
|
|
1503
|
+
Function to calculate the EVI (Enhanced Vegetation Index) and return collection as class object, allows specifying threshold(s) for masking.
|
|
1504
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1505
|
+
and the ng_threshold argument applies to Landsat 8&9. This function can be called as a method but is called
|
|
1506
|
+
by default when using the evi property attribute.
|
|
1507
|
+
|
|
1508
|
+
Args:
|
|
1509
|
+
threshold (float): specify threshold for EVI function (values less than threshold are masked)
|
|
1510
|
+
|
|
1511
|
+
Returns:
|
|
1512
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1513
|
+
"""
|
|
1514
|
+
first_image = self.collection.first()
|
|
1515
|
+
available_bands = first_image.bandNames()
|
|
1516
|
+
if available_bands.contains("SR_B4") and available_bands.contains("SR_B5") and available_bands.contains("SR_B2"):
|
|
1517
|
+
pass
|
|
1518
|
+
else:
|
|
1519
|
+
raise ValueError("Insufficient Bands for evi calculation")
|
|
1520
|
+
col = self.collection.map(
|
|
1521
|
+
lambda image: LandsatCollection.landsat_evi_fn(
|
|
1522
|
+
image, threshold=threshold, ng_threshold=ng_threshold
|
|
1523
|
+
)
|
|
1524
|
+
)
|
|
1525
|
+
return LandsatCollection(collection=col)
|
|
1526
|
+
|
|
1527
|
+
@property
|
|
1528
|
+
def savi(self):
|
|
1529
|
+
"""
|
|
1530
|
+
Property attribute to calculate and access the SAVI (Soil Adjusted Vegetation Index) imagery of the LandsatCollection.
|
|
1531
|
+
This property initiates the calculation of SAVI and caches the result. The calculation is performed only once when the
|
|
1532
|
+
property is first accessed, and the cached result is returned on subsequent accesses.
|
|
1533
|
+
|
|
1534
|
+
Returns:
|
|
1535
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1536
|
+
"""
|
|
1537
|
+
if self._savi is None:
|
|
1538
|
+
self._savi = self.savi_collection(self.savi_threshold)
|
|
1539
|
+
return self._savi
|
|
1540
|
+
|
|
1541
|
+
def savi_collection(self, threshold, ng_threshold=None, l=0.5):
|
|
1542
|
+
"""
|
|
1543
|
+
Function to calculate the SAVI (Soil Adjusted Vegetation Index) and return collection as class object, allows specifying threshold(s) for masking.
|
|
1544
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1545
|
+
and the ng_threshold argument applies to Landsat 8&9. This function can be called as a method but is called
|
|
1546
|
+
by default when using the savi property attribute.
|
|
1547
|
+
|
|
1548
|
+
Args:
|
|
1549
|
+
threshold (float): specify threshold for SAVI function (values less than threshold are masked)
|
|
1550
|
+
ng_threshold (float, optional): specify threshold for Landsat 8&9 SAVI function (values less than threshold are masked)
|
|
1551
|
+
l (float, optional): Soil brightness correction factor, typically set to 0.5 for intermediate vegetation cover. Defaults to 0.5.
|
|
1552
|
+
|
|
1553
|
+
Returns:
|
|
1554
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1555
|
+
"""
|
|
1556
|
+
first_image = self.collection.first()
|
|
1557
|
+
available_bands = first_image.bandNames()
|
|
1558
|
+
if available_bands.contains("SR_B4") and available_bands.contains("SR_B5"):
|
|
1559
|
+
pass
|
|
1560
|
+
else:
|
|
1561
|
+
raise ValueError("Insufficient Bands for savi calculation")
|
|
1562
|
+
col = self.collection.map(
|
|
1563
|
+
lambda image: LandsatCollection.landsat_savi_fn(
|
|
1564
|
+
image, threshold=threshold, ng_threshold=ng_threshold, l=l
|
|
1565
|
+
)
|
|
1566
|
+
)
|
|
1567
|
+
return LandsatCollection(collection=col)
|
|
1568
|
+
|
|
1569
|
+
@property
|
|
1570
|
+
def msavi(self):
|
|
1571
|
+
"""
|
|
1572
|
+
Property attribute to calculate and access the MSAVI (Modified Soil Adjusted Vegetation Index) imagery of the LandsatCollection.
|
|
1573
|
+
This property initiates the calculation of MSAVI and caches the result. The calculation is performed only once when the property
|
|
1574
|
+
is first accessed, and the cached result is returned on subsequent accesses.
|
|
1575
|
+
|
|
1576
|
+
Returns:
|
|
1577
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1578
|
+
"""
|
|
1579
|
+
if self._msavi is None:
|
|
1580
|
+
self._msavi = self.msavi_collection(self.msavi_threshold)
|
|
1581
|
+
return self._msavi
|
|
1582
|
+
|
|
1583
|
+
def msavi_collection(self, threshold, ng_threshold=None):
|
|
1584
|
+
"""
|
|
1585
|
+
Function to calculate the MSAVI (Modified Soil Adjusted Vegetation Index) and return collection as class object, allows specifying threshold(s) for masking.
|
|
1586
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1587
|
+
and the ng_threshold argument applies to Landsat 8&9. This function can be called as a method but is called
|
|
1588
|
+
by default when using the msavi property attribute.
|
|
1589
|
+
|
|
1590
|
+
Args:
|
|
1591
|
+
threshold (float): specify threshold for MSAVI function (values less than threshold are masked)
|
|
1592
|
+
ng_threshold (float, optional): specify threshold for Landsat 8&9 MSAVI function (values less than threshold are masked)
|
|
1593
|
+
|
|
1594
|
+
Returns:
|
|
1595
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1596
|
+
"""
|
|
1597
|
+
first_image = self.collection.first()
|
|
1598
|
+
available_bands = first_image.bandNames()
|
|
1599
|
+
if available_bands.contains("SR_B4") and available_bands.contains("SR_B5"):
|
|
1600
|
+
pass
|
|
1601
|
+
else:
|
|
1602
|
+
raise ValueError("Insufficient Bands for msavi calculation")
|
|
1603
|
+
col = self.collection.map(
|
|
1604
|
+
lambda image: LandsatCollection.landsat_msavi_fn(
|
|
1605
|
+
image, threshold=threshold, ng_threshold=ng_threshold
|
|
1606
|
+
)
|
|
1607
|
+
)
|
|
1608
|
+
return LandsatCollection(collection=col)
|
|
1609
|
+
|
|
1610
|
+
@property
|
|
1611
|
+
def ndmi(self):
|
|
1612
|
+
"""
|
|
1613
|
+
Property attribute to calculate and access the NDMI (Normalized Difference Moisture Index) imagery of the LandsatCollection.
|
|
1614
|
+
This property initiates the calculation of NDMI and caches the result. The calculation is performed only once when the property
|
|
1615
|
+
is first accessed, and the cached result is returned on subsequent accesses.
|
|
1616
|
+
|
|
1617
|
+
Returns:
|
|
1618
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1619
|
+
"""
|
|
1620
|
+
if self._ndmi is None:
|
|
1621
|
+
self._ndmi = self.ndmi_collection(self.ndmi_threshold)
|
|
1622
|
+
return self._ndmi
|
|
1623
|
+
|
|
1624
|
+
def ndmi_collection(self, threshold, ng_threshold=None):
|
|
1625
|
+
"""
|
|
1626
|
+
Function to calculate the NDMI (Normalized Difference Moisture Index) and return collection as class object, allows specifying threshold(s) for masking.
|
|
1627
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1628
|
+
and the ng_threshold argument applies to Landsat 8&9 (when `ng_threshold` is specified, otherwise `threshold` applies to all imagery). This function can be called as a method but is called
|
|
1629
|
+
by default when using the ndmi property attribute.
|
|
1630
|
+
|
|
1631
|
+
Args:
|
|
1632
|
+
threshold (float): specify threshold for NDMI function (values less than threshold are masked)
|
|
1633
|
+
ng_threshold (float, optional): specify threshold for Landsat 8&9 NDMI function (values less than threshold are masked)
|
|
1634
|
+
|
|
1635
|
+
Returns:
|
|
1636
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1637
|
+
"""
|
|
1638
|
+
first_image = self.collection.first()
|
|
1639
|
+
available_bands = first_image.bandNames()
|
|
1640
|
+
if available_bands.contains("SR_B5") and available_bands.contains("SR_B6"):
|
|
1641
|
+
pass
|
|
1642
|
+
else:
|
|
1643
|
+
raise ValueError("Insufficient Bands for ndmi calculation")
|
|
1644
|
+
col = self.collection.map(
|
|
1645
|
+
lambda image: LandsatCollection.landsat_ndmi_fn(
|
|
1646
|
+
image, threshold=threshold, ng_threshold=ng_threshold
|
|
1647
|
+
)
|
|
1648
|
+
)
|
|
1649
|
+
return LandsatCollection(collection=col)
|
|
1650
|
+
|
|
1651
|
+
@property
|
|
1652
|
+
def nbr(self):
|
|
1653
|
+
"""
|
|
1654
|
+
Property attribute to calculate and access the NBR (Normalized Burn Ratio) imagery of the LandsatCollection.
|
|
1655
|
+
This property initiates the calculation of NBR using a default threshold of -1 (or a previously set threshold of self.nbr_threshold)
|
|
1656
|
+
and caches the result. The calculation is performed only once when the property is first accessed, and the cached result is returned
|
|
1657
|
+
on subsequent accesses.
|
|
1658
|
+
|
|
1659
|
+
Returns:
|
|
1660
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1661
|
+
"""
|
|
1662
|
+
if self._nbr is None:
|
|
1663
|
+
self._nbr = self.nbr_collection(self.nbr_threshold)
|
|
1664
|
+
return self._nbr
|
|
1665
|
+
|
|
1666
|
+
def nbr_collection(self, threshold, ng_threshold=None):
|
|
1667
|
+
"""
|
|
1668
|
+
Function to calculate the NBR (Normalized Burn Ratio) and return collection as class object, allows specifying threshold(s) for masking.
|
|
1669
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1670
|
+
and the ng_threshold argument applies to Landsat 8&9. This function can be called as a method but is called
|
|
1671
|
+
by default when using the nbr property attribute.
|
|
1672
|
+
|
|
1673
|
+
Args:
|
|
1674
|
+
threshold (float): specify threshold for NBR function (values less than threshold are masked)
|
|
1675
|
+
ng_threshold (float, optional): specify threshold for Landsat 8&9 NBR function (values less than threshold are masked)
|
|
1676
|
+
|
|
1677
|
+
Returns:
|
|
1678
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1679
|
+
"""
|
|
1680
|
+
first_image = self.collection.first()
|
|
1681
|
+
available_bands = first_image.bandNames()
|
|
1682
|
+
if available_bands.contains("SR_B5") and available_bands.contains("SR_B7"):
|
|
1683
|
+
pass
|
|
1684
|
+
else:
|
|
1685
|
+
raise ValueError("Insufficient Bands for nbr calculation")
|
|
1686
|
+
col = self.collection.map(
|
|
1687
|
+
lambda image: LandsatCollection.landsat_nbr_fn(
|
|
1688
|
+
image, threshold=threshold, ng_threshold=ng_threshold
|
|
1689
|
+
)
|
|
1690
|
+
)
|
|
1691
|
+
return LandsatCollection(collection=col)
|
|
1692
|
+
|
|
1693
|
+
@property
|
|
1694
|
+
def ndsi(self):
|
|
1695
|
+
"""
|
|
1696
|
+
Property attribute to calculate and access the NDSI (Normalized Difference Snow Index) imagery of the LandsatCollection.
|
|
1697
|
+
This property initiates the calculation of NDSI and caches the result. The calculation is performed only once when the
|
|
1698
|
+
property is first accessed, and the cached result is returned on subsequent accesses.
|
|
1699
|
+
|
|
1700
|
+
Returns:
|
|
1701
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1702
|
+
"""
|
|
1703
|
+
if self._ndsi is None:
|
|
1704
|
+
self._ndsi = self.ndsi_collection(self.ndsi_threshold)
|
|
1705
|
+
return self._ndsi
|
|
1706
|
+
|
|
1707
|
+
def ndsi_collection(self, threshold, ng_threshold=None):
|
|
1708
|
+
"""
|
|
1709
|
+
Function to calculate the NDSI (Normalized Difference Snow Index) and return collection as class object, allows specifying threshold(s) for masking.
|
|
1710
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1711
|
+
and the ng_threshold argument applies to Landsat 8&9. This function can be called as a method but is called
|
|
1712
|
+
by default when using the ndsi property attribute.
|
|
1713
|
+
|
|
1714
|
+
Args:
|
|
1715
|
+
threshold (float): specify threshold for NDSI function (values less than threshold are masked)
|
|
1716
|
+
ng_threshold (float, optional): specify threshold for Landsat 8&9 NDSI function (values less than threshold are masked)
|
|
1717
|
+
|
|
1718
|
+
Returns:
|
|
1719
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1720
|
+
"""
|
|
1721
|
+
first_image = self.collection.first()
|
|
1722
|
+
available_bands = first_image.bandNames()
|
|
1723
|
+
if available_bands.contains("SR_B3") and available_bands.contains("SR_B6"):
|
|
1724
|
+
pass
|
|
1725
|
+
else:
|
|
1726
|
+
raise ValueError("Insufficient Bands for ndsi calculation")
|
|
1727
|
+
col = self.collection.map(
|
|
1728
|
+
lambda image: LandsatCollection.landsat_ndsi_fn(
|
|
1729
|
+
image, threshold=threshold, ng_threshold=ng_threshold
|
|
1730
|
+
)
|
|
1731
|
+
)
|
|
1732
|
+
return LandsatCollection(collection=col)
|
|
1136
1733
|
|
|
1137
1734
|
@property
|
|
1138
1735
|
def halite(self):
|
|
@@ -1217,6 +1814,51 @@ class LandsatCollection:
|
|
|
1217
1814
|
)
|
|
1218
1815
|
)
|
|
1219
1816
|
return LandsatCollection(collection=col)
|
|
1817
|
+
|
|
1818
|
+
@property
|
|
1819
|
+
def albedo(self):
|
|
1820
|
+
"""
|
|
1821
|
+
Property attribute to calculate albedo imagery, based on Liang, 2001
|
|
1822
|
+
(https://doi.org/10.1016/S0034-4257(00)00205-4) and Wang et al., 2016 (https://doi.org/10.1016/j.rse.2016.02.059).
|
|
1823
|
+
This property initiates the calculation of albedo and caches the result. The calculation is performed only once when the property
|
|
1824
|
+
is first accessed, and the cached result is returned on subsequent accesses.
|
|
1825
|
+
|
|
1826
|
+
Returns:
|
|
1827
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1828
|
+
"""
|
|
1829
|
+
if self._albedo is None:
|
|
1830
|
+
self._albedo = self.albedo_collection()
|
|
1831
|
+
return self._albedo
|
|
1832
|
+
|
|
1833
|
+
|
|
1834
|
+
def albedo_collection(self):
|
|
1835
|
+
"""
|
|
1836
|
+
Calculates albedo and returns collection as class object, allows specifying threshold(s) for masking.
|
|
1837
|
+
Thresholds can be specified for Landsat 5 vs 8&9 images, where the threshold argument applies to Landsat 5
|
|
1838
|
+
and the ng_threshold argument applies to Landsat 8&9. This function can be called as a method but is called
|
|
1839
|
+
by default when using the ndwi property attribute.
|
|
1840
|
+
Albedo calculation based on Liang, 2001 (https://doi.org/10.1016/S0034-4257(00)00205-4)
|
|
1841
|
+
and Wang et al., 2016 (https://doi.org/10.1016/j.rse.2016.02.059).
|
|
1842
|
+
|
|
1843
|
+
Returns:
|
|
1844
|
+
LandsatCollection: A LandsatCollection image collection
|
|
1845
|
+
"""
|
|
1846
|
+
first_image = self.collection.first()
|
|
1847
|
+
available_bands = first_image.bandNames()
|
|
1848
|
+
if (
|
|
1849
|
+
available_bands.contains("SR_B1")
|
|
1850
|
+
and available_bands.contains("SR_B2")
|
|
1851
|
+
and available_bands.contains("SR_B3")
|
|
1852
|
+
and available_bands.contains("SR_B4")
|
|
1853
|
+
and available_bands.contains("SR_B5")
|
|
1854
|
+
and available_bands.contains("SR_B6")
|
|
1855
|
+
and available_bands.contains("SR_B7")
|
|
1856
|
+
):
|
|
1857
|
+
pass
|
|
1858
|
+
else:
|
|
1859
|
+
raise ValueError("Insufficient Bands for albedo calculation")
|
|
1860
|
+
col = self.collection.map(LandsatCollection.landsat_broadband_albedo_fn)
|
|
1861
|
+
return LandsatCollection(collection=col)
|
|
1220
1862
|
|
|
1221
1863
|
@property
|
|
1222
1864
|
def turbidity(self):
|
|
@@ -1261,6 +1903,7 @@ class LandsatCollection:
|
|
|
1261
1903
|
|
|
1262
1904
|
return LandsatCollection(collection=col)
|
|
1263
1905
|
|
|
1906
|
+
|
|
1264
1907
|
@property
|
|
1265
1908
|
def chlorophyll(self):
|
|
1266
1909
|
"""
|
|
@@ -1731,7 +2374,8 @@ class LandsatCollection:
|
|
|
1731
2374
|
def ee_to_df(
|
|
1732
2375
|
ee_object, columns=None, remove_geom=True, sort_columns=False, **kwargs
|
|
1733
2376
|
):
|
|
1734
|
-
"""
|
|
2377
|
+
"""
|
|
2378
|
+
Converts an ee.FeatureCollection to pandas dataframe. Adapted from the geemap package (https://geemap.org/common/#geemap.common.ee_to_df)
|
|
1735
2379
|
|
|
1736
2380
|
Args:
|
|
1737
2381
|
ee_object (ee.FeatureCollection): ee.FeatureCollection.
|
|
@@ -1793,7 +2437,8 @@ class LandsatCollection:
|
|
|
1793
2437
|
to_pandas=False,
|
|
1794
2438
|
**kwargs,
|
|
1795
2439
|
):
|
|
1796
|
-
"""
|
|
2440
|
+
"""
|
|
2441
|
+
Extracts transect from an image. Adapted from the geemap package (https://geemap.org/common/#geemap.common.extract_transect).
|
|
1797
2442
|
|
|
1798
2443
|
Args:
|
|
1799
2444
|
image (ee.Image): The image to extract transect from.
|
|
@@ -1867,9 +2512,10 @@ class LandsatCollection:
|
|
|
1867
2512
|
dist_interval=30,
|
|
1868
2513
|
to_pandas=True,
|
|
1869
2514
|
):
|
|
1870
|
-
"""
|
|
1871
|
-
|
|
1872
|
-
|
|
2515
|
+
"""
|
|
2516
|
+
Computes and stores the values along a transect for each line in a list of lines. Builds off of the extract_transect function from the geemap package
|
|
2517
|
+
where checks are ran to ensure that the reducer column is present in the transect data. If the reducer column is not present, a column of NaNs is created.
|
|
2518
|
+
An ee reducer is used to aggregate the values along the transect, depending on the number of segments or distance interval specified. Defaults to 'mean' reducer.
|
|
1873
2519
|
|
|
1874
2520
|
Args:
|
|
1875
2521
|
image (ee.Image): ee.Image object to use for calculating transect values.
|
|
@@ -1942,53 +2588,201 @@ class LandsatCollection:
|
|
|
1942
2588
|
self,
|
|
1943
2589
|
lines,
|
|
1944
2590
|
line_names,
|
|
1945
|
-
save_folder_path,
|
|
1946
2591
|
reducer="mean",
|
|
1947
|
-
n_segments=None,
|
|
1948
2592
|
dist_interval=30,
|
|
1949
|
-
|
|
2593
|
+
n_segments=None,
|
|
2594
|
+
scale=30,
|
|
2595
|
+
processing_mode='aggregated',
|
|
2596
|
+
save_folder_path=None,
|
|
2597
|
+
sampling_method='line',
|
|
2598
|
+
point_buffer_radius=15
|
|
1950
2599
|
):
|
|
1951
|
-
"""
|
|
1952
|
-
|
|
1953
|
-
|
|
1954
|
-
|
|
2600
|
+
"""
|
|
2601
|
+
Computes and returns pixel values along transects for each image in a collection.
|
|
2602
|
+
|
|
2603
|
+
This iterative function generates time-series data along one or more lines, and
|
|
2604
|
+
supports two different geometric sampling methods ('line' and 'buffered_point')
|
|
2605
|
+
for maximum flexibility and performance.
|
|
2606
|
+
|
|
2607
|
+
There are two processing modes available, aggregated and iterative:
|
|
2608
|
+
- 'aggregated' (default; suggested): Fast, server-side processing. Fetches all results
|
|
2609
|
+
in a single request. Highly recommended. Returns a dictionary of pandas DataFrames.
|
|
2610
|
+
- 'iterative': Slower, client-side loop that processes one image at a time.
|
|
2611
|
+
Kept for backward compatibility (effectively depreciated). Returns None and saves individual CSVs.
|
|
2612
|
+
This method is not recommended unless absolutely necessary, as it is less efficient and may be subject to client-side timeouts.
|
|
1955
2613
|
|
|
1956
2614
|
Args:
|
|
1957
|
-
lines (list):
|
|
1958
|
-
|
|
1959
|
-
|
|
1960
|
-
|
|
1961
|
-
|
|
1962
|
-
|
|
1963
|
-
|
|
2615
|
+
lines (list): A list of one or more ee.Geometry.LineString objects that
|
|
2616
|
+
define the transects.
|
|
2617
|
+
line_names (list): A list of string names for each transect. The length
|
|
2618
|
+
of this list must match the length of the `lines` list.
|
|
2619
|
+
reducer (str, optional): The name of the ee.Reducer to apply at each
|
|
2620
|
+
transect point (e.g., 'mean', 'median', 'first'). Defaults to 'mean'.
|
|
2621
|
+
dist_interval (float, optional): The distance interval in meters for
|
|
2622
|
+
sampling points along each transect. Will be overridden if `n_segments` is provided.
|
|
2623
|
+
Defaults to 30. Recommended to increase this value when using the
|
|
2624
|
+
'line' processing method, or else you may get blank rows.
|
|
2625
|
+
n_segments (int, optional): The number of equal-length segments to split
|
|
2626
|
+
each transect line into for sampling. This parameter overrides `dist_interval`.
|
|
2627
|
+
Defaults to None.
|
|
2628
|
+
scale (int, optional): The nominal scale in meters for the reduction,
|
|
2629
|
+
which should typically match the pixel resolution of the imagery.
|
|
2630
|
+
Defaults to 30.
|
|
2631
|
+
processing_mode (str, optional): The method for processing the collection.
|
|
2632
|
+
- 'aggregated' (default): Fast, server-side processing. Fetches all
|
|
2633
|
+
results in a single request. Highly recommended. Returns a dictionary
|
|
2634
|
+
of pandas DataFrames.
|
|
2635
|
+
- 'iterative': Slower, client-side loop that processes one image at a
|
|
2636
|
+
time. Kept for backward compatibility. Returns None and saves
|
|
2637
|
+
individual CSVs.
|
|
2638
|
+
save_folder_path (str, optional): If provided, the function will save the
|
|
2639
|
+
resulting transect data to CSV files. The behavior depends on the
|
|
2640
|
+
`processing_mode`:
|
|
2641
|
+
- In 'aggregated' mode, one CSV is saved for each transect,
|
|
2642
|
+
containing all dates. (e.g., 'MyTransect_transects.csv').
|
|
2643
|
+
- In 'iterative' mode, one CSV is saved for each date,
|
|
2644
|
+
containing all transects. (e.g., '2022-06-15_transects.csv').
|
|
2645
|
+
sampling_method (str, optional): The geometric method used for sampling.
|
|
2646
|
+
- 'line' (default): Reduces all pixels intersecting each small line
|
|
2647
|
+
segment. This can be unreliable and produce blank rows if
|
|
2648
|
+
`dist_interval` is too small relative to the `scale`.
|
|
2649
|
+
- 'buffered_point': Reduces all pixels within a buffer around the
|
|
2650
|
+
midpoint of each line segment. This method is more robust and
|
|
2651
|
+
reliably avoids blank rows, but may not reduce all pixels along a line segment.
|
|
2652
|
+
point_buffer_radius (int, optional): The radius in meters for the buffer
|
|
2653
|
+
when `sampling_method` is 'buffered_point'. Defaults to 15.
|
|
2654
|
+
|
|
2655
|
+
Returns:
|
|
2656
|
+
dict or None:
|
|
2657
|
+
- If `processing_mode` is 'aggregated', returns a dictionary where each
|
|
2658
|
+
key is a transect name and each value is a pandas DataFrame. In the
|
|
2659
|
+
DataFrame, the index is the distance along the transect and each
|
|
2660
|
+
column represents an image date. Optionally saves CSV files if
|
|
2661
|
+
`save_folder_path` is provided.
|
|
2662
|
+
- If `processing_mode` is 'iterative', returns None as it saves
|
|
2663
|
+
files directly.
|
|
1964
2664
|
|
|
1965
2665
|
Raises:
|
|
1966
|
-
|
|
1967
|
-
|
|
1968
|
-
|
|
1969
|
-
|
|
1970
|
-
|
|
1971
|
-
|
|
1972
|
-
|
|
1973
|
-
|
|
1974
|
-
|
|
2666
|
+
ValueError: If `lines` and `line_names` have different lengths, or if
|
|
2667
|
+
an unknown reducer or processing mode is specified.
|
|
2668
|
+
"""
|
|
2669
|
+
# Validating inputs
|
|
2670
|
+
if len(lines) != len(line_names):
|
|
2671
|
+
raise ValueError("'lines' and 'line_names' must have the same number of elements.")
|
|
2672
|
+
### Current, server-side processing method ###
|
|
2673
|
+
if processing_mode == 'aggregated':
|
|
2674
|
+
# Validating reducer type
|
|
1975
2675
|
try:
|
|
1976
|
-
|
|
1977
|
-
|
|
1978
|
-
|
|
1979
|
-
|
|
1980
|
-
|
|
1981
|
-
|
|
1982
|
-
|
|
1983
|
-
|
|
1984
|
-
|
|
1985
|
-
|
|
1986
|
-
|
|
1987
|
-
|
|
1988
|
-
|
|
1989
|
-
|
|
1990
|
-
|
|
1991
|
-
|
|
2676
|
+
ee_reducer = getattr(ee.Reducer, reducer)()
|
|
2677
|
+
except AttributeError:
|
|
2678
|
+
raise ValueError(f"Unknown reducer: '{reducer}'.")
|
|
2679
|
+
### Function to extract transects for a single image
|
|
2680
|
+
def get_transects_for_image(image):
|
|
2681
|
+
image_date = image.get('Date_Filter')
|
|
2682
|
+
# Initialize an empty list to hold all transect FeatureCollections
|
|
2683
|
+
all_transects_for_image = ee.List([])
|
|
2684
|
+
# Looping through each line and processing
|
|
2685
|
+
for i, line in enumerate(lines):
|
|
2686
|
+
# Index line and name
|
|
2687
|
+
line_name = line_names[i]
|
|
2688
|
+
# Determine maxError based on image projection, used for geometry operations
|
|
2689
|
+
maxError = image.projection().nominalScale().divide(5)
|
|
2690
|
+
# Calculate effective distance interval
|
|
2691
|
+
length = line.length(maxError) # using maxError here ensures consistency with cutLines
|
|
2692
|
+
# Determine effective distance interval based on n_segments or dist_interval
|
|
2693
|
+
effective_dist_interval = ee.Algorithms.If(
|
|
2694
|
+
n_segments,
|
|
2695
|
+
length.divide(n_segments),
|
|
2696
|
+
dist_interval or 30 # Defaults to 30 if both are None
|
|
2697
|
+
)
|
|
2698
|
+
# Generate distances along the line(s) for segmentation
|
|
2699
|
+
distances = ee.List.sequence(0, length, effective_dist_interval)
|
|
2700
|
+
# Segmenting the line into smaller lines at the specified distances
|
|
2701
|
+
cut_lines_geoms = line.cutLines(distances, maxError).geometries()
|
|
2702
|
+
# Function to create features with distance attributes
|
|
2703
|
+
# Adjusted to ensure consistent return types
|
|
2704
|
+
def set_dist_attr(l):
|
|
2705
|
+
# l is a list: [geometry, distance]
|
|
2706
|
+
# Extracting geometry portion of line
|
|
2707
|
+
geom_segment = ee.Geometry(ee.List(l).get(0))
|
|
2708
|
+
# Extracting distance value for attribute
|
|
2709
|
+
distance = ee.Number(ee.List(l).get(1))
|
|
2710
|
+
### Determine final geometry based on sampling method
|
|
2711
|
+
# If the sampling method is 'buffered_point',
|
|
2712
|
+
# create a buffered point feature at the centroid of each segment,
|
|
2713
|
+
# otherwise create a line feature
|
|
2714
|
+
final_feature = ee.Algorithms.If(
|
|
2715
|
+
ee.String(sampling_method).equals('buffered_point'),
|
|
2716
|
+
# True Case: Create the buffered point feature
|
|
2717
|
+
ee.Feature(
|
|
2718
|
+
geom_segment.centroid(maxError).buffer(point_buffer_radius),
|
|
2719
|
+
{'distance': distance}
|
|
2720
|
+
),
|
|
2721
|
+
# False Case: Create the line segment feature
|
|
2722
|
+
ee.Feature(geom_segment, {'distance': distance})
|
|
2723
|
+
)
|
|
2724
|
+
# Return either the line segment feature or the buffered point feature
|
|
2725
|
+
return final_feature
|
|
2726
|
+
# Creating a FeatureCollection of the cut lines with distance attributes
|
|
2727
|
+
# Using map to apply the set_dist_attr function to each cut line geometry
|
|
2728
|
+
line_features = ee.FeatureCollection(cut_lines_geoms.zip(distances).map(set_dist_attr))
|
|
2729
|
+
# Reducing the image over the line features to get transect values
|
|
2730
|
+
transect_fc = image.reduceRegions(
|
|
2731
|
+
collection=line_features, reducer=ee_reducer, scale=scale
|
|
2732
|
+
)
|
|
2733
|
+
# Adding image date and line name properties to each feature
|
|
2734
|
+
def set_props(feature):
|
|
2735
|
+
return feature.set({'image_date': image_date, 'transect_name': line_name})
|
|
2736
|
+
# Append to the list of all transects for this image
|
|
2737
|
+
all_transects_for_image = all_transects_for_image.add(transect_fc.map(set_props))
|
|
2738
|
+
# Combine all transect FeatureCollections into a single FeatureCollection and flatten
|
|
2739
|
+
# Flatten is used to merge the list of FeatureCollections into one
|
|
2740
|
+
return ee.FeatureCollection(all_transects_for_image).flatten()
|
|
2741
|
+
# Map the function over the entire image collection and flatten the results
|
|
2742
|
+
results_fc = ee.FeatureCollection(self.collection.map(get_transects_for_image)).flatten()
|
|
2743
|
+
# Convert the results to a pandas DataFrame
|
|
2744
|
+
df = LandsatCollection.ee_to_df(results_fc, remove_geom=True)
|
|
2745
|
+
# Check if the DataFrame is empty
|
|
2746
|
+
if df.empty:
|
|
2747
|
+
print("Warning: No transect data was generated.")
|
|
2748
|
+
return {}
|
|
2749
|
+
# Initialize dictionary to hold output DataFrames for each transect
|
|
2750
|
+
output_dfs = {}
|
|
2751
|
+
# Loop through each unique transect name and create a pivot table
|
|
2752
|
+
for name in sorted(df['transect_name'].unique()):
|
|
2753
|
+
transect_df = df[df['transect_name'] == name]
|
|
2754
|
+
pivot_df = transect_df.pivot(index='distance', columns='image_date', values=reducer)
|
|
2755
|
+
pivot_df.columns.name = 'Date'
|
|
2756
|
+
output_dfs[name] = pivot_df
|
|
2757
|
+
# Optionally save each transect DataFrame to CSV
|
|
2758
|
+
if save_folder_path:
|
|
2759
|
+
for transect_name, transect_df in output_dfs.items():
|
|
2760
|
+
safe_filename = "".join(x for x in transect_name if x.isalnum() or x in "._-")
|
|
2761
|
+
file_path = f"{save_folder_path}{safe_filename}_transects.csv"
|
|
2762
|
+
transect_df.to_csv(file_path)
|
|
2763
|
+
print(f"Saved transect data to {file_path}")
|
|
2764
|
+
|
|
2765
|
+
return output_dfs
|
|
2766
|
+
|
|
2767
|
+
### old, depreciated iterative client-side processing method ###
|
|
2768
|
+
elif processing_mode == 'iterative':
|
|
2769
|
+
if not save_folder_path:
|
|
2770
|
+
raise ValueError("`save_folder_path` is required for 'iterative' processing mode.")
|
|
2771
|
+
|
|
2772
|
+
image_collection_dates = self.dates
|
|
2773
|
+
for i, date in enumerate(image_collection_dates):
|
|
2774
|
+
try:
|
|
2775
|
+
print(f"Processing image {i+1}/{len(image_collection_dates)}: {date}")
|
|
2776
|
+
image = self.image_grab(i)
|
|
2777
|
+
transects_df = LandsatCollection.transect(
|
|
2778
|
+
image, lines, line_names, reducer, n_segments, dist_interval, to_pandas=True
|
|
2779
|
+
)
|
|
2780
|
+
transects_df.to_csv(f"{save_folder_path}{date}_transects.csv")
|
|
2781
|
+
print(f"{date}_transects saved to csv")
|
|
2782
|
+
except Exception as e:
|
|
2783
|
+
print(f"An error occurred while processing image {i+1}: {e}")
|
|
2784
|
+
else:
|
|
2785
|
+
raise ValueError("`processing_mode` must be 'iterative' or 'aggregated'.")
|
|
1992
2786
|
|
|
1993
2787
|
@staticmethod
|
|
1994
2788
|
def extract_zonal_stats_from_buffer(
|
|
@@ -2001,37 +2795,35 @@ class LandsatCollection:
|
|
|
2001
2795
|
coordinate_names=None,
|
|
2002
2796
|
):
|
|
2003
2797
|
"""
|
|
2004
|
-
Function to extract spatial statistics from an image for a list of coordinates, providing individual statistics for each location.
|
|
2798
|
+
Function to extract spatial statistics from an image for a list or single set of (long, lat) coordinates, providing individual statistics for each location.
|
|
2005
2799
|
A radial buffer is applied around each coordinate to extract the statistics, which defaults to 1 meter.
|
|
2006
2800
|
The function returns a pandas DataFrame with the statistics for each coordinate.
|
|
2007
2801
|
|
|
2802
|
+
NOTE: Be sure the coordinates are provided as longitude, latitude (x, y) tuples!
|
|
2803
|
+
|
|
2008
2804
|
Args:
|
|
2009
|
-
image (ee.Image): The image from which to extract
|
|
2010
|
-
coordinates (list
|
|
2011
|
-
buffer_size (int, optional): The radial buffer size
|
|
2012
|
-
reducer_type (str, optional): The
|
|
2013
|
-
scale (int, optional): The scale
|
|
2014
|
-
tileScale (int, optional): The tile scale
|
|
2015
|
-
coordinate_names (list, optional): A list of
|
|
2805
|
+
image (ee.Image): The image from which to extract statistics. Should be single-band.
|
|
2806
|
+
coordinates (list or tuple): A single (lon, lat) tuple or a list of (lon, lat) tuples.
|
|
2807
|
+
buffer_size (int, optional): The radial buffer size in meters. Defaults to 1.
|
|
2808
|
+
reducer_type (str, optional): The ee.Reducer to use ('mean', 'median', 'min', etc.). Defaults to 'mean'.
|
|
2809
|
+
scale (int, optional): The scale in meters for the reduction. Defaults to 30.
|
|
2810
|
+
tileScale (int, optional): The tile scale factor. Defaults to 1.
|
|
2811
|
+
coordinate_names (list, optional): A list of names for the coordinates.
|
|
2016
2812
|
|
|
2017
2813
|
Returns:
|
|
2018
|
-
pd.DataFrame: A pandas DataFrame with the
|
|
2814
|
+
pd.DataFrame: A pandas DataFrame with the image's 'Date_Filter' as the index and a
|
|
2815
|
+
column for each coordinate location.
|
|
2019
2816
|
"""
|
|
2020
|
-
|
|
2021
|
-
# Check if coordinates is a single tuple and convert it to a list of tuples if necessary
|
|
2022
2817
|
if isinstance(coordinates, tuple) and len(coordinates) == 2:
|
|
2023
2818
|
coordinates = [coordinates]
|
|
2024
2819
|
elif not (
|
|
2025
2820
|
isinstance(coordinates, list)
|
|
2026
|
-
and all(
|
|
2027
|
-
isinstance(coord, tuple) and len(coord) == 2 for coord in coordinates
|
|
2028
|
-
)
|
|
2821
|
+
and all(isinstance(coord, tuple) and len(coord) == 2 for coord in coordinates)
|
|
2029
2822
|
):
|
|
2030
2823
|
raise ValueError(
|
|
2031
|
-
"Coordinates must be a list of tuples with two elements each (
|
|
2824
|
+
"Coordinates must be a list of tuples with two elements each (longitude, latitude)."
|
|
2032
2825
|
)
|
|
2033
2826
|
|
|
2034
|
-
# Check if coordinate_names is a list of strings
|
|
2035
2827
|
if coordinate_names is not None:
|
|
2036
2828
|
if not isinstance(coordinate_names, list) or not all(
|
|
2037
2829
|
isinstance(name, str) for name in coordinate_names
|
|
@@ -2044,144 +2836,188 @@ class LandsatCollection:
|
|
|
2044
2836
|
else:
|
|
2045
2837
|
coordinate_names = [f"Location {i+1}" for i in range(len(coordinates))]
|
|
2046
2838
|
|
|
2047
|
-
|
|
2048
|
-
def check_singleband(image):
|
|
2049
|
-
band_count = image.bandNames().size()
|
|
2050
|
-
return ee.Algorithms.If(band_count.eq(1), image, ee.Image.constant(0))
|
|
2839
|
+
image_date = image.get('Date_Filter')
|
|
2051
2840
|
|
|
2052
|
-
# image = ee.Image(check_singleband(image))
|
|
2053
|
-
image = ee.Image(check_singleband(image))
|
|
2054
|
-
|
|
2055
|
-
# Convert coordinates to ee.Geometry.Point, buffer them, and add label/name to feature
|
|
2056
2841
|
points = [
|
|
2057
2842
|
ee.Feature(
|
|
2058
|
-
ee.Geometry.Point(
|
|
2059
|
-
{"
|
|
2843
|
+
ee.Geometry.Point(coord).buffer(buffer_size),
|
|
2844
|
+
{"location_name": str(name)},
|
|
2060
2845
|
)
|
|
2061
|
-
for
|
|
2846
|
+
for coord, name in zip(coordinates, coordinate_names)
|
|
2062
2847
|
]
|
|
2063
|
-
# Create a feature collection from the buffered points
|
|
2064
2848
|
features = ee.FeatureCollection(points)
|
|
2065
|
-
|
|
2066
|
-
|
|
2067
|
-
|
|
2068
|
-
|
|
2069
|
-
|
|
2070
|
-
|
|
2071
|
-
|
|
2072
|
-
|
|
2073
|
-
|
|
2074
|
-
|
|
2075
|
-
|
|
2076
|
-
|
|
2077
|
-
|
|
2078
|
-
|
|
2079
|
-
|
|
2080
|
-
|
|
2081
|
-
|
|
2082
|
-
|
|
2083
|
-
|
|
2084
|
-
|
|
2085
|
-
|
|
2086
|
-
|
|
2087
|
-
|
|
2088
|
-
|
|
2089
|
-
|
|
2090
|
-
|
|
2091
|
-
|
|
2092
|
-
|
|
2093
|
-
|
|
2094
|
-
elif reducer_type == "min":
|
|
2095
|
-
img_stats = image.reduceRegions(
|
|
2096
|
-
collection=features,
|
|
2097
|
-
reducer=ee.Reducer.min(),
|
|
2098
|
-
scale=scale,
|
|
2099
|
-
tileScale=tileScale,
|
|
2100
|
-
)
|
|
2101
|
-
min_values = img_stats.getInfo()
|
|
2102
|
-
mins = []
|
|
2103
|
-
names = []
|
|
2104
|
-
for feature in min_values["features"]:
|
|
2105
|
-
names.append(feature["properties"]["name"])
|
|
2106
|
-
mins.append(feature["properties"]["min"])
|
|
2107
|
-
organized_values = pd.DataFrame([mins], columns=names)
|
|
2108
|
-
elif reducer_type == "max":
|
|
2109
|
-
img_stats = image.reduceRegions(
|
|
2110
|
-
collection=features,
|
|
2111
|
-
reducer=ee.Reducer.max(),
|
|
2112
|
-
scale=scale,
|
|
2113
|
-
tileScale=tileScale,
|
|
2114
|
-
)
|
|
2115
|
-
max_values = img_stats.getInfo()
|
|
2116
|
-
maxs = []
|
|
2117
|
-
names = []
|
|
2118
|
-
for feature in max_values["features"]:
|
|
2119
|
-
names.append(feature["properties"]["name"])
|
|
2120
|
-
maxs.append(feature["properties"]["max"])
|
|
2121
|
-
organized_values = pd.DataFrame([maxs], columns=names)
|
|
2122
|
-
else:
|
|
2123
|
-
raise ValueError(
|
|
2124
|
-
"reducer_type must be one of 'mean', 'median', 'min', or 'max'."
|
|
2125
|
-
)
|
|
2126
|
-
return organized_values
|
|
2849
|
+
|
|
2850
|
+
try:
|
|
2851
|
+
reducer = getattr(ee.Reducer, reducer_type)()
|
|
2852
|
+
except AttributeError:
|
|
2853
|
+
raise ValueError(f"Unknown reducer_type: '{reducer_type}'.")
|
|
2854
|
+
|
|
2855
|
+
stats_fc = image.reduceRegions(
|
|
2856
|
+
collection=features,
|
|
2857
|
+
reducer=reducer,
|
|
2858
|
+
scale=scale,
|
|
2859
|
+
tileScale=tileScale,
|
|
2860
|
+
)
|
|
2861
|
+
|
|
2862
|
+
df = LandsatCollection.ee_to_df(stats_fc, remove_geom=True)
|
|
2863
|
+
|
|
2864
|
+
if df.empty:
|
|
2865
|
+
print("Warning: No results returned. The points may not intersect the image.")
|
|
2866
|
+
empty_df = pd.DataFrame(columns=coordinate_names)
|
|
2867
|
+
empty_df.index.name = 'Date'
|
|
2868
|
+
return empty_df
|
|
2869
|
+
|
|
2870
|
+
if reducer_type not in df.columns:
|
|
2871
|
+
print(f"Warning: Reducer type '{reducer_type}' not found in results. Returning raw data.")
|
|
2872
|
+
return df
|
|
2873
|
+
|
|
2874
|
+
pivot_df = df.pivot(columns='location_name', values=reducer_type)
|
|
2875
|
+
pivot_df['Date'] = image_date.getInfo() # .getInfo() is needed here as it's a server object
|
|
2876
|
+
pivot_df = pivot_df.set_index('Date')
|
|
2877
|
+
return pivot_df
|
|
2127
2878
|
|
|
2128
2879
|
def iterate_zonal_stats(
|
|
2129
2880
|
self,
|
|
2130
|
-
|
|
2131
|
-
buffer_size=1,
|
|
2881
|
+
geometries,
|
|
2132
2882
|
reducer_type="mean",
|
|
2133
2883
|
scale=30,
|
|
2884
|
+
geometry_names=None,
|
|
2885
|
+
buffer_size=1,
|
|
2134
2886
|
tileScale=1,
|
|
2135
|
-
coordinate_names=None,
|
|
2136
|
-
file_path=None,
|
|
2137
2887
|
dates=None,
|
|
2888
|
+
file_path=None
|
|
2138
2889
|
):
|
|
2139
2890
|
"""
|
|
2140
|
-
|
|
2141
|
-
|
|
2891
|
+
Iterates over a collection of images and extracts spatial statistics (defaults to mean) for a given list of geometries or coordinates. Individual statistics are calculated for each geometry or coordinate provided.
|
|
2892
|
+
When coordinates are provided, a radial buffer is applied around each coordinate to extract the statistics, where the size of the buffer is determined by the buffer_size argument (defaults to 1 meter).
|
|
2142
2893
|
The function returns a pandas DataFrame with the statistics for each coordinate and date, or optionally exports the data to a table in .csv format.
|
|
2143
2894
|
|
|
2144
2895
|
Args:
|
|
2145
|
-
|
|
2146
|
-
|
|
2147
|
-
|
|
2148
|
-
|
|
2149
|
-
|
|
2150
|
-
|
|
2151
|
-
|
|
2152
|
-
|
|
2153
|
-
|
|
2154
|
-
Returns:
|
|
2155
|
-
pd.DataFrame: A pandas DataFrame with
|
|
2156
|
-
|
|
2157
|
-
|
|
2158
|
-
|
|
2159
|
-
|
|
2160
|
-
|
|
2161
|
-
|
|
2162
|
-
|
|
2163
|
-
|
|
2164
|
-
|
|
2165
|
-
|
|
2166
|
-
|
|
2167
|
-
for date in dates:
|
|
2168
|
-
image = img_collection.collection.filter(
|
|
2169
|
-
ee.Filter.eq("Date_Filter", date)
|
|
2170
|
-
).first()
|
|
2171
|
-
single_df = LandsatCollection.extract_zonal_stats_from_buffer(
|
|
2172
|
-
image,
|
|
2173
|
-
coordinates,
|
|
2174
|
-
buffer_size=buffer_size,
|
|
2175
|
-
reducer_type=reducer_type,
|
|
2176
|
-
scale=scale,
|
|
2177
|
-
tileScale=tileScale,
|
|
2178
|
-
coordinate_names=coordinate_names,
|
|
2896
|
+
geometries (ee.Geometry, ee.Feature, ee.FeatureCollection, list, or tuple): Input geometries for which to extract statistics. Can be a single ee.Geometry, an ee.Feature, an ee.FeatureCollection, a list of (lon, lat) tuples, or a list of ee.Geometry objects. Be careful to NOT provide coordinates as (lat, lon)!
|
|
2897
|
+
reducer_type (str, optional): The ee.Reducer to use, e.g., 'mean', 'median', 'max', 'sum'. Defaults to 'mean'. Any ee.Reducer method can be used.
|
|
2898
|
+
scale (int, optional): Pixel scale in meters for the reduction. Defaults to 30.
|
|
2899
|
+
geometry_names (list, optional): A list of string names for the geometries. If provided, must match the number of geometries. Defaults to None.
|
|
2900
|
+
buffer_size (int, optional): Radial buffer in meters around coordinates. Defaults to 1.
|
|
2901
|
+
tileScale (int, optional): A scaling factor to reduce aggregation tile size. Defaults to 1.
|
|
2902
|
+
dates (list, optional): A list of date strings ('YYYY-MM-DD') for filtering the collection, such that only images from these dates are included for zonal statistic retrieval. Defaults to None, which uses all dates in the collection.
|
|
2903
|
+
file_path (str, optional): File path to save the output CSV.
|
|
2904
|
+
|
|
2905
|
+
Returns:
|
|
2906
|
+
pd.DataFrame or None: A pandas DataFrame with dates as the index and coordinate names
|
|
2907
|
+
as columns. Returns None if using 'iterative' mode with file_path.
|
|
2908
|
+
|
|
2909
|
+
Raises:
|
|
2910
|
+
ValueError: If input parameters are invalid.
|
|
2911
|
+
TypeError: If geometries input type is unsupported.
|
|
2912
|
+
"""
|
|
2913
|
+
img_collection_obj = self
|
|
2914
|
+
# Filter collection by dates if provided
|
|
2915
|
+
if dates:
|
|
2916
|
+
img_collection_obj = LandsatCollection(
|
|
2917
|
+
collection=self.collection.filter(ee.Filter.inList('Date_Filter', dates))
|
|
2179
2918
|
)
|
|
2180
|
-
|
|
2181
|
-
|
|
2182
|
-
|
|
2183
|
-
|
|
2184
|
-
|
|
2185
|
-
|
|
2919
|
+
|
|
2920
|
+
# Initialize variables
|
|
2921
|
+
features = None
|
|
2922
|
+
validated_coordinates = []
|
|
2923
|
+
|
|
2924
|
+
# Function to standardize feature names if no names are provided
|
|
2925
|
+
def set_standard_name(feature):
|
|
2926
|
+
has_geo_name = feature.get('geo_name')
|
|
2927
|
+
has_name = feature.get('name')
|
|
2928
|
+
has_index = feature.get('system:index')
|
|
2929
|
+
new_name = ee.Algorithms.If(
|
|
2930
|
+
has_geo_name, has_geo_name,
|
|
2931
|
+
ee.Algorithms.If(has_name, has_name,
|
|
2932
|
+
ee.Algorithms.If(has_index, has_index, 'unnamed_geometry')))
|
|
2933
|
+
return feature.set({'geo_name': new_name})
|
|
2934
|
+
|
|
2935
|
+
if isinstance(geometries, (ee.FeatureCollection, ee.Feature)):
|
|
2936
|
+
features = ee.FeatureCollection(geometries)
|
|
2937
|
+
if geometry_names:
|
|
2938
|
+
print("Warning: 'geometry_names' are ignored when the input is an ee.Feature or ee.FeatureCollection.")
|
|
2939
|
+
|
|
2940
|
+
elif isinstance(geometries, ee.Geometry):
|
|
2941
|
+
name = geometry_names[0] if (geometry_names and geometry_names[0]) else 'unnamed_geometry'
|
|
2942
|
+
features = ee.FeatureCollection([ee.Feature(geometries).set('geo_name', name)])
|
|
2943
|
+
|
|
2944
|
+
elif isinstance(geometries, list):
|
|
2945
|
+
if not geometries: # Handle empty list case
|
|
2946
|
+
raise ValueError("'geometries' list cannot be empty.")
|
|
2947
|
+
|
|
2948
|
+
# Case: List of coordinates
|
|
2949
|
+
if all(isinstance(i, tuple) for i in geometries):
|
|
2950
|
+
validated_coordinates = geometries
|
|
2951
|
+
if geometry_names is None:
|
|
2952
|
+
geometry_names = [f"Location_{i+1}" for i in range(len(validated_coordinates))]
|
|
2953
|
+
elif len(geometry_names) != len(validated_coordinates):
|
|
2954
|
+
raise ValueError("geometry_names must have the same length as the coordinates list.")
|
|
2955
|
+
points = [
|
|
2956
|
+
ee.Feature(ee.Geometry.Point(coord).buffer(buffer_size), {'geo_name': str(name)})
|
|
2957
|
+
for coord, name in zip(validated_coordinates, geometry_names)
|
|
2958
|
+
]
|
|
2959
|
+
features = ee.FeatureCollection(points)
|
|
2960
|
+
|
|
2961
|
+
# Case: List of Geometries
|
|
2962
|
+
elif all(isinstance(i, ee.Geometry) for i in geometries):
|
|
2963
|
+
if geometry_names is None:
|
|
2964
|
+
geometry_names = [f"Geometry_{i+1}" for i in range(len(geometries))]
|
|
2965
|
+
elif len(geometry_names) != len(geometries):
|
|
2966
|
+
raise ValueError("geometry_names must have the same length as the geometries list.")
|
|
2967
|
+
geom_features = [
|
|
2968
|
+
ee.Feature(geom).set({'geo_name': str(name)})
|
|
2969
|
+
for geom, name in zip(geometries, geometry_names)
|
|
2970
|
+
]
|
|
2971
|
+
features = ee.FeatureCollection(geom_features)
|
|
2972
|
+
|
|
2973
|
+
else:
|
|
2974
|
+
raise TypeError("Input list must be a list of (lon, lat) tuples OR a list of ee.Geometry objects.")
|
|
2975
|
+
|
|
2976
|
+
elif isinstance(geometries, tuple) and len(geometries) == 2:
|
|
2977
|
+
name = geometry_names[0] if geometry_names else 'Location_1'
|
|
2978
|
+
features = ee.FeatureCollection([
|
|
2979
|
+
ee.Feature(ee.Geometry.Point(geometries).buffer(buffer_size), {'geo_name': name})
|
|
2980
|
+
])
|
|
2186
2981
|
else:
|
|
2187
|
-
|
|
2982
|
+
raise TypeError("Unsupported type for 'geometries'.")
|
|
2983
|
+
|
|
2984
|
+
features = features.map(set_standard_name)
|
|
2985
|
+
|
|
2986
|
+
try:
|
|
2987
|
+
reducer = getattr(ee.Reducer, reducer_type)()
|
|
2988
|
+
except AttributeError:
|
|
2989
|
+
raise ValueError(f"Unknown reducer_type: '{reducer_type}'.")
|
|
2990
|
+
|
|
2991
|
+
def calculate_stats_for_image(image):
|
|
2992
|
+
image_date = image.get('Date_Filter')
|
|
2993
|
+
stats_fc = image.reduceRegions(
|
|
2994
|
+
collection=features, reducer=reducer, scale=scale, tileScale=tileScale
|
|
2995
|
+
)
|
|
2996
|
+
return stats_fc.map(lambda f: f.set('image_date', image_date))
|
|
2997
|
+
|
|
2998
|
+
results_fc = ee.FeatureCollection(img_collection_obj.collection.map(calculate_stats_for_image)).flatten()
|
|
2999
|
+
df = LandsatCollection.ee_to_df(results_fc, remove_geom=True)
|
|
3000
|
+
|
|
3001
|
+
# Checking for issues
|
|
3002
|
+
if df.empty:
|
|
3003
|
+
print("No results found for the given parameters. Check if the geometries intersect with the images, if the dates filter is too restrictive, or if the provided bands are empty.")
|
|
3004
|
+
return df
|
|
3005
|
+
if reducer_type not in df.columns:
|
|
3006
|
+
print(f"Warning: Reducer '{reducer_type}' not found in results.")
|
|
3007
|
+
return df
|
|
3008
|
+
|
|
3009
|
+
# Reshape DataFrame to have dates as index and geometry names as columns
|
|
3010
|
+
pivot_df = df.pivot(index='image_date', columns='geo_name', values=reducer_type)
|
|
3011
|
+
pivot_df.index.name = 'Date'
|
|
3012
|
+
if file_path:
|
|
3013
|
+
# Check if file_path ends with .csv and remove it if so for consistency
|
|
3014
|
+
if file_path.endswith('.csv'):
|
|
3015
|
+
file_path = file_path[:-4]
|
|
3016
|
+
pivot_df.to_csv(f"{file_path}.csv")
|
|
3017
|
+
print(f"Zonal stats saved to {file_path}.csv")
|
|
3018
|
+
return
|
|
3019
|
+
return pivot_df
|
|
3020
|
+
|
|
3021
|
+
|
|
3022
|
+
|
|
3023
|
+
|