RDG-Networks 0.3.7__py3-none-any.whl → 0.3.8__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: RDG-Networks
3
- Version: 0.3.7
3
+ Version: 0.3.8
4
4
  Summary: Most of the code from the RDG Networks project
5
5
  Home-page: https://github.com/NiekMooij/RDG_networks
6
6
  Author: Niek Mooij
@@ -1,5 +1,5 @@
1
1
  RDG_networks/Classes.py,sha256=_9X3JPHFAYYlaC8IZ_H9__sfz99G5l9UfPl65lL60_4,7977
2
- RDG_networks/__init__.py,sha256=tKoHFugrHAkce3wyw62MvOzcSfoBr2tpSp6da7Y54LQ,1764
2
+ RDG_networks/__init__.py,sha256=8cc-h5ifS7RP1-N4b1Ow-4bA6MxgFETaS6SD0of54Fk,1575
3
3
  RDG_networks/draw_segments.py,sha256=U53N5GXmQHWKdM1Q1faP_EGKjc6enOu2mcsunzSFpP0,984
4
4
  RDG_networks/generate_line_network.py,sha256=lJ4rhObim3WcEQoebomewRQKWNJC5phFyFYRW7qjXIg,1127
5
5
  RDG_networks/generate_line_segments.py,sha256=QV8_k7q6TD5c7Hcb2Ms_apEdWYw4XdLr7rdJgh49v4Q,9004
@@ -9,14 +9,14 @@ RDG_networks/get_intersection_segments.py,sha256=mXB5qCy1oOps4Vu1mX6flW6v_4Xxc71
9
9
  RDG_networks/sample_in_polygon.py,sha256=qpPpW-Da1vK8ZkVWMJ0zBsE8IgyMB619gCdybSkzKSQ,1605
10
10
  RDG_networks/save_to_stl.py,sha256=St8kGw6wl8uOGx8KhrZhBfe89-mOfp5JKhz0dEDBvc0,3894
11
11
  RDG_networks/thickness/Classes.py,sha256=gVe_q5Rh_1DBiJoZ8H0FyJ4xG-IAcespjUpUirxFfAA,8125
12
- RDG_networks/thickness/__init__.py,sha256=jyyA7Bp519TkOGNSYDVxPKxCgO9vTYpQvpFytnIuqQs,892
13
- RDG_networks/thickness/generate_line_segments_thickness.py,sha256=meLFptrXWt_povCTlEA0n_TYVfi_-HF9KUvW_tBpt4w,29194
14
- RDG_networks/thickness/generate_line_segments_thickness_orientation.py,sha256=oTEwQkXRBuoHvEdIGU30p21e2QHW1UlmApzRO1s5c64,16821
15
- RDG_networks/thickness/generate_line_segments_thickness_static.py,sha256=zvYkLZpmyl711Kr7LCEFbXeVUgxQuA1n9Z5jD8W2iXc,9021
12
+ RDG_networks/thickness/__init__.py,sha256=DzH-mmdrk5e1LL7oq5kg0xaDjtWR7DiCeKKchArHSIs,703
13
+ RDG_networks/thickness/generate_line_segments_thickness.py,sha256=rvvqEMGYX7imosKedyXHyTkBV4C2_24K8UxthXDTe7Q,28627
14
+ RDG_networks/thickness/generate_line_segments_thickness_static.py,sha256=6-2p4GOQFU-dP5Q9nYuaVqeb7wvxk2Fqld3A7cV2pY8,8964
15
+ RDG_networks/thickness/orientate_network.py,sha256=hSUVftAC_1GO2K9WMyDsNt_NZHQHf6Ubtu7fXnmz03A,15397
16
16
  RDG_networks/thickness/sample_in_polygon.py,sha256=nJ-yqfoCCGfC6_EpGL3L1t1LOYdqWZd-7v5bxy6th34,1849
17
- RDG_Networks-0.3.7.dist-info/LICENSE.txt,sha256=BHUkX2GsdTr30sKmVZ1MLGR1njnx17EX_oUuuSVZZPE,598
18
- RDG_Networks-0.3.7.dist-info/METADATA,sha256=A_gS2IRz_hQxrek9dkl2BawsJ6SKYuBxIUBCdhkjb58,2422
19
- RDG_Networks-0.3.7.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
20
- RDG_Networks-0.3.7.dist-info/entry_points.txt,sha256=DRd5hzsY9jAz5e_gkd3gNoIwqj6RAZEtISlV1qpsIE8,1038
21
- RDG_Networks-0.3.7.dist-info/top_level.txt,sha256=4gUUYafD5Al9V8ZSiViVGYHpRMMCsCBcGgCNodk9Syg,13
22
- RDG_Networks-0.3.7.dist-info/RECORD,,
17
+ RDG_Networks-0.3.8.dist-info/LICENSE.txt,sha256=BHUkX2GsdTr30sKmVZ1MLGR1njnx17EX_oUuuSVZZPE,598
18
+ RDG_Networks-0.3.8.dist-info/METADATA,sha256=fHQBJCaoAA6ybZbW5-z3Vrglx1qHnmof7iE-p8tAmic,2422
19
+ RDG_Networks-0.3.8.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
20
+ RDG_Networks-0.3.8.dist-info/entry_points.txt,sha256=coqOWe9rYYuz9VQvJGFomTzvEP7JY5T9V9gauMhSb_0,986
21
+ RDG_Networks-0.3.8.dist-info/top_level.txt,sha256=4gUUYafD5Al9V8ZSiViVGYHpRMMCsCBcGgCNodk9Syg,13
22
+ RDG_Networks-0.3.8.dist-info/RECORD,,
@@ -6,10 +6,10 @@ generate_line_segments = RDG_networks.generate_line_segments:main
6
6
  generate_line_segments_dynamic = RDG_networks.generate_line_segments_dynamic:main
7
7
  generate_line_segments_static = RDG_networks.generate_line_segments_static:main
8
8
  generate_line_segments_thickness = RDG_networks.thickness.generate_line_segments_thickness:main
9
- generate_line_segments_thickness_orientation = RDG_networks.thickness.generate_line_segments_dynamic_orientation:main
10
9
  generate_line_segments_thickness_static = RDG_networks.generate_line_segments_thickness_static:main
11
10
  get_alignment_mean = RDG_networks.thickness.get_alignment_mean:main
12
11
  get_intersection_segments = RDG_networks.get_intersection_segments:main
12
+ orientate_network = RDG_networks.thickness.orientate_network:main
13
13
  rotate_network = RDG_networks.thickness.rotate_network:main
14
14
  save_to_stl = RDG_networks.save_to_stl:main
15
15
  translate_network = RDG_networks.thickness.translate_network:main
RDG_networks/__init__.py CHANGED
@@ -8,17 +8,17 @@ from .generate_line_segments_dynamic import generate_line_segments_dynamic
8
8
  from .generate_line_segments_static import generate_line_segments_static
9
9
  from .draw_segments import draw_segments
10
10
  from .thickness.generate_line_segments_thickness import generate_line_segments_thickness
11
- from .thickness.generate_line_segments_thickness_orientation import generate_line_segments_thickness_orientation
11
+ from .thickness.orientate_network import orientate_network
12
12
  from .thickness.generate_line_segments_thickness_static import generate_line_segments_thickness_static
13
- from .thickness.generate_line_segments_thickness_orientation import translate_network
14
- from .thickness.generate_line_segments_thickness_orientation import clip_network
15
- from .thickness.generate_line_segments_thickness_orientation import rotate_network
16
- from .thickness.generate_line_segments_thickness_orientation import get_alignment_mean
13
+ from .thickness.orientate_network import translate_network
14
+ from .thickness.orientate_network import clip_network
15
+ from .thickness.orientate_network import rotate_network
16
+ from .thickness.orientate_network import get_alignment_mean
17
17
  from .save_to_stl import save_to_stl
18
18
 
19
19
  __all__ = ['generate_line_segments',
20
20
  'generate_line_segments_thickness',
21
- 'generate_line_segments_thickness_orientation',
21
+ 'orientate_network',
22
22
  'translate_network',
23
23
  'clip_network',
24
24
  'rotate_network',
@@ -1,16 +1,16 @@
1
1
  # __init__.py
2
2
 
3
3
  from .generate_line_segments_thickness import generate_line_segments_thickness
4
- from .generate_line_segments_thickness_orientation import generate_line_segments_thickness_orientation
4
+ from .orientate_network import orientate_network
5
5
  from .generate_line_segments_thickness_static import generate_line_segments_thickness_static
6
- from .generate_line_segments_thickness_orientation import translate_network
7
- from .generate_line_segments_thickness_orientation import clip_network
8
- from .generate_line_segments_thickness_orientation import rotate_network
9
- from .generate_line_segments_thickness_orientation import get_alignment_mean
6
+ from .orientate_network import translate_network
7
+ from .orientate_network import clip_network
8
+ from .orientate_network import rotate_network
9
+ from .orientate_network import get_alignment_mean
10
10
 
11
11
  __all__ = [
12
12
  'generate_line_segments_thickness',
13
- 'generate_line_segments_thickness_orientation',
13
+ 'orientate_network',
14
14
  'generate_line_segments_thickness_static',
15
15
  'translate_network',
16
16
  'clip_network',
@@ -142,10 +142,10 @@ def pick_item_with_probability(
142
142
  def get_location_and_direction(
143
143
  polygon_arr: Dict[str, Dict[str, object]],
144
144
  thickness: float,
145
+ angle: float,
145
146
  nucleation_point: Tuple[float, float] = None,
146
147
  min_distance: float = 0,
147
- max_attempts: int = 1000,
148
- angles: Union[str, List[float]] = 'uniform'
148
+ max_attempts: int = 1000
149
149
  ) -> Union[Tuple[str, Dict[str, object], Tuple[float, float], np.ndarray, np.ndarray], bool]:
150
150
  """
151
151
  Attempts to find a valid location and direction within a polygon for placing a new segment. The direction can either be randomly
@@ -159,8 +159,8 @@ def get_location_and_direction(
159
159
  The thickness of the segment that needs to fit inside the polygon.
160
160
  max_attempts (int, optional):
161
161
  The maximum number of attempts to find a valid location and direction. Defaults to 1000.
162
- angles (Union[str, List[float]], optional):
163
- A string ('uniform' for random directions) or a list of angles (in radians) to choose the direction from. Defaults to 'uniform'.
162
+ angle (float):
163
+ A float indicating the angle of the new segment.
164
164
  nucleation_point (Tuple[float, float], optional):
165
165
  predified nucleation point for the segment. Defaults to None.
166
166
  min_distance (float, optional):
@@ -178,16 +178,8 @@ def get_location_and_direction(
178
178
  - The angle of the segment.
179
179
  - Returns `False` if no valid location and direction are found after the maximum attempts.
180
180
  """
181
-
182
- # Generate a new direction based on the angles parameter
183
- if angles == 'uniform':
184
- angle_new = random.uniform(-np.pi, np.pi)
185
- direction = (np.cos(angle_new), np.sin(angle_new))
186
- direction = direction / np.linalg.norm(direction) # Normalize the direction vector
187
- else:
188
- angle_new = random.choice(angles)
189
- direction = (np.cos(angle_new), np.sin(angle_new))
190
- direction = np.array(direction) / np.linalg.norm(direction)
181
+ direction = (np.cos(angle), np.sin(angle))
182
+ direction = np.array(direction) / np.linalg.norm(direction)
191
183
 
192
184
  # Try to find a valid location and direction up to max_attempts
193
185
  attempt = 0
@@ -215,7 +207,7 @@ def get_location_and_direction(
215
207
 
216
208
  # Check if both endpoints of the segment are inside the polygon
217
209
  if is_inside_polygon(polygon['vertices'], p1) and is_inside_polygon(polygon['vertices'], p2):
218
- return polygon_id, polygon, location_new, direction, perpendicular, angle_new
210
+ return polygon_id, polygon, location_new, direction, perpendicular, angle
219
211
 
220
212
  attempt += 1
221
213
 
@@ -451,7 +443,7 @@ def add_line_segment(
451
443
  segments_dict: Dict[int, LineSegment],
452
444
  polygon_arr: Dict[str, Dict[str, object]],
453
445
  segment_thickness_dict: Dict[int, Polygon],
454
- angles: str = 'uniform',
446
+ angle: float,
455
447
  thickness: float = 0,
456
448
  nucleation_point: Tuple[float, float] = None,
457
449
  min_distance: float = 0,
@@ -480,7 +472,7 @@ def add_line_segment(
480
472
  """
481
473
 
482
474
  # Get a valid location and direction, or return False if none is found
483
- loc = get_location_and_direction(polygon_arr, thickness, nucleation_point, min_distance, max_attempts=max_attempts, angles=angles)
475
+ loc = get_location_and_direction(polygon_arr, angle=angle, thickness=thickness, nucleation_point=nucleation_point, min_distance=min_distance, max_attempts=max_attempts)
484
476
  if loc:
485
477
  polygon_id, polygon, location_new, direction_new, perpendicular, angle_new = loc
486
478
  else:
@@ -560,8 +552,7 @@ def generate_line_segments_thickness(
560
552
  Args:
561
553
  size (int): The number of line segments to generate.
562
554
  thickness_arr (List[float]): A list containing the thickness values for each segment to be generated.
563
- angles (str): The angle distribution method for generating segments. Defaults to 'uniform'.
564
- List[float]: list of angles in radians.
555
+ angles (str): Angle used in the generation of the segments.
565
556
  config (List[List[float]]): A list of configurations for the nucleation points and angles.
566
557
  epsilon (float): the minimum distance between two line.
567
558
  box_size (float): the size of the box.
@@ -615,7 +606,7 @@ def generate_line_segments_thickness(
615
606
  thickness=thickness_arr[i],
616
607
  min_distance = epsilon,
617
608
  nucleation_point = nucleation_point,
618
- angles=angles,
609
+ angle=angles[i],
619
610
  box_size=box_size)
620
611
  if output:
621
612
  segments_dict, polygon_arr, segment_thickness_dict, location, angle = output
@@ -105,7 +105,7 @@ def seeds(number_of_lines, radius = 0.015, number_of_trials = 10000):
105
105
  if trial <= number_of_trials:
106
106
  nucleation_points += [new_points]
107
107
  angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
108
- angle_new = random.uniform(0, 2*np.pi) #random.choice(angles)#np.pi #random.uniform(0, 2*np.pi)
108
+ angle_new = random.uniform(0, 2*np.pi)
109
109
  angle += [angle_new]
110
110
  Line[line_id] = [ new_points ,angle_new]
111
111
  line_id += 1
@@ -1,8 +1,8 @@
1
1
  import numpy as np
2
+ import math
2
3
  from typing import List, Dict, Tuple
3
4
  from shapely.geometry import Polygon as Polygon_Shapely
4
5
  from shapely.geometry import LineString, box
5
- from concurrent.futures import ProcessPoolExecutor
6
6
  from .Classes import LineSegment, Polygon
7
7
 
8
8
  def rotate(point, center, rotation_matrix):
@@ -13,7 +13,9 @@ def rotate(point, center, rotation_matrix):
13
13
  rotation_matrix: 2x2 numpy array representing the rotation matrix
14
14
  """
15
15
  translated_point = point - center
16
- rotated_point = np.dot(rotation_matrix, translated_point)
16
+
17
+ # rotated_point = np.dot(rotation_matrix, translated_point)
18
+ rotated_point = rotation_matrix@translated_point
17
19
  final_point = rotated_point + center
18
20
 
19
21
  return final_point
@@ -30,16 +32,22 @@ def angle_between(v1, v2):
30
32
 
31
33
  def get_alignment_mean(line_vector_arr, director):
32
34
  """Get the mean alignment."""
33
- S_all = []
35
+ S_all = 0
36
+ total_mass = 0
34
37
  for item in line_vector_arr:
35
38
  line_vector = item['line_vector']
39
+ vector_diff = np.array(line_vector[1]) - np.array(line_vector[0])
40
+
36
41
  area = item['area']
37
- P2 = 0.5*(3*(np.cos(angle_between(line_vector, director)))**2-1)
38
- S_all.append(P2*area)
42
+ align = math.cos(angle_between(vector_diff, director))**2
43
+ S_all += align*area
44
+ total_mass += area
39
45
 
40
- return float(np.mean(S_all))
46
+ output = S_all / total_mass
41
47
 
42
- def compute_alignment_for_angle(
48
+ return output
49
+
50
+ def compute_alignment(
43
51
  angle: float,
44
52
  segment_thickness_dict: dict[str, Polygon],
45
53
  director: np.ndarray,
@@ -69,7 +77,7 @@ def compute_alignment_for_angle(
69
77
  tuple[float, float]
70
78
  A tuple where the first element is the input angle and the second element is the computed alignment value.
71
79
  """
72
- box_center = (np.array(box_measurements[0]) + np.array(box_measurements[2])) / 2
80
+ box_center = np.array((box_measurements[0]) + np.array(box_measurements[2])) / 2
73
81
 
74
82
  # Rotate network
75
83
  segment_thickness_dict_new = rotate_network(segment_thickness_dict, rotate_angle=angle, box_center=box_center)
@@ -79,13 +87,38 @@ def compute_alignment_for_angle(
79
87
 
80
88
  line_vectors = [
81
89
  {'line_vector': [seg.middle_segment.start, seg.middle_segment.end], 'area': seg.area()}
82
- for seg in segment_thickness_dict_new.values()
90
+ for seg in segment_thickness_dict_new.values() if seg.middle_segment is not None
83
91
  ]
84
92
 
85
93
  alignment = get_alignment_mean(line_vectors, director)
86
-
94
+
87
95
  return angle, alignment
88
96
 
97
+ def get_max_alignment(
98
+ segment_thickness_dict: dict,
99
+ director: np.ndarray,
100
+ box_measurements: list[float],
101
+ grid_points: int = 360
102
+ ) -> float:
103
+ """Find the angle with the maximum alignment using parallel processing."""
104
+ # Create a list of angles to evaluate
105
+ angles = np.linspace(0, np.pi, grid_points)
106
+
107
+ results = []
108
+ for a in angles:
109
+ result = compute_alignment(a, segment_thickness_dict, director, box_measurements)
110
+ results.append(result)
111
+
112
+ # Find the angle with the maximum alignment
113
+ max_alignment = 0
114
+ max_angle = None
115
+ for angle, alignment in results:
116
+ if alignment > max_alignment:
117
+ max_alignment = alignment
118
+ max_angle = angle
119
+
120
+ return max_angle
121
+
89
122
  def rotate_network(
90
123
  segment_thickness_dict: dict[str, Polygon],
91
124
  rotate_angle: float,
@@ -256,74 +289,12 @@ def translate_network(
256
289
 
257
290
  return segment_thickness_dict_new
258
291
 
259
- def get_alignment_mean(line_vector_arr, director):
260
- """Get the mean alignment."""
261
- S_all = []
262
- for item in line_vector_arr:
263
- line_vector = item['line_vector']
264
- area = item['area']
265
- P2 = 0.5*(3*(np.cos(angle_between(line_vector, director)))**2-1)
266
- S_all.append(P2*area)
267
-
268
- return float(np.mean(S_all))
269
-
270
- def compute_alignment_for_angle(
271
- segment_thickness_dict: dict,
272
- angle: float,
273
- box_center,
274
- director: np.ndarray,
275
- ) -> tuple[float, float]:
276
- """Compute the alignment for a given angle."""
277
-
278
- # Rotate the segment network for the given angle
279
- segment_thickness_dict_rotated = rotate_network(segment_thickness_dict, rotate_angle=angle, box_center=box_center)
280
-
281
- # Create line vectors from the rotated segments
282
- line_vectors = []
283
- for s in segment_thickness_dict_rotated.values():
284
- line_vectors.append({'line_vector': np.array([s.middle_segment.start, s.middle_segment.end]), 'area': s.area()})
285
-
286
- # Compute the alignment for the current angle
287
- alignment = get_alignment_mean(line_vectors, director)
288
- return angle, alignment
289
-
290
- def get_max_alignment_angle(
291
- segment_thickness_dict: dict,
292
- director: np.ndarray,
293
- box_measurements: list[float],
294
- grid_points: int = 360
295
- ) -> float:
296
- """Find the angle with the maximum alignment using parallel processing."""
297
-
298
- # Create a list of angles to evaluate
299
- angles = np.linspace(0, 2 * np.pi, grid_points)
300
-
301
- # Use ProcessPoolExecutor for parallel computation of alignment
302
- with ProcessPoolExecutor() as executor:
303
- # Submit tasks to the pool for each angle
304
- results = list(executor.map(
305
- compute_alignment_for_angle,
306
- [segment_thickness_dict] * len(angles), # Same segment dictionary for all angles
307
- angles, # Different angles
308
- [box_measurements] * len(angles), # Same box measurements for all angles
309
- [director] * len(angles) # Same director for all angles
310
- ))
311
-
312
- # Find the angle with the maximum alignment
313
- max_alignment = 0
314
- max_angle = 0
315
- for angle, alignment in results:
316
- if alignment > max_alignment:
317
- max_alignment = alignment
318
- max_angle = angle
319
-
320
- return max_angle
321
-
322
- def generate_line_segments_thickness_orientation(
292
+ def orientate_network(
323
293
  data_dict: Dict[str, dict],
324
294
  orientation: List[int],
325
295
  grid_points: int = 360,
326
- box_measurements: List[Tuple[float, float]] = [(0, 0), (0, 1), (1, 1), (1, 0)]
296
+ box_measurements: List[Tuple[float, float]] = [(0, 0), (0, 1), (1, 1), (1, 0)],
297
+ director: np.ndarray = np.array([0, 1])
327
298
  ) -> List[Dict[str, dict]]:
328
299
  """
329
300
  Generates a set of networks of line segments with different thicknesses and orientations, and clips them to fit
@@ -354,36 +325,33 @@ def generate_line_segments_thickness_orientation(
354
325
 
355
326
  # Extract the segment thickness dictionary from the input data
356
327
  segment_thickness_dict = data_dict['segment_thickness_dict']
357
-
358
- # Define the director vector along the y-axis
359
- director = np.array([0, 1])
360
328
 
361
329
  # Find the angle that aligns the network most with the y-axis
362
- max_angle = get_max_alignment_angle(segment_thickness_dict, director, box_measurements, grid_points)
363
-
330
+ max_angle = get_max_alignment(segment_thickness_dict, director, box_measurements, grid_points)
331
+
364
332
  # Store the initial unmodified configuration
365
333
  output = [{'orientation': 'original', 'data_dict': data_dict}]
366
334
 
367
335
  # Loop through each given orientation, rotate, clip, and translate the network
368
336
  for o in orientation:
369
337
  # Compute the rotation angle for the current orientation relative to max alignment
370
- rotate_angle = o - max_angle
338
+ rotate_angle = -max_angle + o
371
339
 
372
340
  # Rotate the network by the computed angle
373
- segment_thickness_dict_new = rotate_network(segment_thickness_dict, rotate_angle=rotate_angle, box_center=box_center)
341
+ segment_thickness_dict_rotated = rotate_network(segment_thickness_dict, rotate_angle=rotate_angle, box_center=box_center)
374
342
 
375
343
  # Clip the rotated network to fit within the bounding box
376
- segment_thickness_dict_new = clip_network(segment_thickness_dict_new, box_measurements=box_measurements)
344
+ segment_thickness_dict_clipped = clip_network(segment_thickness_dict_rotated, box_measurements=box_measurements)
377
345
 
378
346
  # Translate the clipped network to start at the origin (0,0)
379
347
  translation_vector = -np.array(box_measurements[0])
380
- segment_thickness_dict_new = translate_network(segment_thickness_dict_new, translation_vector)
348
+ segment_thickness_dict_translated = translate_network(segment_thickness_dict_clipped, translation_vector)
381
349
 
382
350
  # Prepare a new data dictionary with the transformed segment information
383
351
  data_dict_new = {
384
352
  'segments_dict': None,
385
353
  'polygon_arr': None,
386
- 'segment_thickness_dict': segment_thickness_dict_new,
354
+ 'segment_thickness_dict': segment_thickness_dict_translated,
387
355
  'jammed': None,
388
356
  'generated_config': None
389
357
  }