QuizGenerator 0.6.3__py3-none-any.whl → 0.7.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. QuizGenerator/contentast.py +2191 -2193
  2. QuizGenerator/misc.py +1 -1
  3. QuizGenerator/mixins.py +64 -64
  4. QuizGenerator/premade_questions/basic.py +16 -16
  5. QuizGenerator/premade_questions/cst334/languages.py +26 -26
  6. QuizGenerator/premade_questions/cst334/math_questions.py +42 -42
  7. QuizGenerator/premade_questions/cst334/memory_questions.py +124 -124
  8. QuizGenerator/premade_questions/cst334/persistence_questions.py +48 -48
  9. QuizGenerator/premade_questions/cst334/process.py +38 -38
  10. QuizGenerator/premade_questions/cst463/gradient_descent/gradient_calculation.py +45 -45
  11. QuizGenerator/premade_questions/cst463/gradient_descent/gradient_descent_questions.py +34 -34
  12. QuizGenerator/premade_questions/cst463/gradient_descent/loss_calculations.py +53 -53
  13. QuizGenerator/premade_questions/cst463/gradient_descent/misc.py +2 -2
  14. QuizGenerator/premade_questions/cst463/math_and_data/matrix_questions.py +65 -65
  15. QuizGenerator/premade_questions/cst463/math_and_data/vector_questions.py +39 -39
  16. QuizGenerator/premade_questions/cst463/models/attention.py +36 -36
  17. QuizGenerator/premade_questions/cst463/models/cnns.py +26 -26
  18. QuizGenerator/premade_questions/cst463/models/rnns.py +36 -36
  19. QuizGenerator/premade_questions/cst463/models/text.py +32 -32
  20. QuizGenerator/premade_questions/cst463/models/weight_counting.py +15 -15
  21. QuizGenerator/premade_questions/cst463/neural-network-basics/neural_network_questions.py +124 -124
  22. QuizGenerator/premade_questions/cst463/tensorflow-intro/tensorflow_questions.py +161 -161
  23. QuizGenerator/question.py +41 -41
  24. QuizGenerator/quiz.py +7 -7
  25. QuizGenerator/regenerate.py +114 -13
  26. QuizGenerator/typst_utils.py +2 -2
  27. {quizgenerator-0.6.3.dist-info → quizgenerator-0.7.1.dist-info}/METADATA +1 -1
  28. {quizgenerator-0.6.3.dist-info → quizgenerator-0.7.1.dist-info}/RECORD +31 -31
  29. {quizgenerator-0.6.3.dist-info → quizgenerator-0.7.1.dist-info}/WHEEL +0 -0
  30. {quizgenerator-0.6.3.dist-info → quizgenerator-0.7.1.dist-info}/entry_points.txt +0 -0
  31. {quizgenerator-0.6.3.dist-info → quizgenerator-0.7.1.dist-info}/licenses/LICENSE +0 -0
@@ -7,7 +7,7 @@ from typing import List, Tuple
7
7
 
8
8
  from QuizGenerator.premade_questions.cst463.models.matrices import MatrixQuestion
9
9
  from QuizGenerator.question import Question, QuestionRegistry
10
- from QuizGenerator.contentast import ContentAST, AnswerTypes
10
+ import QuizGenerator.contentast as ca
11
11
  from QuizGenerator.constants import MathRanges
12
12
  from QuizGenerator.mixins import TableQuestionMixin
13
13
 
@@ -59,34 +59,34 @@ class word2vec__skipgram(MatrixQuestion, TableQuestionMixin):
59
59
 
60
60
  ## Answers:
61
61
  # center_word, center_emb, context_words, context_embs, logits, probs
62
- self.answers["logits"] = AnswerTypes.Vector(self.logits, label="Logits")
62
+ self.answers["logits"] = ca.AnswerTypes.Vector(self.logits, label="Logits")
63
63
  most_likely_idx = np.argmax(self.probs)
64
64
  most_likely_word = self.context_words[most_likely_idx]
65
- self.answers["center_word"] = AnswerTypes.String(most_likely_word, label="Most likely context word")
65
+ self.answers["center_word"] = ca.AnswerTypes.String(most_likely_word, label="Most likely context word")
66
66
 
67
67
 
68
68
  return True
69
69
 
70
- def _get_body(self, **kwargs) -> Tuple[ContentAST.Section, List[ContentAST.Answer]]:
70
+ def _get_body(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
71
71
  """Build question body and collect answers."""
72
- body = ContentAST.Section()
72
+ body = ca.Section()
73
73
  answers = []
74
74
 
75
75
  body.add_element(
76
- ContentAST.Paragraph([
76
+ ca.Paragraph([
77
77
  f"Given center word: `{self.center_word}` with embedding {self.center_emb}, compute the skip-gram probabilities for each context word and identify the most likely one."
78
78
  ])
79
79
  )
80
80
  body.add_elements([
81
- ContentAST.Paragraph([ContentAST.Text(f"`{w}` : "), str(e)]) for w, e in zip(self.context_words, self.context_embs)
81
+ ca.Paragraph([ca.Text(f"`{w}` : "), str(e)]) for w, e in zip(self.context_words, self.context_embs)
82
82
  ])
83
83
 
84
84
  answers.append(self.answers["logits"])
85
85
  answers.append(self.answers["center_word"])
86
86
  body.add_elements([
87
- ContentAST.LineBreak(),
87
+ ca.LineBreak(),
88
88
  self.answers["logits"],
89
- ContentAST.LineBreak(),
89
+ ca.LineBreak(),
90
90
  self.answers["center_word"]
91
91
  ])
92
92
 
@@ -95,39 +95,39 @@ class word2vec__skipgram(MatrixQuestion, TableQuestionMixin):
95
95
 
96
96
  return body, answers
97
97
 
98
- def get_body(self, **kwargs) -> ContentAST.Section:
98
+ def get_body(self, **kwargs) -> ca.Section:
99
99
  """Build question body (backward compatible interface)."""
100
100
  body, _ = self._get_body(**kwargs)
101
101
  return body
102
102
 
103
- def _get_explanation(self, **kwargs) -> Tuple[ContentAST.Section, List[ContentAST.Answer]]:
103
+ def _get_explanation(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
104
104
  """Build question explanation."""
105
- explanation = ContentAST.Section()
106
- digits = ContentAST.Answer.DEFAULT_ROUNDING_DIGITS
105
+ explanation = ca.Section()
106
+ digits = ca.Answer.DEFAULT_ROUNDING_DIGITS
107
107
 
108
108
  explanation.add_element(
109
- ContentAST.Paragraph([
109
+ ca.Paragraph([
110
110
  "In the skip-gram model, we predict context words given a center word by computing dot products between embeddings and applying softmax."
111
111
  ])
112
112
  )
113
113
 
114
114
  # Step 1: Show embeddings
115
115
  explanation.add_element(
116
- ContentAST.Paragraph([
117
- ContentAST.Text("Step 1: Given embeddings", emphasis=True)
116
+ ca.Paragraph([
117
+ ca.Text("Step 1: Given embeddings", emphasis=True)
118
118
  ])
119
119
  )
120
120
 
121
121
  # Format center embedding
122
122
  center_emb_str = "[" + ", ".join([f"{x:.{digits}f}" for x in self.center_emb]) + "]"
123
123
  explanation.add_element(
124
- ContentAST.Paragraph([
124
+ ca.Paragraph([
125
125
  f"Center word `{self.center_word}`: {center_emb_str}"
126
126
  ])
127
127
  )
128
128
 
129
129
  explanation.add_element(
130
- ContentAST.Paragraph([
130
+ ca.Paragraph([
131
131
  "Context words:"
132
132
  ])
133
133
  )
@@ -135,21 +135,21 @@ class word2vec__skipgram(MatrixQuestion, TableQuestionMixin):
135
135
  for i, (word, emb) in enumerate(zip(self.context_words, self.context_embs)):
136
136
  emb_str = "[" + ", ".join([f"{x:.2f}" for x in emb]) + "]"
137
137
  explanation.add_element(
138
- ContentAST.Paragraph([
138
+ ca.Paragraph([
139
139
  f"`{word}`: {emb_str}"
140
140
  ])
141
141
  )
142
142
 
143
143
  # Step 2: Compute logits (dot products)
144
144
  explanation.add_element(
145
- ContentAST.Paragraph([
146
- ContentAST.Text("Step 2: Compute logits (dot products)", emphasis=True)
145
+ ca.Paragraph([
146
+ ca.Text("Step 2: Compute logits (dot products)", emphasis=True)
147
147
  ])
148
148
  )
149
149
 
150
150
  # Show ONE example
151
151
  explanation.add_element(
152
- ContentAST.Paragraph([
152
+ ca.Paragraph([
153
153
  f"Example: Logit for `{self.context_words[0]}`"
154
154
  ])
155
155
  )
@@ -160,20 +160,20 @@ class word2vec__skipgram(MatrixQuestion, TableQuestionMixin):
160
160
  logit_val = self.logits[0]
161
161
 
162
162
  explanation.add_element(
163
- ContentAST.Equation(f"{dot_product_terms} = {logit_val:.2f}")
163
+ ca.Equation(f"{dot_product_terms} = {logit_val:.2f}")
164
164
  )
165
165
 
166
166
  logits_str = "[" + ", ".join([f"{x:.2f}" for x in self.logits]) + "]"
167
167
  explanation.add_element(
168
- ContentAST.Paragraph([
168
+ ca.Paragraph([
169
169
  f"All logits: {logits_str}"
170
170
  ])
171
171
  )
172
172
 
173
173
  # Step 3: Apply softmax
174
174
  explanation.add_element(
175
- ContentAST.Paragraph([
176
- ContentAST.Text("Step 3: Apply softmax to get probabilities", emphasis=True)
175
+ ca.Paragraph([
176
+ ca.Text("Step 3: Apply softmax to get probabilities", emphasis=True)
177
177
  ])
178
178
  )
179
179
 
@@ -183,18 +183,18 @@ class word2vec__skipgram(MatrixQuestion, TableQuestionMixin):
183
183
  exp_terms = " + ".join([f"e^{{{l:.{digits}f}}}" for l in self.logits])
184
184
 
185
185
  explanation.add_element(
186
- ContentAST.Equation(f"\\text{{denominator}} = {exp_terms} = {sum_exp:.{digits}f}")
186
+ ca.Equation(f"\\text{{denominator}} = {exp_terms} = {sum_exp:.{digits}f}")
187
187
  )
188
188
 
189
189
  explanation.add_element(
190
- ContentAST.Paragraph([
190
+ ca.Paragraph([
191
191
  "Probabilities:"
192
192
  ])
193
193
  )
194
194
 
195
195
  for i, (word, prob) in enumerate(zip(self.context_words, self.probs)):
196
196
  explanation.add_element(
197
- ContentAST.Equation(f"P(\\text{{{word}}}) = \\frac{{e^{{{self.logits[i]:.{digits}f}}}}}{{{sum_exp:.{digits}f}}} = {prob:.{digits}f}")
197
+ ca.Equation(f"P(\\text{{{word}}}) = \\frac{{e^{{{self.logits[i]:.{digits}f}}}}}{{{sum_exp:.{digits}f}}} = {prob:.{digits}f}")
198
198
  )
199
199
 
200
200
  # Step 4: Identify most likely
@@ -202,15 +202,15 @@ class word2vec__skipgram(MatrixQuestion, TableQuestionMixin):
202
202
  most_likely_word = self.context_words[most_likely_idx]
203
203
 
204
204
  explanation.add_element(
205
- ContentAST.Paragraph([
206
- ContentAST.Text("Conclusion:", emphasis=True),
205
+ ca.Paragraph([
206
+ ca.Text("Conclusion:", emphasis=True),
207
207
  f" The most likely context word is `{most_likely_word}` with probability {self.probs[most_likely_idx]:.{digits}f}"
208
208
  ])
209
209
  )
210
210
 
211
211
  return explanation, []
212
212
 
213
- def get_explanation(self, **kwargs) -> ContentAST.Section:
213
+ def get_explanation(self, **kwargs) -> ca.Section:
214
214
  """Build question explanation (backward compatible interface)."""
215
215
  explanation, _ = self._get_explanation(**kwargs)
216
216
  return explanation
@@ -6,7 +6,7 @@ import numpy as np
6
6
  from typing import List, Tuple
7
7
 
8
8
  from QuizGenerator.question import Question, QuestionRegistry
9
- from QuizGenerator.contentast import ContentAST, AnswerTypes
9
+ import QuizGenerator.contentast as ca
10
10
  from QuizGenerator.constants import MathRanges
11
11
 
12
12
  log = logging.getLogger(__name__)
@@ -85,25 +85,25 @@ class WeightCounting(Question, abc.ABC):
85
85
  continue
86
86
 
87
87
  self.num_parameters = self.model.count_params()
88
- self.answers["num_parameters"] = AnswerTypes.Int(self.num_parameters, label="Number of Parameters")
88
+ self.answers["num_parameters"] = ca.AnswerTypes.Int(self.num_parameters, label="Number of Parameters")
89
89
 
90
90
  return True
91
91
 
92
- def _get_body(self, **kwargs) -> Tuple[ContentAST.Section, List[ContentAST.Answer]]:
92
+ def _get_body(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
93
93
  """Build question body and collect answers."""
94
- body = ContentAST.Section()
94
+ body = ca.Section()
95
95
  answers = []
96
96
 
97
97
  body.add_element(
98
- ContentAST.Paragraph(
98
+ ca.Paragraph(
99
99
  [
100
- ContentAST.Text("Given the below model, how many parameters does it use?")
100
+ ca.Text("Given the below model, how many parameters does it use?")
101
101
  ]
102
102
  )
103
103
  )
104
104
 
105
105
  body.add_element(
106
- ContentAST.Code(
106
+ ca.Code(
107
107
  self.model_to_python(
108
108
  self.model,
109
109
  fields=self.fields
@@ -111,23 +111,23 @@ class WeightCounting(Question, abc.ABC):
111
111
  )
112
112
  )
113
113
 
114
- body.add_element(ContentAST.LineBreak())
114
+ body.add_element(ca.LineBreak())
115
115
 
116
116
  answers.append(self.answers["num_parameters"])
117
117
  body.add_element(self.answers["num_parameters"])
118
118
 
119
119
  return body, answers
120
120
 
121
- def get_body(self, **kwargs) -> ContentAST.Section:
121
+ def get_body(self, **kwargs) -> ca.Section:
122
122
  """Build question body (backward compatible interface)."""
123
123
  body, _ = self._get_body(**kwargs)
124
124
  return body
125
125
 
126
- def _get_explanation(self, **kwargs) -> Tuple[ContentAST.Section, List[ContentAST.Answer]]:
126
+ def _get_explanation(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
127
127
  """Build question explanation."""
128
- explanation = ContentAST.Section()
128
+ explanation = ca.Section()
129
129
 
130
- def markdown_summary(model) -> ContentAST.Table:
130
+ def markdown_summary(model) -> ca.Table:
131
131
  # Ensure the model is built by running build() or calling it once
132
132
  if not model.built:
133
133
  try:
@@ -155,19 +155,19 @@ class WeightCounting(Question, abc.ABC):
155
155
  data.append([name, ltype, outshape, params])
156
156
 
157
157
  data.append(["**Total**", "", "", f"**{total_params}**"])
158
- return ContentAST.Table(data=data, headers=["Layer", "Type", "Output Shape", "Params"])
158
+ return ca.Table(data=data, headers=["Layer", "Type", "Output Shape", "Params"])
159
159
 
160
160
 
161
161
  summary_lines = []
162
162
  self.model.summary(print_fn=lambda x: summary_lines.append(x))
163
163
  explanation.add_element(
164
- # ContentAST.Text('\n'.join(summary_lines))
164
+ # ca.Text('\n'.join(summary_lines))
165
165
  markdown_summary(self.model)
166
166
  )
167
167
 
168
168
  return explanation, []
169
169
 
170
- def get_explanation(self, **kwargs) -> ContentAST.Section:
170
+ def get_explanation(self, **kwargs) -> ca.Section:
171
171
  """Build question explanation (backward compatible interface)."""
172
172
  explanation, _ = self._get_explanation(**kwargs)
173
173
  return explanation