QuizGenerator 0.6.2__py3-none-any.whl → 0.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- QuizGenerator/contentast.py +2198 -2213
- QuizGenerator/misc.py +1 -1
- QuizGenerator/mixins.py +64 -64
- QuizGenerator/premade_questions/basic.py +16 -16
- QuizGenerator/premade_questions/cst334/languages.py +26 -26
- QuizGenerator/premade_questions/cst334/math_questions.py +42 -42
- QuizGenerator/premade_questions/cst334/memory_questions.py +124 -124
- QuizGenerator/premade_questions/cst334/persistence_questions.py +48 -48
- QuizGenerator/premade_questions/cst334/process.py +38 -38
- QuizGenerator/premade_questions/cst463/gradient_descent/gradient_calculation.py +45 -45
- QuizGenerator/premade_questions/cst463/gradient_descent/gradient_descent_questions.py +34 -34
- QuizGenerator/premade_questions/cst463/gradient_descent/loss_calculations.py +53 -53
- QuizGenerator/premade_questions/cst463/gradient_descent/misc.py +2 -2
- QuizGenerator/premade_questions/cst463/math_and_data/matrix_questions.py +65 -65
- QuizGenerator/premade_questions/cst463/math_and_data/vector_questions.py +39 -39
- QuizGenerator/premade_questions/cst463/models/attention.py +36 -36
- QuizGenerator/premade_questions/cst463/models/cnns.py +26 -26
- QuizGenerator/premade_questions/cst463/models/rnns.py +36 -36
- QuizGenerator/premade_questions/cst463/models/text.py +32 -32
- QuizGenerator/premade_questions/cst463/models/weight_counting.py +15 -15
- QuizGenerator/premade_questions/cst463/neural-network-basics/neural_network_questions.py +124 -124
- QuizGenerator/premade_questions/cst463/tensorflow-intro/tensorflow_questions.py +161 -161
- QuizGenerator/question.py +41 -41
- QuizGenerator/quiz.py +7 -7
- QuizGenerator/typst_utils.py +2 -2
- {quizgenerator-0.6.2.dist-info → quizgenerator-0.7.0.dist-info}/METADATA +1 -1
- {quizgenerator-0.6.2.dist-info → quizgenerator-0.7.0.dist-info}/RECORD +30 -30
- {quizgenerator-0.6.2.dist-info → quizgenerator-0.7.0.dist-info}/WHEEL +0 -0
- {quizgenerator-0.6.2.dist-info → quizgenerator-0.7.0.dist-info}/entry_points.txt +0 -0
- {quizgenerator-0.6.2.dist-info → quizgenerator-0.7.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -6,7 +6,7 @@ import numpy as np
|
|
|
6
6
|
from typing import List, Tuple
|
|
7
7
|
|
|
8
8
|
from QuizGenerator.question import Question, QuestionRegistry
|
|
9
|
-
|
|
9
|
+
import QuizGenerator.contentast as ca
|
|
10
10
|
from QuizGenerator.constants import MathRanges
|
|
11
11
|
from QuizGenerator.mixins import TableQuestionMixin
|
|
12
12
|
|
|
@@ -61,25 +61,25 @@ class AttentionForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
61
61
|
## Answers:
|
|
62
62
|
# Q, K, V, output, weights
|
|
63
63
|
|
|
64
|
-
self.answers["weights"] = AnswerTypes.Matrix(self.weights, label="Weights")
|
|
65
|
-
self.answers["output"] = AnswerTypes.Matrix(self.output, label="Output")
|
|
64
|
+
self.answers["weights"] = ca.AnswerTypes.Matrix(self.weights, label="Weights")
|
|
65
|
+
self.answers["output"] = ca.AnswerTypes.Matrix(self.output, label="Output")
|
|
66
66
|
|
|
67
67
|
return True
|
|
68
68
|
|
|
69
|
-
def _get_body(self, **kwargs) -> Tuple[
|
|
69
|
+
def _get_body(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
|
|
70
70
|
"""Build question body and collect answers."""
|
|
71
|
-
body =
|
|
71
|
+
body = ca.Section()
|
|
72
72
|
answers = []
|
|
73
73
|
|
|
74
74
|
body.add_element(
|
|
75
|
-
|
|
75
|
+
ca.Text("Given the below information about a self attention layer, please calculate the output sequence.")
|
|
76
76
|
)
|
|
77
77
|
body.add_element(
|
|
78
78
|
self.create_info_table(
|
|
79
79
|
{
|
|
80
|
-
"Q":
|
|
81
|
-
"K":
|
|
82
|
-
"V":
|
|
80
|
+
"Q": ca.Matrix(self.Q),
|
|
81
|
+
"K": ca.Matrix(self.K),
|
|
82
|
+
"V": ca.Matrix(self.V),
|
|
83
83
|
}
|
|
84
84
|
)
|
|
85
85
|
)
|
|
@@ -87,67 +87,67 @@ class AttentionForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
87
87
|
answers.append(self.answers["weights"])
|
|
88
88
|
answers.append(self.answers["output"])
|
|
89
89
|
body.add_elements([
|
|
90
|
-
|
|
90
|
+
ca.LineBreak(),
|
|
91
91
|
self.answers["weights"],
|
|
92
|
-
|
|
92
|
+
ca.LineBreak(),
|
|
93
93
|
self.answers["output"],
|
|
94
94
|
])
|
|
95
95
|
|
|
96
96
|
return body, answers
|
|
97
97
|
|
|
98
|
-
def get_body(self, **kwargs) ->
|
|
98
|
+
def get_body(self, **kwargs) -> ca.Section:
|
|
99
99
|
"""Build question body (backward compatible interface)."""
|
|
100
100
|
body, _ = self._get_body(**kwargs)
|
|
101
101
|
return body
|
|
102
102
|
|
|
103
|
-
def _get_explanation(self, **kwargs) -> Tuple[
|
|
103
|
+
def _get_explanation(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
|
|
104
104
|
"""Build question explanation."""
|
|
105
|
-
explanation =
|
|
106
|
-
digits =
|
|
105
|
+
explanation = ca.Section()
|
|
106
|
+
digits = ca.Answer.DEFAULT_ROUNDING_DIGITS
|
|
107
107
|
|
|
108
108
|
explanation.add_element(
|
|
109
|
-
|
|
109
|
+
ca.Paragraph([
|
|
110
110
|
"Self-attention uses scaled dot-product attention to compute a weighted combination of values based on query-key similarity."
|
|
111
111
|
])
|
|
112
112
|
)
|
|
113
113
|
|
|
114
114
|
# Step 1: Compute attention scores
|
|
115
115
|
explanation.add_element(
|
|
116
|
-
|
|
117
|
-
|
|
116
|
+
ca.Paragraph([
|
|
117
|
+
ca.Text("Step 1: Compute attention scores", emphasis=True)
|
|
118
118
|
])
|
|
119
119
|
)
|
|
120
120
|
|
|
121
121
|
d_k = self.Q.shape[1]
|
|
122
122
|
explanation.add_element(
|
|
123
|
-
|
|
123
|
+
ca.Equation(f"\\text{{scores}} = \\frac{{Q K^T}}{{\\sqrt{{d_k}}}} = \\frac{{Q K^T}}{{\\sqrt{{{d_k}}}}}")
|
|
124
124
|
)
|
|
125
125
|
|
|
126
126
|
scores = self.Q @ self.K.T / np.sqrt(d_k)
|
|
127
127
|
|
|
128
128
|
explanation.add_element(
|
|
129
|
-
|
|
129
|
+
ca.Paragraph([
|
|
130
130
|
"Raw scores (scaling by ",
|
|
131
|
-
|
|
131
|
+
ca.Equation(f'\\sqrt{{{d_k}}}', inline=True),
|
|
132
132
|
" prevents extremely large values):"
|
|
133
133
|
])
|
|
134
134
|
)
|
|
135
|
-
explanation.add_element(
|
|
135
|
+
explanation.add_element(ca.Matrix(np.round(scores, digits)))
|
|
136
136
|
|
|
137
137
|
# Step 2: Apply softmax
|
|
138
138
|
explanation.add_element(
|
|
139
|
-
|
|
140
|
-
|
|
139
|
+
ca.Paragraph([
|
|
140
|
+
ca.Text("Step 2: Apply softmax to get attention weights", emphasis=True)
|
|
141
141
|
])
|
|
142
142
|
)
|
|
143
143
|
|
|
144
144
|
explanation.add_element(
|
|
145
|
-
|
|
145
|
+
ca.Equation(r"\alpha_{ij} = \frac{\exp(\text{score}_{ij})}{\sum_k \exp(\text{score}_{ik})}")
|
|
146
146
|
)
|
|
147
147
|
|
|
148
148
|
# Show ONE example row
|
|
149
149
|
explanation.add_element(
|
|
150
|
-
|
|
150
|
+
ca.Paragraph([
|
|
151
151
|
"Example: Row 0 softmax computation"
|
|
152
152
|
])
|
|
153
153
|
)
|
|
@@ -160,7 +160,7 @@ class AttentionForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
160
160
|
exp_terms = " + ".join([f"e^{{{s:.{digits}f}}}" for s in row_scores])
|
|
161
161
|
|
|
162
162
|
explanation.add_element(
|
|
163
|
-
|
|
163
|
+
ca.Paragraph([
|
|
164
164
|
f"Denominator = {exp_terms} = {sum_exp:.{digits}f}"
|
|
165
165
|
])
|
|
166
166
|
)
|
|
@@ -168,39 +168,39 @@ class AttentionForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
168
168
|
# Format array with proper rounding
|
|
169
169
|
weights_str = "[" + ", ".join([f"{w:.{digits}f}" for w in weights_row]) + "]"
|
|
170
170
|
explanation.add_element(
|
|
171
|
-
|
|
171
|
+
ca.Paragraph([
|
|
172
172
|
f"Resulting weights: {weights_str}"
|
|
173
173
|
])
|
|
174
174
|
)
|
|
175
175
|
|
|
176
176
|
explanation.add_element(
|
|
177
|
-
|
|
177
|
+
ca.Paragraph([
|
|
178
178
|
"Complete attention weight matrix:"
|
|
179
179
|
])
|
|
180
180
|
)
|
|
181
|
-
explanation.add_element(
|
|
181
|
+
explanation.add_element(ca.Matrix(np.round(self.weights, digits)))
|
|
182
182
|
|
|
183
183
|
# Step 3: Weighted sum of values
|
|
184
184
|
explanation.add_element(
|
|
185
|
-
|
|
186
|
-
|
|
185
|
+
ca.Paragraph([
|
|
186
|
+
ca.Text("Step 3: Compute weighted sum of values", emphasis=True)
|
|
187
187
|
])
|
|
188
188
|
)
|
|
189
189
|
|
|
190
190
|
explanation.add_element(
|
|
191
|
-
|
|
191
|
+
ca.Equation(r"\text{output} = \text{weights} \times V")
|
|
192
192
|
)
|
|
193
193
|
|
|
194
194
|
explanation.add_element(
|
|
195
|
-
|
|
195
|
+
ca.Paragraph([
|
|
196
196
|
"Final output:"
|
|
197
197
|
])
|
|
198
198
|
)
|
|
199
|
-
explanation.add_element(
|
|
199
|
+
explanation.add_element(ca.Matrix(np.round(self.output, digits)))
|
|
200
200
|
|
|
201
201
|
return explanation, []
|
|
202
202
|
|
|
203
|
-
def get_explanation(self, **kwargs) ->
|
|
203
|
+
def get_explanation(self, **kwargs) -> ca.Section:
|
|
204
204
|
"""Build question explanation (backward compatible interface)."""
|
|
205
205
|
explanation, _ = self._get_explanation(**kwargs)
|
|
206
206
|
return explanation
|
|
@@ -6,7 +6,7 @@ import numpy as np
|
|
|
6
6
|
from typing import List, Tuple
|
|
7
7
|
|
|
8
8
|
from QuizGenerator.question import Question, QuestionRegistry
|
|
9
|
-
|
|
9
|
+
import QuizGenerator.contentast as ca
|
|
10
10
|
from QuizGenerator.constants import MathRanges
|
|
11
11
|
from .matrices import MatrixQuestion
|
|
12
12
|
|
|
@@ -65,72 +65,72 @@ class ConvolutionCalculation(MatrixQuestion):
|
|
|
65
65
|
self.result = self.conv2d_multi_channel(self.image, self.kernel, stride=self.stride, padding=self.padding)
|
|
66
66
|
|
|
67
67
|
self.answers = {
|
|
68
|
-
f"result_{i}" : AnswerTypes.Matrix(self.result[:,:,i], label=f"Result of filter {i}")
|
|
68
|
+
f"result_{i}" : ca.AnswerTypes.Matrix(self.result[:,:,i], label=f"Result of filter {i}")
|
|
69
69
|
for i in range(self.result.shape[-1])
|
|
70
70
|
}
|
|
71
71
|
|
|
72
72
|
return True
|
|
73
73
|
|
|
74
|
-
def _get_body(self, **kwargs) -> Tuple[
|
|
74
|
+
def _get_body(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
|
|
75
75
|
"""Build question body and collect answers."""
|
|
76
|
-
body =
|
|
76
|
+
body = ca.Section()
|
|
77
77
|
answers = []
|
|
78
78
|
|
|
79
79
|
body.add_elements(
|
|
80
80
|
[
|
|
81
|
-
|
|
82
|
-
|
|
81
|
+
ca.Text("Given image represented as matrix: "),
|
|
82
|
+
ca.Matrix(self.image, name="image")
|
|
83
83
|
]
|
|
84
84
|
)
|
|
85
85
|
|
|
86
86
|
body.add_elements(
|
|
87
87
|
[
|
|
88
|
-
|
|
88
|
+
ca.Text("And convolution filters: "),
|
|
89
89
|
] + [
|
|
90
|
-
|
|
90
|
+
ca.Matrix(self.kernel[:, :, i], name=f"Filter {i}")
|
|
91
91
|
for i in range(self.kernel.shape[-1])
|
|
92
92
|
]
|
|
93
93
|
)
|
|
94
94
|
|
|
95
95
|
body.add_element(
|
|
96
|
-
|
|
96
|
+
ca.Paragraph(
|
|
97
97
|
[
|
|
98
98
|
f"Calculate the output of the convolution operation. Assume stride = {self.stride} and padding = {self.padding}."
|
|
99
99
|
]
|
|
100
100
|
)
|
|
101
101
|
)
|
|
102
102
|
|
|
103
|
-
body.add_element(
|
|
103
|
+
body.add_element(ca.LineBreak())
|
|
104
104
|
|
|
105
105
|
for i in range(self.result.shape[-1]):
|
|
106
106
|
answers.append(self.answers[f"result_{i}"])
|
|
107
107
|
body.add_elements([
|
|
108
|
-
|
|
108
|
+
ca.Container([
|
|
109
109
|
self.answers[f"result_{i}"],
|
|
110
|
-
|
|
110
|
+
ca.LineBreak()
|
|
111
111
|
])
|
|
112
112
|
])
|
|
113
113
|
|
|
114
114
|
return body, answers
|
|
115
115
|
|
|
116
|
-
def get_body(self, **kwargs) ->
|
|
116
|
+
def get_body(self, **kwargs) -> ca.Section:
|
|
117
117
|
"""Build question body (backward compatible interface)."""
|
|
118
118
|
body, _ = self._get_body(**kwargs)
|
|
119
119
|
return body
|
|
120
120
|
|
|
121
|
-
def _get_explanation(self, **kwargs) -> Tuple[
|
|
121
|
+
def _get_explanation(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
|
|
122
122
|
"""Build question explanation."""
|
|
123
|
-
explanation =
|
|
124
|
-
digits =
|
|
123
|
+
explanation = ca.Section()
|
|
124
|
+
digits = ca.Answer.DEFAULT_ROUNDING_DIGITS
|
|
125
125
|
|
|
126
126
|
explanation.add_element(
|
|
127
|
-
|
|
127
|
+
ca.Paragraph([
|
|
128
128
|
"To compute a 2D convolution, we slide the filter across the input image and compute the element-wise product at each position, then sum the results."
|
|
129
129
|
])
|
|
130
130
|
)
|
|
131
131
|
|
|
132
132
|
explanation.add_element(
|
|
133
|
-
|
|
133
|
+
ca.Paragraph([
|
|
134
134
|
f"With stride={self.stride} and padding={self.padding}: ",
|
|
135
135
|
f"stride controls how many pixels the filter moves each step, ",
|
|
136
136
|
f"and padding adds zeros around the border {'(no border in this case)' if self.padding == 0 else f'({self.padding} pixels)'}."
|
|
@@ -140,19 +140,19 @@ class ConvolutionCalculation(MatrixQuestion):
|
|
|
140
140
|
# For each filter, show one detailed example computation
|
|
141
141
|
for f_idx in range(self.kernel.shape[-1]):
|
|
142
142
|
explanation.add_element(
|
|
143
|
-
|
|
144
|
-
|
|
143
|
+
ca.Paragraph([
|
|
144
|
+
ca.Text(f"Filter {f_idx}:", emphasis=True)
|
|
145
145
|
])
|
|
146
146
|
)
|
|
147
147
|
|
|
148
148
|
# Show the filter (rounded)
|
|
149
149
|
explanation.add_element(
|
|
150
|
-
|
|
150
|
+
ca.Matrix(np.round(self.kernel[:, :, f_idx], digits), name=f"Filter {f_idx}")
|
|
151
151
|
)
|
|
152
152
|
|
|
153
153
|
# Show ONE example computation (position 0,0)
|
|
154
154
|
explanation.add_element(
|
|
155
|
-
|
|
155
|
+
ca.Paragraph([
|
|
156
156
|
"Example computation at position (0, 0):"
|
|
157
157
|
])
|
|
158
158
|
)
|
|
@@ -177,22 +177,22 @@ class ConvolutionCalculation(MatrixQuestion):
|
|
|
177
177
|
result_val = self.result[0, 0, f_idx]
|
|
178
178
|
|
|
179
179
|
explanation.add_element(
|
|
180
|
-
|
|
180
|
+
ca.Equation(f"{equation_str} = {result_val:.2f}")
|
|
181
181
|
)
|
|
182
182
|
|
|
183
183
|
# Show the complete output matrix (rounded)
|
|
184
184
|
explanation.add_element(
|
|
185
|
-
|
|
185
|
+
ca.Paragraph([
|
|
186
186
|
"Complete output:"
|
|
187
187
|
])
|
|
188
188
|
)
|
|
189
189
|
explanation.add_element(
|
|
190
|
-
|
|
190
|
+
ca.Matrix(np.round(self.result[:, :, f_idx], digits))
|
|
191
191
|
)
|
|
192
192
|
|
|
193
193
|
return explanation, []
|
|
194
194
|
|
|
195
|
-
def get_explanation(self, **kwargs) ->
|
|
195
|
+
def get_explanation(self, **kwargs) -> ca.Section:
|
|
196
196
|
"""Build question explanation (backward compatible interface)."""
|
|
197
197
|
explanation, _ = self._get_explanation(**kwargs)
|
|
198
198
|
return explanation
|
|
@@ -7,7 +7,7 @@ from typing import List, Tuple
|
|
|
7
7
|
|
|
8
8
|
from .matrices import MatrixQuestion
|
|
9
9
|
from QuizGenerator.question import Question, QuestionRegistry
|
|
10
|
-
|
|
10
|
+
import QuizGenerator.contentast as ca
|
|
11
11
|
from QuizGenerator.constants import MathRanges
|
|
12
12
|
from QuizGenerator.mixins import TableQuestionMixin
|
|
13
13
|
|
|
@@ -64,65 +64,65 @@ class RNNForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
64
64
|
## Answers:
|
|
65
65
|
# x_seq, W_xh, W_hh, b_h, h_0, h_states
|
|
66
66
|
|
|
67
|
-
self.answers["output_sequence"] = AnswerTypes.Matrix(value=self.h_states, label="Hidden states")
|
|
67
|
+
self.answers["output_sequence"] = ca.AnswerTypes.Matrix(value=self.h_states, label="Hidden states")
|
|
68
68
|
|
|
69
69
|
return True
|
|
70
70
|
|
|
71
|
-
def _get_body(self, **kwargs) -> Tuple[
|
|
71
|
+
def _get_body(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
|
|
72
72
|
"""Build question body and collect answers."""
|
|
73
|
-
body =
|
|
73
|
+
body = ca.Section()
|
|
74
74
|
answers = []
|
|
75
75
|
|
|
76
76
|
body.add_element(
|
|
77
|
-
|
|
78
|
-
|
|
77
|
+
ca.Paragraph([
|
|
78
|
+
ca.Text("Given the below information about an RNN, please calculate the output sequence."),
|
|
79
79
|
"Assume that you are using a tanh activation function."
|
|
80
80
|
])
|
|
81
81
|
)
|
|
82
82
|
body.add_element(
|
|
83
83
|
self.create_info_table(
|
|
84
84
|
{
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
85
|
+
ca.Container(["Input sequence, ", ca.Equation("x_{seq}", inline=True)]) : ca.Matrix(self.x_seq),
|
|
86
|
+
ca.Container(["Input weights, ", ca.Equation("W_{xh}", inline=True)]) : ca.Matrix(self.W_xh),
|
|
87
|
+
ca.Container(["Hidden weights, ", ca.Equation("W_{hh}", inline=True)]) : ca.Matrix(self.W_hh),
|
|
88
|
+
ca.Container(["Bias, ", ca.Equation("b_{h}", inline=True)]) : ca.Matrix(self.b_h),
|
|
89
|
+
ca.Container(["Hidden states, ", ca.Equation("h_{0}", inline=True)]) : ca.Matrix(self.h_0),
|
|
90
90
|
}
|
|
91
91
|
)
|
|
92
92
|
)
|
|
93
93
|
|
|
94
|
-
body.add_element(
|
|
94
|
+
body.add_element(ca.LineBreak())
|
|
95
95
|
|
|
96
96
|
answers.append(self.answers["output_sequence"])
|
|
97
97
|
body.add_element(self.answers["output_sequence"])
|
|
98
98
|
|
|
99
99
|
return body, answers
|
|
100
100
|
|
|
101
|
-
def get_body(self, **kwargs) ->
|
|
101
|
+
def get_body(self, **kwargs) -> ca.Section:
|
|
102
102
|
"""Build question body (backward compatible interface)."""
|
|
103
103
|
body, _ = self._get_body(**kwargs)
|
|
104
104
|
return body
|
|
105
105
|
|
|
106
|
-
def _get_explanation(self, **kwargs) -> Tuple[
|
|
106
|
+
def _get_explanation(self, **kwargs) -> Tuple[ca.Section, List[ca.Answer]]:
|
|
107
107
|
"""Build question explanation."""
|
|
108
|
-
explanation =
|
|
109
|
-
digits =
|
|
108
|
+
explanation = ca.Section()
|
|
109
|
+
digits = ca.Answer.DEFAULT_ROUNDING_DIGITS
|
|
110
110
|
|
|
111
111
|
explanation.add_element(
|
|
112
|
-
|
|
112
|
+
ca.Paragraph([
|
|
113
113
|
"For an RNN forward pass, we compute the hidden state at each time step using:"
|
|
114
114
|
])
|
|
115
115
|
)
|
|
116
116
|
|
|
117
117
|
explanation.add_element(
|
|
118
|
-
|
|
118
|
+
ca.Equation(r"h_t = \tanh(x_t W_{xh} + h_{t-1} W_{hh} + b_h)")
|
|
119
119
|
)
|
|
120
120
|
|
|
121
121
|
explanation.add_element(
|
|
122
|
-
|
|
123
|
-
"Where the input contributes via ",
|
|
124
|
-
", the previous hidden state contributes via ",
|
|
125
|
-
", and ",
|
|
122
|
+
ca.Paragraph([
|
|
123
|
+
"Where the input contributes via ", ca.Equation("W_{xh}", inline=True),
|
|
124
|
+
", the previous hidden state contributes via ", ca.Equation("W_{hh}", inline=True),
|
|
125
|
+
", and ", ca.Equation("b_h", inline=True), " is the bias."
|
|
126
126
|
])
|
|
127
127
|
)
|
|
128
128
|
|
|
@@ -137,12 +137,12 @@ class RNNForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
137
137
|
seq_len = len(self.x_seq)
|
|
138
138
|
num_examples = min(2, seq_len)
|
|
139
139
|
|
|
140
|
-
explanation.add_element(
|
|
140
|
+
explanation.add_element(ca.Paragraph([""]))
|
|
141
141
|
|
|
142
142
|
for t in range(num_examples):
|
|
143
143
|
explanation.add_element(
|
|
144
|
-
|
|
145
|
-
|
|
144
|
+
ca.Paragraph([
|
|
145
|
+
ca.Text(f"Example: Timestep {t}", emphasis=True)
|
|
146
146
|
])
|
|
147
147
|
)
|
|
148
148
|
|
|
@@ -162,53 +162,53 @@ class RNNForwardPass(MatrixQuestion, TableQuestionMixin):
|
|
|
162
162
|
h_result = np.tanh(pre_activation)
|
|
163
163
|
|
|
164
164
|
explanation.add_element(
|
|
165
|
-
|
|
165
|
+
ca.Paragraph([
|
|
166
166
|
"Input contribution: ",
|
|
167
|
-
|
|
167
|
+
ca.Equation(f'x_{t} W_{{xh}}', inline=True),
|
|
168
168
|
f" = {format_array(x_contribution)}"
|
|
169
169
|
])
|
|
170
170
|
)
|
|
171
171
|
|
|
172
172
|
explanation.add_element(
|
|
173
|
-
|
|
173
|
+
ca.Paragraph([
|
|
174
174
|
"Hidden contribution: ",
|
|
175
|
-
|
|
175
|
+
ca.Equation(f'{h_prev_label} W_{{hh}}', inline=True),
|
|
176
176
|
f"{h_prev_desc} = {format_array(h_contribution)}"
|
|
177
177
|
])
|
|
178
178
|
)
|
|
179
179
|
|
|
180
180
|
explanation.add_element(
|
|
181
|
-
|
|
181
|
+
ca.Paragraph([
|
|
182
182
|
f"Pre-activation: {format_array(pre_activation)}"
|
|
183
183
|
])
|
|
184
184
|
)
|
|
185
185
|
|
|
186
186
|
explanation.add_element(
|
|
187
|
-
|
|
187
|
+
ca.Paragraph([
|
|
188
188
|
"After tanh: ",
|
|
189
|
-
|
|
189
|
+
ca.Equation(f'h_{t}', inline=True),
|
|
190
190
|
f" = {format_array(h_result)}"
|
|
191
191
|
])
|
|
192
192
|
)
|
|
193
193
|
|
|
194
194
|
# Add visual separator between timesteps (except after the last one)
|
|
195
195
|
if t < num_examples - 1:
|
|
196
|
-
explanation.add_element(
|
|
196
|
+
explanation.add_element(ca.Paragraph([""]))
|
|
197
197
|
|
|
198
198
|
# Show complete output sequence (rounded)
|
|
199
199
|
explanation.add_element(
|
|
200
|
-
|
|
200
|
+
ca.Paragraph([
|
|
201
201
|
"Complete hidden state sequence (each row is one timestep):"
|
|
202
202
|
])
|
|
203
203
|
)
|
|
204
204
|
|
|
205
205
|
explanation.add_element(
|
|
206
|
-
|
|
206
|
+
ca.Matrix(np.round(self.h_states, digits))
|
|
207
207
|
)
|
|
208
208
|
|
|
209
209
|
return explanation, []
|
|
210
210
|
|
|
211
|
-
def get_explanation(self, **kwargs) ->
|
|
211
|
+
def get_explanation(self, **kwargs) -> ca.Section:
|
|
212
212
|
"""Build question explanation (backward compatible interface)."""
|
|
213
213
|
explanation, _ = self._get_explanation(**kwargs)
|
|
214
214
|
return explanation
|