PyamilySeq 0.9.0__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
PyamilySeq/utils.py DELETED
@@ -1,408 +0,0 @@
1
- import subprocess
2
- import shutil
3
- import os
4
- import glob
5
- import collections
6
- from tempfile import NamedTemporaryFile
7
- import sys
8
- from line_profiler_pycharm import profile
9
- import re
10
-
11
- ####
12
- # Placeholder for the distance function
13
- levenshtein_distance_cal = None
14
- # Check for Levenshtein library once
15
- try:
16
- import Levenshtein as LV
17
- # Assign the optimized function
18
- def levenshtein_distance_calc(seq1, seq2):
19
- return LV.distance(seq1, seq2)
20
- except (ModuleNotFoundError, ImportError):
21
- print("Levenshtein package not installed - Will fallback to slower Python implementation.")
22
- # Fallback implementation
23
- def levenshtein_distance_calc(seq1, seq2):
24
- # Slower Python implementation of Levenshtein distance
25
- len1, len2 = len(seq1), len(seq2)
26
- dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
27
-
28
- for i in range(len1 + 1):
29
- dp[i][0] = i
30
- for j in range(len2 + 1):
31
- dp[0][j] = j
32
-
33
- for i in range(1, len1 + 1):
34
- for j in range(1, len2 + 1):
35
- if seq1[i - 1] == seq2[j - 1]:
36
- cost = 0
37
- else:
38
- cost = 1
39
- dp[i][j] = min(dp[i - 1][j] + 1, # Deletion
40
- dp[i][j - 1] + 1, # Insertion
41
- dp[i - 1][j - 1] + cost) # Substitution
42
-
43
- return dp[len1][len2]
44
- #####
45
-
46
- ################### We are currently fixed using Table 11
47
- gencode = {
48
- 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
49
- 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
50
- 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
51
- 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
52
- 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
53
- 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
54
- 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
55
- 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
56
- 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
57
- 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
58
- 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
59
- 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
60
- 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
61
- 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
62
- 'TAC':'Y', 'TAT':'Y', 'TAA':'*', 'TAG':'*',
63
- 'TGC':'C', 'TGT':'C', 'TGA':'*', 'TGG':'W'}
64
-
65
- def translate_frame(sequence):
66
- translate = ''.join([gencode.get(sequence[3 * i:3 * i + 3], 'X') for i in range(len(sequence) // 3)])
67
- return translate
68
-
69
-
70
-
71
-
72
- def is_tool_installed(tool_name):
73
- """Check if a tool is installed and available in PATH."""
74
- # Check if the tool is in the system PATH
75
- if shutil.which(tool_name) is None:
76
- return False
77
-
78
- # Try running the tool to ensure it's executable
79
- try:
80
- subprocess.run([tool_name, '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
81
- return True
82
- except subprocess.CalledProcessError:
83
- return True # The tool is installed and ran, even if it returns an error code
84
- except FileNotFoundError:
85
- return False # This shouldn't happen due to the earlier check
86
-
87
- def reverse_complement(seq):
88
- complement = {'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G', 'N': 'N'}
89
- return ''.join(complement[base] for base in reversed(seq))
90
-
91
-
92
- def fix_path(path):
93
- fixed_path = os.path.normpath(path)
94
- fixed_path = os.path.realpath(fixed_path)
95
- return fixed_path
96
-
97
-
98
- def extract_identity(clustered_info):
99
- # Use regex to capture percentage, including optional '-' or '+' before it
100
- match = re.search(r'at [+-/]*(\d+\.\d+)%', clustered_info)
101
-
102
- if match:
103
- percent_identity = float(match.group(1)) # Extract the percentage value
104
- return percent_identity
105
- else:
106
- raise ValueError("Percent identity not found in the string.")
107
-
108
-
109
- def wrap_sequence(sequence, width=60):
110
- wrapped_sequence = []
111
- for i in range(0, len(sequence), width):
112
- wrapped_sequence.append(sequence[i:i + width])
113
- return "\n".join(wrapped_sequence)
114
-
115
-
116
- def read_fasta(fasta_file):
117
- sequences = {}
118
- current_sequence = None
119
- with open(fasta_file, 'r') as file:
120
- for line in file:
121
- line = line.strip()
122
- if not line:
123
- continue # Skip empty lines
124
- if line.startswith('>'):
125
- current_sequence = line[1:] # Remove '>' character
126
- sequences[current_sequence] = ''
127
- else:
128
- sequences[current_sequence] += line
129
- return sequences
130
-
131
-
132
- def reorder_dict_by_keys(original_dict, sorted_keys):
133
- return {k: original_dict[k] for k in sorted_keys}
134
- def custom_sort_key(k, dict1, dict2):
135
- return (len(dict1[k]), len(dict2[k]))
136
-
137
- def sort_keys_by_values(dict1, dict2):
138
- sorted_keys = sorted(dict1.keys(), key=lambda k: custom_sort_key(k, dict1, dict2), reverse=True)
139
- return sorted_keys
140
-
141
- def select_longest_gene(sequences):
142
- """Select the longest sequence for each genome."""
143
- longest_sequences = {}
144
- for seq_id, sequence in sequences.items():
145
- genome = seq_id.split('|')[0] # Assuming genome name can be derived from the sequence ID
146
- if genome not in longest_sequences or len(sequence) > len(longest_sequences[genome][1]):
147
- longest_sequences[genome] = (seq_id, sequence)
148
- return longest_sequences
149
-
150
-
151
- def run_mafft_on_sequences(options, sequences, output_file):
152
- #print("Conducting MAFFT alignment.")
153
- """Run mafft on the given sequences and write to output file."""
154
- # Create a temporary input file for mafft
155
- with NamedTemporaryFile('w', delete=False) as temp_input_file:
156
- for header, sequence in sequences.items():
157
- temp_input_file.write(f">{header}\n{sequence}\n")
158
- temp_input_file_path = temp_input_file.name
159
-
160
- # Run mafft
161
- try:
162
- with open(output_file, 'w') as output_f:
163
- if options.verbose == True:
164
- subprocess.run(
165
- ['mafft', '--auto', '--thread', str(options.threads), temp_input_file_path],
166
- stdout=output_f,
167
- stderr=sys.stderr,
168
- check=True
169
- )
170
-
171
- else:
172
- subprocess.run(
173
- ['mafft', '--auto', '--thread', str(options.threads), temp_input_file_path],
174
- stdout=output_f,
175
- stderr=subprocess.DEVNULL, # Suppress stderr
176
- check=True
177
- )
178
- finally:
179
- os.remove(temp_input_file_path) # Clean up the temporary file
180
-
181
-
182
-
183
-
184
- def read_separate_files(input_dir, name_split, gene_ident, combined_out, translate):
185
- with open(combined_out, 'w') as combined_out_file:
186
- for gff_file in glob.glob(os.path.join(input_dir, '*' + name_split)):
187
- genome_name = os.path.basename(gff_file).split(name_split)[0]
188
- corresponding_fasta_file = os.path.splitext(gff_file)[0] + '.fa'
189
- if not os.path.exists(corresponding_fasta_file):
190
- continue
191
-
192
- gff_features = []
193
- with open(gff_file, 'r') as file:
194
- seen_seq_ids = collections.defaultdict(int)
195
- lines = file.readlines()
196
- for line in lines:
197
- line_data = line.split('\t')
198
- if len(line_data) == 9:
199
- if any(gene_type in line_data[2] for gene_type in gene_ident):
200
- contig = line_data[0]
201
- feature = line_data[2]
202
- strand = line_data[6]
203
- start, end = int(line_data[3]), int(line_data[4])
204
- if seq_id in seen_seq_ids:
205
- seq_id += '_' + str(seen_seq_ids[seq_id])
206
- seen_seq_ids[seq_id] + 1
207
- else:
208
- seen_seq_ids[seq_id] = 1
209
- seq_id = line_data[8].split('ID=')[1].split(';')[0]
210
- gff_features.append((contig, start, end, strand, feature, seq_id))
211
- fasta_dict = collections.defaultdict(str)
212
- with open(corresponding_fasta_file, 'r') as file:
213
- lines = file.readlines()
214
- for line in lines:
215
- if line.startswith('>'):
216
- current_contig = line[1:].split()[0]
217
- fasta_dict[current_contig] = ['', '']
218
- else:
219
- fasta_dict[current_contig][0] += line.strip()
220
-
221
- for contig, fasta in fasta_dict.items():
222
- reverse_sequence = reverse_complement(fasta[0])
223
- fasta_dict[contig][1] = reverse_sequence
224
-
225
- if fasta_dict and gff_features:
226
- for contig, start, end, strand, feature, seq_id in gff_features:
227
- if contig in fasta_dict:
228
- if strand == '+':
229
- full_sequence = fasta_dict[contig][0]
230
- cds_sequence = full_sequence[start - 1:end]
231
- elif strand == '-':
232
- corrected_start = max(len(fasta_dict[contig][0]) - int(end), 1)
233
- corrected_stop = max(len(fasta_dict[contig][0]) - int(start - 1), 1)
234
- full_sequence = fasta_dict[contig][1]
235
- cds_sequence = full_sequence[corrected_start:corrected_stop]
236
- if translate == True:
237
- cds_sequence = translate_frame(cds_sequence)
238
- wrapped_sequence = '\n'.join([cds_sequence[i:i + 60] for i in range(0, len(cds_sequence), 60)])
239
- combined_out_file.write(f">{genome_name}|{seq_id}\n{wrapped_sequence}\n")
240
-
241
-
242
- def read_combined_files(input_dir, name_split, gene_ident, combined_out, translate):
243
- with open(combined_out, 'w') as combined_out_file:
244
- for gff_file in glob.glob(os.path.join(input_dir, '*' + name_split)):
245
- genome_name = os.path.basename(gff_file).split(name_split)[0]
246
- fasta_dict = collections.defaultdict(str)
247
- gff_features = []
248
- with open(gff_file, 'r') as file:
249
- seen_seq_ids = collections.defaultdict(int)
250
- lines = file.readlines()
251
- fasta_section = False
252
- for line in lines:
253
- if line.startswith('##FASTA'):
254
- fasta_section = True
255
- continue
256
- if fasta_section:
257
- if line.startswith('>'):
258
- current_contig = line[1:].split()[0]
259
- fasta_dict[current_contig] = ['','']
260
- else:
261
- fasta_dict[current_contig][0] +=line.strip()
262
- else:
263
- line_data = line.split('\t')
264
- if len(line_data) == 9:
265
- if any(gene_type in line_data[2] for gene_type in gene_ident):
266
- contig = line_data[0]
267
- feature = line_data[2]
268
- strand = line_data[6]
269
- start, end = int(line_data[3]), int(line_data[4])
270
- seq_id = line_data[8].split('ID=')[1].split(';')[0]
271
- if seq_id in seen_seq_ids:
272
- seq_id += '_' + str(seen_seq_ids[seq_id])
273
- seen_seq_ids[seq_id] + 1
274
- else:
275
- seen_seq_ids[seq_id] = 1
276
- gff_features.append((contig, start, end, strand, feature, seq_id))
277
-
278
- for contig, fasta in fasta_dict.items():
279
- reverse_sequence = reverse_complement(fasta[0])
280
- fasta_dict[contig][1]=reverse_sequence
281
-
282
- if fasta_dict and gff_features:
283
- for contig, start, end, strand, feature, seq_id in gff_features:
284
- if contig in fasta_dict:
285
- if strand == '+':
286
- full_sequence = fasta_dict[contig][0]
287
- cds_sequence = full_sequence[start - 1:end]
288
- elif strand == '-':
289
- corrected_start = max(len(fasta_dict[contig][0]) - int(end), 1)
290
- corrected_stop = max(len(fasta_dict[contig][0]) - int(start - 1), 1)
291
- full_sequence = fasta_dict[contig][1]
292
- cds_sequence = full_sequence[corrected_start:corrected_stop]
293
-
294
- if translate == True:
295
- cds_sequence = translate_frame(cds_sequence)
296
- wrapped_sequence = '\n'.join([cds_sequence[i:i + 60] for i in range(0, len(cds_sequence), 60)])
297
- combined_out_file.write(f">{genome_name}|{seq_id}\n{wrapped_sequence}\n")
298
-
299
-
300
- def read_fasta_files(input_dir, name_split, combined_out, translate):
301
- with open(combined_out, 'w') as combined_out_file:
302
- for fasta_file in glob.glob(os.path.join(input_dir, '*' + name_split)):
303
- genome_name = os.path.basename(fasta_file).split(name_split)[0]
304
- fasta_dict = collections.defaultdict(str)
305
- with open(fasta_file, 'r') as file:
306
- lines = file.readlines()
307
- for line in lines:
308
- if line.startswith('>'):
309
- current_seq = line[1:].split()[0]
310
- fasta_dict[current_seq] = ''
311
- else:
312
- fasta_dict[current_seq] +=line.strip()
313
- for id, seq in fasta_dict.items():
314
- if translate == True:
315
- seq = translate_frame(seq)
316
- wrapped_sequence = '\n'.join([seq[i:i + 60] for i in range(0, len(seq), 60)])
317
- combined_out_file.write(f">{genome_name}|{id}\n{wrapped_sequence}\n")
318
-
319
-
320
- def write_groups(options, output_dir, key_order, cores, sequences,
321
- pangenome_clusters_First_sequences_sorted, combined_pangenome_clusters_Second_sequences):
322
- """
323
- Writes individual FASTA files and a combined FASTA file for all sequences.
324
-
325
- Parameters:
326
- - options: Command-line options.
327
- - output_dir: Directory where output FASTA files will be saved.
328
- - key_order: The order in which to process keys.
329
- - cores: Dictionary of core genes.
330
- - sequences: Dictionary mapping headers to sequences.
331
- - pangenome_clusters_First_sequences_sorted: Dictionary of first sequence clusters.
332
- - combined_pangenome_clusters_Second_sequences: Dictionary of second sequence clusters.
333
- """
334
- # Create output directory if it doesn't exist
335
- if not os.path.exists(output_dir):
336
- os.makedirs(output_dir)
337
-
338
- combined_fasta_filename = os.path.join(output_dir, "combined_group_sequences.fasta")
339
-
340
- # Open combined FASTA file for writing all sequences
341
- with open(combined_fasta_filename, 'w') as combined_fasta:
342
- for key_prefix in key_order:
343
- for key, values in cores.items():
344
- if any(part in options.write_groups.split(',') for part in key.split('_')):
345
- if key.startswith(key_prefix):
346
- for value in values:
347
- output_filename = f"{key}_{value}.fasta"
348
- if 'First' in key_prefix:
349
- sequences_to_write = pangenome_clusters_First_sequences_sorted[value]
350
- else:
351
- sequences_to_write = combined_pangenome_clusters_Second_sequences[value]
352
-
353
- # Write individual FASTA file
354
- with open(os.path.join(output_dir, output_filename), 'w') as outfile:
355
- for header in sequences_to_write:
356
- if header in sequences:
357
- sequence = sequences[header]
358
- outfile.write(f">{header}\n")
359
- wrapped_sequence = wrap_sequence(sequence)
360
- outfile.write(f"{wrapped_sequence}\n")
361
-
362
- # Also write to the combined FASTA file
363
- combined_fasta.write(f">Group_{value}|{header}\n")
364
- combined_fasta.write(f"{wrapped_sequence}\n")
365
- else:
366
- if options.verbose:
367
- print(f"Sequence {header} not found in original_fasta file.")
368
-
369
- print(f"Combined FASTA file saved to: {combined_fasta_filename}")
370
-
371
-
372
- def process_gene_families(options, directory, output_file):
373
- """Process each gene family file to select the longest sequence per genome and concatenate aligned sequences."""
374
- concatenated_sequences = {}
375
- output_file = directory.replace('Gene_Families_Output',output_file)
376
-
377
- # Iterate over each gene family file
378
- for gene_file in os.listdir(directory):
379
- if gene_file.endswith('.fasta') and not gene_file.endswith('combined_group_sequences.fasta'):
380
- gene_path = os.path.join(directory, gene_file)
381
-
382
- # Read sequences from the gene family file
383
- sequences = read_fasta(gene_path)
384
-
385
- # Select the longest sequence for each genome
386
- longest_sequences = select_longest_gene(sequences)
387
-
388
- # Run mafft on the longest sequences
389
- aligned_file = f"{directory}/{gene_file}_aligned.fasta.tmp"
390
- run_mafft_on_sequences(options, {seq_id: seq for seq_id, seq in longest_sequences.values()}, aligned_file)
391
-
392
- # Read aligned sequences and concatenate them
393
- aligned_sequences = read_fasta(aligned_file)
394
- for genome, aligned_seq in aligned_sequences.items():
395
- genome_name = genome.split('|')[0]
396
- if genome_name not in concatenated_sequences:
397
- concatenated_sequences[genome_name] = ""
398
- concatenated_sequences[genome_name] += aligned_seq
399
-
400
- # Clean up aligned file
401
- os.remove(aligned_file)
402
-
403
- # Write the concatenated sequences to the output file
404
- with open(output_file, 'w') as out:
405
- for genome, sequence in concatenated_sequences.items():
406
- out.write(f">{genome}\n")
407
- wrapped_sequence = wrap_sequence(sequence, 60)
408
- out.write(f"{wrapped_sequence}\n")