PyamilySeq 0.5.2__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,67 +1,21 @@
1
1
  #from line_profiler_pycharm import profile
2
2
 
3
- from collections import OrderedDict,defaultdict
4
3
  import copy
5
- import math
6
4
  import sys
7
- from tempfile import NamedTemporaryFile
8
-
5
+ import math
6
+ from collections import Counter
9
7
 
10
8
 
11
9
  try:
12
10
  from .Constants import *
11
+ from .clusterings import *
13
12
  from .utils import *
14
13
  except (ModuleNotFoundError, ImportError, NameError, TypeError) as error:
15
14
  from Constants import *
15
+ from clusterings import *
16
16
  from utils import *
17
17
 
18
18
 
19
- def custom_sort_key(k, dict1, dict2):
20
- return (len(dict1[k]), len(dict2[k]))
21
-
22
- def sort_keys_by_values(dict1, dict2):
23
- sorted_keys = sorted(dict1.keys(), key=lambda k: custom_sort_key(k, dict1, dict2), reverse=True)
24
- return sorted_keys
25
-
26
- def select_longest_gene(sequences):
27
- """Select the longest sequence for each genome."""
28
- longest_sequences = {}
29
- for seq_id, sequence in sequences.items():
30
- genome = seq_id.split('|')[0] # Assuming genome name can be derived from the sequence ID
31
- if genome not in longest_sequences or len(sequence) > len(longest_sequences[genome][1]):
32
- longest_sequences[genome] = (seq_id, sequence)
33
- return longest_sequences
34
-
35
-
36
- def run_mafft_on_sequences(options, sequences, output_file):
37
- print("Conducting MAFFT alignment.")
38
- """Run mafft on the given sequences and write to output file."""
39
- # Create a temporary input file for mafft
40
- with NamedTemporaryFile('w', delete=False) as temp_input_file:
41
- for header, sequence in sequences.items():
42
- temp_input_file.write(f">{header}\n{sequence}\n")
43
- temp_input_file_path = temp_input_file.name
44
-
45
- # Run mafft
46
- try:
47
- with open(output_file, 'w') as output_f:
48
- if options.verbose == True:
49
- subprocess.run(
50
- ['mafft', '--auto', temp_input_file_path],
51
- stdout=output_f,
52
- stderr=sys.stderr,
53
- check=True
54
- )
55
- else:
56
- subprocess.run(
57
- ['mafft', '--auto', temp_input_file_path],
58
- stdout=output_f,
59
- stderr=subprocess.DEVNULL, # Suppress stderr
60
- check=True
61
- )
62
- finally:
63
- os.remove(temp_input_file_path) # Clean up the temporary file
64
-
65
19
 
66
20
  def process_gene_families(options, directory, output_file):
67
21
  """Process each gene family file to select the longest sequence per genome and concatenate aligned sequences."""
@@ -101,27 +55,32 @@ def process_gene_families(options, directory, output_file):
101
55
  wrapped_sequence = wrap_sequence(sequence, 60)
102
56
  out.write(f"{wrapped_sequence}\n")
103
57
 
104
- def gene_presence_absence_output(options, genome_dict, pangenome_clusters_First_sorted, pangenome_clusters_First_sequences_sorted):
58
+ def gene_presence_absence_output(options, genus_dict, pangenome_clusters_First_sorted, pangenome_clusters_First_sequences_sorted):
105
59
  print("Outputting gene_presence_absence file")
106
- in_name = options.clusters.split('.')[0]
107
- gpa_outfile = open(in_name+'_gene_presence_absence.csv','w')
60
+ output_dir = os.path.abspath(options.output_dir)
61
+ in_name = options.clusters.split('.')[0].split('/')[-1]
62
+ gpa_outfile = os.path.join(output_dir, in_name)
63
+ gpa_outfile = open(gpa_outfile+'_gene_presence_absence.csv','w')
108
64
  gpa_outfile.write('"Gene","Non-unique Gene name","Annotation","No. isolates","No. sequences","Avg sequences per isolate","Genome Fragment","Order within Fragment","'
109
65
  '"Accessory Fragment","Accessory Order with Fragment","QC","Min group size nuc","Max group size nuc","Avg group size nuc","')
110
- gpa_outfile.write('","'.join(genome_dict.keys()))
66
+ gpa_outfile.write('","'.join(genus_dict.keys()))
111
67
  gpa_outfile.write('"\n')
112
68
  for cluster, sequences in pangenome_clusters_First_sequences_sorted.items():
113
69
  average_sequences_per_genome = len(sequences) / len(pangenome_clusters_First_sorted[cluster])
114
70
  gpa_outfile.write('"group_'+str(cluster)+'","","'+str(len(pangenome_clusters_First_sorted[cluster]))+'","'+str(len(sequences))+'","'+str(average_sequences_per_genome)+
115
71
  '","","","","","","","","",""')
116
72
 
117
- full_out = ''
118
- for genome in genome_dict.keys():
73
+
74
+ for genus in genus_dict.keys():
75
+ full_out = ''
119
76
  tmp_list = []
120
77
  for value in sequences:
121
- if value.split('|')[0] == genome:
78
+ if value.split('_')[0] == genus:
122
79
  tmp_list.append(value)
123
80
  if tmp_list:
124
81
  full_out += ',"'+''.join(tmp_list)+'"'
82
+ else:
83
+ full_out = ',""'
125
84
  gpa_outfile.write(full_out)
126
85
  gpa_outfile.write('\n')
127
86
 
@@ -138,446 +97,86 @@ def gene_presence_absence_output(options, genome_dict, pangenome_clusters_First_
138
97
  # edge_list_outfile.write(line + '\n')
139
98
 
140
99
 
141
- def wrap_sequence(sequence, width=60):
142
- wrapped_sequence = []
143
- for i in range(0, len(sequence), width):
144
- wrapped_sequence.append(sequence[i:i + width])
145
- return "\n".join(wrapped_sequence)
146
-
147
-
148
- def read_fasta(fasta_file):
149
- sequences = {}
150
- current_sequence = None
151
- with open(fasta_file, 'r') as file:
152
- for line in file:
153
- line = line.strip()
154
- if not line:
155
- continue # Skip empty lines
156
- if line.startswith('>'):
157
- current_sequence = line[1:] # Remove '>' character
158
- sequences[current_sequence] = ''
159
- else:
160
- sequences[current_sequence] += line
161
- return sequences
162
-
163
100
 
164
- def reorder_dict_by_keys(original_dict, sorted_keys):
165
- return {k: original_dict[k] for k in sorted_keys}
166
101
 
167
- def get_cores(options,genome_dict):
102
+ def get_cores(options,genus_dict):
168
103
  ##Calculate core groups
169
104
  groups = OrderedDict()
170
105
  cores = OrderedDict()
171
- prev_top = len(genome_dict)
172
- first = True
173
106
  for group in options.core_groups.split(','):
174
- calculated_floor = math.floor(int(group) / 100 * len(genome_dict))
175
- if first == False:
176
- # Ensure no overlap
177
- # if calculated_floor <= prev_top:
178
- # calculated_floor = prev_top - 1
179
-
180
- groups[group] = (calculated_floor,prev_top)
181
- else:
182
- groups[group] = (calculated_floor, prev_top)
183
- first = False
184
- prev_top = calculated_floor
185
- first_core_group = 'first_core_' + group
107
+ first_core_group = 'First_genera_' + group
186
108
  cores[first_core_group] = []
187
109
  if options.reclustered != None:
188
- extended_core_group = 'extended_core_' + group
110
+ extended_core_group = 'extended_genera_' + group
189
111
  cores[extended_core_group] = []
190
- combined_core_group = 'combined_core_' + group
112
+ combined_core_group = 'combined_genera_' + group
191
113
  cores[combined_core_group] = []
192
- second_core_group = 'second_core_' + group
114
+ second_core_group = 'Second_genera_' + group
193
115
  cores[second_core_group] = []
194
- only_second_core_group = 'only_second_core_' + group
116
+ only_second_core_group = 'only_Second_genera_' + group
195
117
  cores[only_second_core_group] = []
196
118
  return cores, groups
197
119
 
198
- #@profile
199
- def calc_First_only_core(cluster, pep_num, groups, cores):
200
- groups_as_list = list(groups.values())
201
- for idx in (idx for idx, (sec, fir) in enumerate(groups_as_list) if sec <= pep_num <= fir):
202
- res = idx
203
- family_group = list(groups)[res]
204
- cores['first_core_'+family_group].append(cluster)
205
120
 
206
121
  #@profile
207
- def calc_single_First_extended_Second_only_core(pep_num, groups, cores, second_num): # Count gene families extended with StORFs
208
- groups_as_list = list(groups.values())
209
- for idx in (idx for idx, (sec, fir) in enumerate(groups_as_list) if sec <= pep_num+second_num <= fir):
210
- res = idx
211
- family_group = list(groups)[res]
212
- cores['extended_core_' + family_group].append(pep_num)
213
-
214
-
215
- #@profile
216
- def calc_multi_First_extended_Second_only_core(pep_num, groups, cores, second_num): # Count seperately those gene families extended with StORF_Reporter but combined >1 PEP
217
- groups_as_list = list(groups.values())
218
- for idx in (idx for idx, (sec, fir) in enumerate(groups_as_list) if sec <= pep_num+second_num <= fir):
219
- res = idx
220
- family_group = list(groups)[res]
221
- cores['combined_core_' + family_group] += 1
222
-
223
-
122
+ def calc_First_only_core(cluster, First_number, cores):
123
+ try:
124
+ cores['First_genera_'+str(First_number)].append(cluster)
125
+ except KeyError:
126
+ cores['First_genera_>'].append(cluster)
224
127
  #@profile
225
- def calc_Second_only_core(groups, cores, second_num):
226
- groups_as_list = list(groups.values())
227
- for idx in (idx for idx, (sec, fir) in enumerate(groups_as_list) if sec <= second_num <= fir):
228
- res = idx
229
- family_group = list(groups)[res]
230
- cores['second_core_' + family_group] += 1
231
-
128
+ def calc_single_First_extended_Second_only_core(cluster, First_num, cores, Second_num): # Count gene families extended with StORFs
129
+ group = First_num + Second_num
130
+ try:
131
+ cores['extended_genera_' + group].append(cluster)
132
+ except KeyError:
133
+ cores['extended_genera_>'].append(cluster)
232
134
  #@profile
233
- def calc_only_Second_only_core(groups, cores, second_num): # only count the true storf onlies
234
- groups_as_list = list(groups.values())
235
- for idx in (idx for idx, (sec, fir) in enumerate(groups_as_list) if sec <= second_num <= fir):
236
- res = idx
237
- family_group = list(groups)[res]
238
- cores['only_second_core_' + family_group] += 1
239
-
240
-
241
-
242
-
243
-
135
+ def calc_multi_First_extended_Second_only_core(cluster, First_num, cores, Second_num): # Count seperately those gene families extended with StORF_Reporter but combined >1 PEP
136
+ group = First_num + Second_num
137
+ try:
138
+ cores['combined_genera_' + group].append(cluster)
139
+ except KeyError:
140
+ cores['combined_genera_>' + group].append(cluster)
244
141
  #@profile
245
- def combined_clustering_counting(options, pangenome_clusters_First, reps, combined_pangenome_clusters_First_Second_clustered):
246
- num_clustered_First = defaultdict(list)
247
- pangenome_clusters_Type = copy.deepcopy(pangenome_clusters_First)
248
- list_of_reps = list(reps.keys())
249
- for cluster, pep_genomes in pangenome_clusters_First.items():
250
- rep = list_of_reps[int(cluster)] # get the rep of the current pep cluster
251
- Com_PEP_Genomes = 0
252
- Seconds = 0
253
- seen_Seconds = []
254
- added_Second_genomes = 0
255
- try: # get the cluster from the storf clusters which contains this rep
256
- clustered_combined = combined_pangenome_clusters_First_Second_clustered[rep] # Not true clusters - I put a PEP as key myself
257
- seen_clust_Genomes = []
258
- num_clustered_First[cluster].append(rep + '_' + str(len(pep_genomes)))
259
- for clust in clustered_combined:
260
- if options.sequence_tag not in clust: # Not good enough at the moment
261
- clust_Genome = clust.split('|')[0]
262
- if clust_Genome not in seen_clust_Genomes:
263
- seen_clust_Genomes.append(clust_Genome)
264
- if clust_Genome not in pep_genomes:
265
- Com_PEP_Genomes += 1
266
- num_clustered_First[cluster].append(clust + '_' + str(reps[clust][1]))
267
- elif options.sequence_tag in clust:
268
- Seconds += 1
269
- clust_Genome = clust.split('|')[0]
270
- if clust_Genome not in seen_Seconds:
271
- seen_Seconds.append(clust_Genome)
272
- if clust_Genome not in seen_clust_Genomes:
273
- seen_clust_Genomes.append(clust_Genome)
274
- if clust_Genome not in pep_genomes:
275
- added_Second_genomes += 1
276
- else:
277
- sys.exit("Error: looking for sequence_tag")
278
-
279
- size_of_pep_clusters = []
280
- peps = num_clustered_First[cluster]
281
- for pep in peps:
282
- pep = pep.rsplit('_', 1)
283
- size_of_pep_clusters.append(int(pep[1]))
284
- pangenome_clusters_Type[cluster] = [len(num_clustered_First[cluster]), sum(size_of_pep_clusters),
285
- size_of_pep_clusters, added_Second_genomes, Seconds, len(seen_Seconds)]
286
-
287
- except KeyError:
288
- ###Singleton
289
- num_pep_genomes = [len(pep_genomes)]
290
- pangenome_clusters_Type[cluster] = [1, len(pep_genomes), num_pep_genomes, added_Second_genomes, Seconds,
291
- len(seen_Seconds)]
292
-
293
- return pangenome_clusters_Type
294
-
142
+ def calc_Second_only_core(cluster, cores, Second_num):
143
+ try:
144
+ cores['Second_genera_' + str(Second_num)].append(cluster)
145
+ except KeyError:
146
+ cores['Second_genera_>'].append(cluster)
295
147
  #@profile
296
- def single_clustering_counting(options, pangenome_clusters_First, reps):
297
- num_clustered_First = defaultdict(list)
298
- recorded_First = []
299
- pangenome_clusters_Type = copy.deepcopy(pangenome_clusters_First)
300
- list_of_reps = list(reps.keys())
301
- for cluster, First_genomes in pangenome_clusters_First.items():
302
- rep = list_of_reps[int(cluster)] # get the rep of the current pep cluster
303
-
304
- try: # get the cluster from the storf clusters which contains this rep
305
- num_clustered_First[cluster].append(rep + '_' + str(len(First_genomes)))
306
- size_of_First_clusters = []
307
- Firsts = num_clustered_First[cluster]
308
- for First in Firsts:
309
- First = First.rsplit('_', 1)
310
- size_of_First_clusters.append(int(First[1]))
311
- recorded_First.append(First[0])
312
- pangenome_clusters_Type[cluster] = [len(num_clustered_First[cluster]), sum(size_of_First_clusters),
313
- size_of_First_clusters, 0, 0, 0]
314
-
315
- except KeyError:
316
- ###Singleton
317
- num_pep_genomes = [len(First_genomes)]
318
- pangenome_clusters_Type[cluster] = [1, len(First_genomes), num_pep_genomes, 0, 0, 0]
319
-
320
- return pangenome_clusters_Type
321
-
148
+ def calc_only_Second_only_core(cluster, cores, Second_num): # only count the true storf onlies
149
+ try:
150
+ cores['only_Second_genera_' + str(Second_num)].append(cluster)
151
+ except:
152
+ cores['only_Second_genera_>'].append(cluster)
322
153
 
323
154
 
324
- #@profile
325
- def combined_clustering_CDHIT(options, genome_dict):
326
- unique_genomes = []
327
- Second_in = open(options.reclustered, 'r')
328
- combined_pangenome_clusters_First = OrderedDict()
329
- combined_pangenome_clusters_First_sequences = OrderedDict()
330
- combined_pangenome_clusters_Second = OrderedDict()
331
- combined_pangenome_clusters_Second_sequences = OrderedDict()
332
- combined_pangenome_clusters_First_Second_clustered = OrderedDict()
333
-
334
- not_Second_only_cluster_ids = []
335
- already_seen_PEP = []
336
- Combined_clusters = OrderedDict()
337
- Combined_reps = OrderedDict()
338
- first = True
339
- for line in Second_in:
340
- if line.startswith('>'):
341
- if first == False:
342
- cluster_size = len(Combined_clusters[cluster_id])
343
- Combined_reps.update({rep: cluster_size})
344
- for pep in combined_pangenome_clusters_First_sequences[cluster_id]:
345
- if pep != []:
346
- if pep in already_seen_PEP:
347
- continue
348
- else:
349
- already_seen_PEP.append(pep)
350
- if len(combined_pangenome_clusters_Second_sequences[cluster_id]) > 0 and len(combined_pangenome_clusters_First_sequences[cluster_id]) > 0:
351
- if len(combined_pangenome_clusters_First_sequences[cluster_id]) > 1: # If we have clustered >1 PEP family, we need to record 1 as key and all others are val
352
- all_but_first = combined_pangenome_clusters_First_sequences[cluster_id][1:]
353
- storfs_clustered = combined_pangenome_clusters_Second_sequences[cluster_id]
354
- VALUE = all_but_first + storfs_clustered
355
- else:
356
- VALUE = combined_pangenome_clusters_Second_sequences[cluster_id]
357
- KEY = combined_pangenome_clusters_First_sequences[cluster_id][0]
358
- combined_pangenome_clusters_First_Second_clustered.update({KEY: VALUE})
359
- cluster_id = line.strip('>')
360
- cluster_id = cluster_id.strip('\n')
361
- cluster_id = cluster_id.split(' ')[1]
362
- Combined_clusters.update({cluster_id: []})
363
- combined_pangenome_clusters_First.update({cluster_id: []})
364
- combined_pangenome_clusters_First_sequences.update({cluster_id: []})
365
- combined_pangenome_clusters_Second.update({cluster_id: []})
366
- combined_pangenome_clusters_Second_sequences.update({cluster_id: []})
367
-
368
- first = False
369
- else:
370
- clustered = line.split('\t')[1]
371
- clustered = clustered.split('>')[1]
372
- clustered = clustered.split('...')[0]
373
- genome = clustered.split('|')[0]
374
- genome_dict[genome] += 1
375
- if '*' in line:
376
- rep = clustered
377
- Combined_reps.update({rep: 0})
378
- if first == False:
379
- Combined_clusters[cluster_id].append(clustered)
380
- clustered_genome = clustered.split('|')[0]
381
- if options.sequence_tag in line:
382
- if clustered_genome not in combined_pangenome_clusters_Second[cluster_id]:
383
- combined_pangenome_clusters_Second[cluster_id].append(clustered_genome)
384
- combined_pangenome_clusters_Second_sequences[cluster_id].append(clustered)
385
- else:
386
- if cluster_id not in not_Second_only_cluster_ids:
387
- not_Second_only_cluster_ids.append(cluster_id) # Tell us which StORF_Reporter clustered are unmatched to a PEP
388
- if clustered_genome not in combined_pangenome_clusters_First[cluster_id]:
389
- combined_pangenome_clusters_First[cluster_id].append(clustered_genome)
390
- combined_pangenome_clusters_First_sequences[cluster_id].append(clustered)
391
-
392
-
393
- return combined_pangenome_clusters_First_Second_clustered,not_Second_only_cluster_ids, combined_pangenome_clusters_Second, unique_genomes
394
-
395
- def combined_clustering_Edge_List(options, genome_dict):
396
- if options.cluster_format == 'TSV':
397
- separator = '\t'
398
- elif options.cluster_format == 'CSV':
399
- separator = ','
400
- unique_genomes = []
401
- cluster_id = 0
402
- last_rep = ''
403
- Second_in = open(options.reclustered, 'r')
404
- combined_pangenome_clusters_First = OrderedDict()
405
- combined_pangenome_clusters_First_sequences = OrderedDict()
406
- combined_pangenome_clusters_Second = OrderedDict()
407
- combined_pangenome_clusters_Second_sequences = OrderedDict()
408
- combined_pangenome_clusters_First_Second_clustered = OrderedDict()
409
-
410
- not_Second_only_cluster_ids = []
411
- already_seen_PEP = []
412
- Combined_clusters = OrderedDict()
413
- Combined_reps = OrderedDict()
414
- first = True
415
- for line in Second_in:
416
- rep, child = line.strip().split(separator)
417
- child_genome = child.split('|')[0] # Extracting the genome identifier from the child sequence
418
-
419
- if first == True:
420
- Combined_clusters.update({cluster_id: []})
421
- combined_pangenome_clusters_First.update({cluster_id: []})
422
- combined_pangenome_clusters_First_sequences.update({cluster_id: []})
423
- combined_pangenome_clusters_Second.update({cluster_id: []})
424
- combined_pangenome_clusters_Second_sequences.update({cluster_id: []})
425
- Combined_reps.update({rep: 0})
426
- first = False
427
-
428
- if first == False:
429
- if rep != last_rep and last_rep != '':
430
- cluster_size = len(Combined_clusters[cluster_id])
431
- Combined_reps.update({rep: cluster_size})
432
- for pep in combined_pangenome_clusters_First_sequences[cluster_id]:
433
- if pep != []:
434
- if pep in already_seen_PEP:
435
- continue
436
- else:
437
- already_seen_PEP.append(pep)
438
- if len(combined_pangenome_clusters_Second_sequences[cluster_id]) > 0 and len(combined_pangenome_clusters_First_sequences[cluster_id]) > 0:
439
- if len(combined_pangenome_clusters_First_sequences[cluster_id]) > 1: # If we have clustered >1 PEP family, we need to record 1 as key and all others are val
440
- all_but_first = combined_pangenome_clusters_First_sequences[cluster_id][1:]
441
- storfs_clustered = combined_pangenome_clusters_Second_sequences[cluster_id]
442
- VALUE = all_but_first + storfs_clustered
443
- else:
444
- VALUE = combined_pangenome_clusters_Second_sequences[cluster_id]
445
- KEY = combined_pangenome_clusters_First_sequences[cluster_id][0]
446
- combined_pangenome_clusters_First_Second_clustered.update({KEY: VALUE})
447
-
448
- cluster_id += 1
449
- Combined_clusters.update({cluster_id: []})
450
- combined_pangenome_clusters_First.update({cluster_id: []})
451
- combined_pangenome_clusters_First_sequences.update({cluster_id: []})
452
- combined_pangenome_clusters_Second.update({cluster_id: []})
453
- combined_pangenome_clusters_Second_sequences.update({cluster_id: []})
454
- Combined_reps.update({rep: 0})
455
-
456
-
457
- Combined_clusters[cluster_id].append(child)
458
- if options.sequence_tag in line:
459
- if child_genome not in combined_pangenome_clusters_Second[cluster_id]:
460
- combined_pangenome_clusters_Second[cluster_id].append(child_genome)
461
- combined_pangenome_clusters_Second_sequences[cluster_id].append(child)
462
- else:
463
- if cluster_id not in not_Second_only_cluster_ids:
464
- not_Second_only_cluster_ids.append(cluster_id) # Tell us which StORF_Reporter clustered are unmatched to a PEP
465
- if child_genome not in combined_pangenome_clusters_First[cluster_id]:
466
- combined_pangenome_clusters_First[cluster_id].append(child_genome)
467
- combined_pangenome_clusters_First_sequences[cluster_id].append(child)
468
-
469
- last_rep = rep
470
-
471
- return combined_pangenome_clusters_First_Second_clustered,not_Second_only_cluster_ids, combined_pangenome_clusters_Second, unique_genomes
472
-
473
-
474
- def cluster_EdgeList(options):
475
- if options.cluster_format == 'TSV':
476
- separator = '\t'
477
- elif options.cluster_format == 'CSV':
478
- separator = ','
479
- cluster_id = 0
480
- last_rep = ''
481
- first = True
482
- First_in = open(options.clusters, 'r')
483
- pangenome_clusters_First = OrderedDict()
484
- pangenome_clusters_First_sequences = OrderedDict()
485
- genome_dict = defaultdict(int)
486
- reps = OrderedDict()
487
- for line in First_in:
488
- rep, child = line.strip().split(separator)
489
- child_genome = child.split('|')[0] # Extracting the genome identifier from the child sequence
490
- # Counting occurrences of genomes
491
- genome_dict[child_genome] += 1
492
- if first == True:
493
- pangenome_clusters_First[0] = []
494
- pangenome_clusters_First_sequences[0] = []
495
- first = False
496
-
497
- if rep != last_rep and last_rep != '':
498
- cluster_id +=1
499
- pangenome_clusters_First[cluster_id] = []
500
- pangenome_clusters_First_sequences[cluster_id] = []
501
- cluster_size = len(pangenome_clusters_First_sequences[cluster_id-1])
502
- reps.update({last_rep: [cluster_size, len(pangenome_clusters_First[cluster_id-1])]})
503
- pangenome_clusters_First[cluster_id] = []
504
- pangenome_clusters_First_sequences[cluster_id] = []
505
- if child_genome not in pangenome_clusters_First[cluster_id]:
506
- pangenome_clusters_First[cluster_id].append(child_genome)
507
-
508
- pangenome_clusters_First_sequences[cluster_id].append(child)
509
- last_rep = rep
510
- cluster_size = len(pangenome_clusters_First_sequences[cluster_id])
511
- reps.update({rep: [cluster_size, len(pangenome_clusters_First[cluster_id])]})
512
-
513
-
514
- return genome_dict, pangenome_clusters_First, pangenome_clusters_First_sequences, reps
515
-
516
-
517
-
518
- def cluster_CDHIT(options):
519
- First_in = open(options.clusters, 'r')
520
- clusters = OrderedDict()
521
- pangenome_clusters_First = OrderedDict()
522
- pangenome_clusters_First_sequences = OrderedDict()
523
- first = True
524
- genome_dict = defaultdict(int)
525
- reps = OrderedDict()
526
- ## Load in all data for easier reuse later
527
- for line in First_in:
528
- if line.startswith('>'):
529
- if first == False:
530
- cluster_size = len(clusters[cluster_id])
531
- reps.update({rep: [cluster_size, len(pangenome_clusters_First[cluster_id])]})
532
- cluster_id = line.strip('>')
533
- cluster_id = cluster_id.strip('\n')
534
- cluster_id = cluster_id.split(' ')[1]
535
- clusters.update({cluster_id: []})
536
- pangenome_clusters_First.update({cluster_id: []})
537
- pangenome_clusters_First_sequences.update({cluster_id: []})
538
-
539
- first = False
540
- else:
541
- clustered = line.split('\t')[1]
542
- clustered = clustered.split('>')[1]
543
- clustered = clustered.split('...')[0]
544
- genome = clustered.split('|')[0]
545
- genome_dict[genome] += 1
546
- if '*' in line:
547
- rep = clustered
548
- reps.update({rep: [0, 0]})
549
- if first == False:
550
- clusters[cluster_id].append(clustered)
551
- clustered_genome = clustered.split('|')[0]
552
- if clustered_genome not in pangenome_clusters_First[cluster_id]:
553
- pangenome_clusters_First[cluster_id].append(clustered_genome)
554
- pangenome_clusters_First_sequences[cluster_id].append(clustered)
555
- return genome_dict, pangenome_clusters_First, pangenome_clusters_First_sequences, reps
556
155
 
557
156
  #@profile
558
157
  def cluster(options):
559
158
 
560
159
  if options.cluster_format == 'CD-HIT':
561
- genome_dict, pangenome_clusters_First, pangenome_clusters_First_sequences, reps = cluster_CDHIT(options)
160
+ genus_dict, pangenome_clusters_First, pangenome_clusters_First_sequences, reps = cluster_CDHIT(options, '_')
562
161
  elif options.cluster_format in ['TSV','CSV']:
563
- genome_dict, pangenome_clusters_First, pangenome_clusters_First_sequences, reps = cluster_EdgeList(options)
162
+ genus_dict, pangenome_clusters_First, pangenome_clusters_First_sequences, reps = cluster_EdgeList(options, '_')
163
+
564
164
 
565
- ######################################
566
- cores, groups = get_cores(options, genome_dict)
567
- ###
568
165
 
569
166
  if options.reclustered != None:
167
+
570
168
  if options.cluster_format == 'CD-HIT':
571
- combined_pangenome_clusters_First_Second_clustered,not_Second_only_cluster_ids,combined_pangenome_clusters_Second,\
572
- unique_genomes = combined_clustering_CDHIT(options, genome_dict)
573
- if options.cluster_format == 'TSV':
574
- combined_pangenome_clusters_First_Second_clustered,not_Second_only_cluster_ids,combined_pangenome_clusters_Second,\
575
- unique_genomes = combined_clustering_Edge_List(options, genome_dict)
576
- pangenome_clusters_Type = combined_clustering_counting(options, pangenome_clusters_First, reps, combined_pangenome_clusters_First_Second_clustered)
169
+ combined_pangenome_clusters_First_Second_clustered,not_Second_only_cluster_ids,combined_pangenome_clusters_Second = combined_clustering_CDHIT(options, genus_dict, '_')
170
+ if options.cluster_format == ['TSV','CSV']:
171
+ combined_pangenome_clusters_First_Second_clustered,not_Second_only_cluster_ids,combined_pangenome_clusters_Second = combined_clustering_Edge_List(options, '_')
172
+ pangenome_clusters_Type = combined_clustering_counting(options, pangenome_clusters_First, reps, combined_pangenome_clusters_First_Second_clustered, '_')
577
173
  else:
578
- pangenome_clusters_Type = single_clustering_counting(options, pangenome_clusters_First, reps)
579
174
 
175
+ pangenome_clusters_Type = single_clustering_counting(pangenome_clusters_First, reps)
580
176
 
177
+ ###
178
+ cores, groups = get_cores(options, genus_dict)
179
+ ###
581
180
 
582
181
  Number_Of_StORF_Extending_But_Same_Genomes = 0
583
182
 
@@ -589,21 +188,17 @@ def cluster(options):
589
188
  print("Calculating Groups")
590
189
  for cluster, numbers in pangenome_clusters_Type_sorted.items():
591
190
  ############################### Calculate First only
592
- #if numbers[0] == 1 and numbers[1] >=2:
593
- calc_First_only_core(cluster, numbers[1],groups,cores)
594
-
595
- # elif numbers[0] >1 and numbers[1] >=2:
596
- # calc_First_only_core(cluster, numbers[2][0],groups,cores)
597
-
191
+ calc_First_only_core(cluster, numbers[1], cores)
598
192
 
599
193
  if options.reclustered != None:
600
194
  ############################# Calculate First and Reclustered-Second
601
195
  if numbers[0] == 1 and numbers[3] >= 1: # If Seconds did not combine First reps
602
- calc_single_First_extended_Second_only_core(numbers[1], groups, cores, numbers[3])
196
+ calc_single_First_extended_Second_only_core(cluster, numbers[1], groups, cores, numbers[3])
603
197
  elif numbers[0] > 1 and numbers[3] >= 1: # If unique Secondss combined multiple Firsts
604
- calc_multi_First_extended_Second_only_core(numbers[1], groups, cores, numbers[3])
198
+ calc_multi_First_extended_Second_only_core(cluster, numbers[1], groups, cores, numbers[3])
605
199
  elif numbers[4] >= 1:
606
200
  Number_Of_StORF_Extending_But_Same_Genomes += 1
201
+
607
202
  combined_pangenome_clusters_ONLY_Second_Type = defaultdict(list)
608
203
  combined_pangenome_clusters_Second_Type = defaultdict(list)
609
204
  for cluster, genomes in combined_pangenome_clusters_Second.items():
@@ -612,26 +207,31 @@ def cluster(options):
612
207
  else:
613
208
  combined_pangenome_clusters_ONLY_Second_Type[cluster] = [cluster, len(genomes)]
614
209
  for cluster, data in combined_pangenome_clusters_Second_Type.items():
615
- calc_Second_only_core(groups, cores, data[1])
210
+ if data[1] >=1:
211
+ calc_Second_only_core(cluster, cores, data[1])
616
212
  for cluster, data in combined_pangenome_clusters_ONLY_Second_Type.items():
617
- if data[1] >= 2:
618
- calc_only_Second_only_core(groups, cores, data[1])
213
+ if data[1] >= 1 :
214
+ calc_only_Second_only_core(cluster, cores, data[1])
619
215
  ###########################
620
- key_order = ['first_core_', 'extended_core_', 'combined_core_', 'second_core_','only_second_core_']
621
- print("Gene Groups:")
622
- for key_prefix in key_order:
623
- for key, value in cores.items():
624
- if key.startswith(key_prefix):
625
- print(f"{key}: {len(value)}")
626
- print("Total Number of Gene Groups (Including Singletons): " + str(len(pangenome_clusters_First_sequences_sorted)))
216
+ ### Output
217
+ key_order = list(cores.keys())
218
+ output_path = os.path.abspath(options.output_dir)
219
+ stats_out = os.path.join(output_path,'summary_statistics.txt')
220
+ with open(stats_out,'w') as outfile:
221
+ print("Genus Groups:")
222
+ outfile.write("Genus Groups:\n")
223
+ for key in key_order:
224
+ print(key+':\t'+str(len(cores[key])))
225
+ outfile.write(key + ':\t' + str(len(cores[key]))+'\n')
226
+ print("Total Number of Gene Groups (Including Singletons): " + str(len(pangenome_clusters_First_sequences_sorted)))
227
+ outfile.write("Total Number of Gene Groups (Including Singletons): " + str(len(pangenome_clusters_First_sequences_sorted)))
627
228
 
628
229
  if options.gene_presence_absence_out != None:
629
- gene_presence_absence_output(options,genome_dict, pangenome_clusters_First_sorted, pangenome_clusters_First_sequences_sorted)
230
+ gene_presence_absence_output(options,genus_dict, pangenome_clusters_First_sorted, pangenome_clusters_First_sequences_sorted)
630
231
 
631
232
  if options.write_families != None and options.fasta != None:
632
233
  sequences = read_fasta(options.fasta)
633
- input_dir = os.path.dirname(os.path.abspath(options.clusters))
634
- output_dir = os.path.join(input_dir, 'Gene_Families_Output')
234
+ output_dir = os.path.join(output_path, 'Gene_Families_Output')
635
235
 
636
236
  # Create output directory if it doesn't exist
637
237
  if not os.path.exists(output_dir):
@@ -652,7 +252,7 @@ def cluster(options):
652
252
  outfile.write(f"{wrapped_sequence}\n")
653
253
 
654
254
  if options.con_core != None and options.fasta != None and options.write_families != None:
655
- process_gene_families(options, os.path.join(input_dir, 'Gene_Families_Output'), 'concatonated_genes_aligned.fasta')
255
+ process_gene_families(options, os.path.join(output_dir, 'Gene_Families_Output'), 'concatonated_genes_aligned.fasta')
656
256
 
657
257
 
658
258