PyKubeGrader 0.1.2__py3-none-any.whl → 0.1.3__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {PyKubeGrader-0.1.2.dist-info → PyKubeGrader-0.1.3.dist-info}/METADATA +1 -1
- PyKubeGrader-0.1.3.dist-info/RECORD +24 -0
- PyKubeGrader-0.1.3.dist-info/entry_points.txt +2 -0
- pykubegrader/build/build_folder.py +1531 -0
- pykubegrader/widgets/__init__.py +9 -0
- pykubegrader/widgets/select_many.py +10 -0
- pykubegrader/widgets/style.py +47 -0
- pykubegrader/widgets/true_false.py +101 -0
- pykubegrader/widgets_base/multi_select.py +12 -2
- pykubegrader/widgets_base/select.py +19 -1
- PyKubeGrader-0.1.2.dist-info/RECORD +0 -20
- {PyKubeGrader-0.1.2.dist-info → PyKubeGrader-0.1.3.dist-info}/LICENSE.txt +0 -0
- {PyKubeGrader-0.1.2.dist-info → PyKubeGrader-0.1.3.dist-info}/WHEEL +0 -0
- {PyKubeGrader-0.1.2.dist-info → PyKubeGrader-0.1.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1531 @@
|
|
1
|
+
from dataclasses import dataclass, field
|
2
|
+
import os
|
3
|
+
import shutil
|
4
|
+
import nbformat
|
5
|
+
import subprocess
|
6
|
+
import sys
|
7
|
+
import argparse
|
8
|
+
import logging
|
9
|
+
import json
|
10
|
+
import re
|
11
|
+
import importlib.util
|
12
|
+
|
13
|
+
|
14
|
+
@dataclass
|
15
|
+
class NotebookProcessor:
|
16
|
+
"""
|
17
|
+
A class for processing Jupyter notebooks in a directory and its subdirectories.
|
18
|
+
|
19
|
+
Attributes:
|
20
|
+
root_folder (str): The root directory containing notebooks to process.
|
21
|
+
solutions_folder (str): The directory where processed notebooks and solutions are stored.
|
22
|
+
verbose (bool): Flag for verbose output to the console.
|
23
|
+
log (bool): Flag to enable or disable logging.
|
24
|
+
"""
|
25
|
+
|
26
|
+
root_folder: str
|
27
|
+
solutions_folder: str = field(init=False)
|
28
|
+
verbose: bool = False
|
29
|
+
log: bool = True
|
30
|
+
|
31
|
+
def __post_init__(self):
|
32
|
+
"""
|
33
|
+
Post-initialization method for setting up the `NotebookProcessor` instance.
|
34
|
+
|
35
|
+
This method is automatically called after the instance is created. It performs the following tasks:
|
36
|
+
1. Creates a solutions folder within the root directory to store processed outputs.
|
37
|
+
2. Configures logging to capture detailed information about the processing.
|
38
|
+
|
39
|
+
Raises:
|
40
|
+
OSError: If the solutions folder cannot be created due to permissions or other filesystem issues.
|
41
|
+
"""
|
42
|
+
# Define the folder to store solutions and ensure it exists
|
43
|
+
self.solutions_folder = os.path.join(self.root_folder, "_solutions")
|
44
|
+
os.makedirs(
|
45
|
+
self.solutions_folder, exist_ok=True
|
46
|
+
) # Create the folder if it doesn't exist
|
47
|
+
|
48
|
+
# Configure logging to store log messages in the solutions folder
|
49
|
+
log_file_path = os.path.join(self.solutions_folder, "notebook_processor.log")
|
50
|
+
logging.basicConfig(
|
51
|
+
filename=log_file_path, # Path to the log file
|
52
|
+
level=logging.INFO, # Log messages at INFO level and above will be recorded
|
53
|
+
format="%(asctime)s - %(levelname)s - %(message)s", # Log message format: timestamp, level, and message
|
54
|
+
)
|
55
|
+
|
56
|
+
# Initialize a global logger for the class
|
57
|
+
global logger
|
58
|
+
logger = logging.getLogger(
|
59
|
+
__name__
|
60
|
+
) # Create a logger instance specific to this module
|
61
|
+
self.logger = logger # Assign the logger instance to the class for use in instance methods
|
62
|
+
|
63
|
+
def process_notebooks(self):
|
64
|
+
"""
|
65
|
+
Recursively processes Jupyter notebooks in a given folder and its subfolders.
|
66
|
+
|
67
|
+
The function performs the following steps:
|
68
|
+
1. Iterates through all files within the root folder and subfolders.
|
69
|
+
2. Identifies Jupyter notebooks by checking file extensions (.ipynb).
|
70
|
+
3. Checks if each notebook contains assignment configuration metadata.
|
71
|
+
4. Processes notebooks that meet the criteria using `otter assign` or other defined steps.
|
72
|
+
|
73
|
+
Prerequisites:
|
74
|
+
- The `has_assignment` method should be implemented to check if a notebook
|
75
|
+
contains the required configuration for assignment processing.
|
76
|
+
- The `_process_single_notebook` method should handle the specific processing
|
77
|
+
of a single notebook, including moving it to a new folder or running
|
78
|
+
additional tools like `otter assign`.
|
79
|
+
|
80
|
+
Raises:
|
81
|
+
- OSError: If an issue occurs while accessing files or directories.
|
82
|
+
|
83
|
+
Example:
|
84
|
+
class NotebookProcessor:
|
85
|
+
def __init__(self, root_folder):
|
86
|
+
self.root_folder = root_folder
|
87
|
+
|
88
|
+
def has_assignment(self, notebook_path):
|
89
|
+
# Implementation to check for assignment configuration
|
90
|
+
return True # Replace with actual check logic
|
91
|
+
|
92
|
+
def _process_single_notebook(self, notebook_path):
|
93
|
+
# Implementation to process a single notebook
|
94
|
+
self._print_and_log(f"Processing notebook: {notebook_path}")
|
95
|
+
|
96
|
+
processor = NotebookProcessor("/path/to/root/folder")
|
97
|
+
processor.process_notebooks()
|
98
|
+
"""
|
99
|
+
ipynb_files = []
|
100
|
+
|
101
|
+
# Walk through the root folder and its subfolders
|
102
|
+
for dirpath, _, filenames in os.walk(self.root_folder):
|
103
|
+
for filename in filenames:
|
104
|
+
# Check if the file is a Jupyter notebook
|
105
|
+
if filename.endswith(".ipynb"):
|
106
|
+
notebook_path = os.path.join(dirpath, filename)
|
107
|
+
ipynb_files.append(notebook_path)
|
108
|
+
|
109
|
+
for notebook_path in ipynb_files:
|
110
|
+
# Check if the notebook has the required assignment configuration
|
111
|
+
if self.has_assignment(notebook_path):
|
112
|
+
self._print_and_log(f"notebook_path = {notebook_path}")
|
113
|
+
|
114
|
+
# Process the notebook if it meets the criteria
|
115
|
+
self._process_single_notebook(notebook_path)
|
116
|
+
|
117
|
+
def _print_and_log(self, message):
|
118
|
+
"""
|
119
|
+
Logs a message and optionally prints it to the console.
|
120
|
+
|
121
|
+
This method is used for logging important information and optionally
|
122
|
+
displaying it in the console based on the `verbose` and `log` attributes.
|
123
|
+
|
124
|
+
Args:
|
125
|
+
message (str): The message to be logged and/or printed.
|
126
|
+
|
127
|
+
Behavior:
|
128
|
+
- If `self.verbose` is True, the message will be printed to the console.
|
129
|
+
- If `self.log` is True, the message will be logged using the class's logger.
|
130
|
+
|
131
|
+
Example:
|
132
|
+
self._print_and_log("Processing completed successfully.")
|
133
|
+
|
134
|
+
Raises:
|
135
|
+
None: This method handles exceptions internally, if any arise from logging or printing.
|
136
|
+
"""
|
137
|
+
|
138
|
+
# Print the message to the console if verbosity is enabled
|
139
|
+
if self.verbose:
|
140
|
+
print(message)
|
141
|
+
|
142
|
+
# Log the message if logging is enabled
|
143
|
+
if self.log:
|
144
|
+
self.logger.info(message)
|
145
|
+
|
146
|
+
def _process_single_notebook(self, notebook_path):
|
147
|
+
"""
|
148
|
+
Processes a single Jupyter notebook.
|
149
|
+
|
150
|
+
This method handles the preparation, validation, and processing of a given notebook. It:
|
151
|
+
1. Moves the notebook to a subfolder within the solutions folder.
|
152
|
+
2. Creates temporary and destination folders for autograder and student files.
|
153
|
+
3. Identifies and processes multiple-choice questions (MCQs).
|
154
|
+
4. Runs assignment-specific tasks like executing `otter assign` and cleaning notebooks.
|
155
|
+
5. Generates solution and question files and moves them to appropriate folders.
|
156
|
+
|
157
|
+
Args:
|
158
|
+
notebook_path (str): The file path to the Jupyter notebook to be processed.
|
159
|
+
|
160
|
+
Raises:
|
161
|
+
FileNotFoundError: If the notebook file or intermediate files are not found.
|
162
|
+
OSError: If there are issues creating or moving files/directories.
|
163
|
+
Exception: For unexpected errors during processing.
|
164
|
+
|
165
|
+
Returns:
|
166
|
+
None
|
167
|
+
"""
|
168
|
+
|
169
|
+
logging.info(f"Processing notebook: {notebook_path}")
|
170
|
+
notebook_name = os.path.splitext(os.path.basename(notebook_path))[0]
|
171
|
+
notebook_subfolder = os.path.join(self.solutions_folder, notebook_name)
|
172
|
+
os.makedirs(notebook_subfolder, exist_ok=True)
|
173
|
+
|
174
|
+
new_notebook_path = os.path.join(
|
175
|
+
notebook_subfolder, os.path.basename(notebook_path)
|
176
|
+
)
|
177
|
+
|
178
|
+
# makes a temp copy of the notebook
|
179
|
+
temp_notebook_path = os.path.join(
|
180
|
+
notebook_subfolder, f"{notebook_name}_temp.ipynb"
|
181
|
+
)
|
182
|
+
shutil.copy(notebook_path, temp_notebook_path)
|
183
|
+
|
184
|
+
# Determine the path to the autograder folder
|
185
|
+
autograder_path = os.path.join(notebook_subfolder, f"dist/autograder/")
|
186
|
+
os.makedirs(autograder_path, exist_ok=True)
|
187
|
+
|
188
|
+
# Determine the path to the student folder
|
189
|
+
student_path = os.path.join(notebook_subfolder, f"dist/student/")
|
190
|
+
os.makedirs(student_path, exist_ok=True)
|
191
|
+
|
192
|
+
if os.path.abspath(notebook_path) != os.path.abspath(new_notebook_path):
|
193
|
+
shutil.move(notebook_path, new_notebook_path)
|
194
|
+
self._print_and_log(f"Moved: {notebook_path} -> {new_notebook_path}")
|
195
|
+
else:
|
196
|
+
self._print_and_log(f"Notebook already in destination: {new_notebook_path}")
|
197
|
+
|
198
|
+
### Parse the notebook for multiple choice questions
|
199
|
+
if self.has_assignment(temp_notebook_path, "# BEGIN MULTIPLE CHOICE"):
|
200
|
+
self._print_and_log(
|
201
|
+
f"Notebook {temp_notebook_path} has multiple choice questions"
|
202
|
+
)
|
203
|
+
|
204
|
+
# Extract all the multiple choice questions
|
205
|
+
data = extract_MCQ(temp_notebook_path)
|
206
|
+
|
207
|
+
# determine the output file path
|
208
|
+
solution_path = f"{os.path.splitext(new_notebook_path)[0]}_solutions.py"
|
209
|
+
|
210
|
+
# Extract the first value cells
|
211
|
+
value = extract_raw_cells(temp_notebook_path)
|
212
|
+
|
213
|
+
data = NotebookProcessor.merge_metadata(value, data)
|
214
|
+
|
215
|
+
for data_ in data:
|
216
|
+
# Generate the solution file
|
217
|
+
self.generate_solution_MCQ(data, output_file=solution_path)
|
218
|
+
|
219
|
+
question_path = (
|
220
|
+
f"{new_notebook_path.replace(".ipynb", "")}_questions.py"
|
221
|
+
)
|
222
|
+
|
223
|
+
generate_mcq_file(data, output_file=question_path)
|
224
|
+
|
225
|
+
markers = ("# BEGIN MULTIPLE CHOICE", "# END MULTIPLE CHOICE")
|
226
|
+
|
227
|
+
replace_cells_between_markers(
|
228
|
+
data, markers, temp_notebook_path, temp_notebook_path
|
229
|
+
)
|
230
|
+
|
231
|
+
### Parse the notebook for TF questions
|
232
|
+
if self.has_assignment(temp_notebook_path, "# BEGIN TF"):
|
233
|
+
|
234
|
+
markers = ("# BEGIN TF", "# END TF")
|
235
|
+
|
236
|
+
self._print_and_log(
|
237
|
+
f"Notebook {temp_notebook_path} has True False questions"
|
238
|
+
)
|
239
|
+
|
240
|
+
# Extract all the multiple choice questions
|
241
|
+
data = extract_TF(temp_notebook_path)
|
242
|
+
|
243
|
+
# determine the output file path
|
244
|
+
solution_path = f"{os.path.splitext(new_notebook_path)[0]}_solutions.py"
|
245
|
+
|
246
|
+
# Extract the first value cells
|
247
|
+
value = extract_raw_cells(temp_notebook_path, markers[0])
|
248
|
+
|
249
|
+
data = NotebookProcessor.merge_metadata(value, data)
|
250
|
+
|
251
|
+
# for data_ in data:
|
252
|
+
# Generate the solution file
|
253
|
+
self.generate_solution_MCQ(data, output_file=solution_path)
|
254
|
+
|
255
|
+
question_path = f"{new_notebook_path.replace(".ipynb", "")}_questions.py"
|
256
|
+
|
257
|
+
generate_tf_file(data, output_file=question_path)
|
258
|
+
|
259
|
+
replace_cells_between_markers(
|
260
|
+
data, markers, temp_notebook_path, temp_notebook_path
|
261
|
+
)
|
262
|
+
|
263
|
+
### Parse the notebook for select_many questions
|
264
|
+
if self.has_assignment(temp_notebook_path, "# BEGIN SELECT MANY"):
|
265
|
+
|
266
|
+
markers = ("# BEGIN SELECT MANY", "# END SELECT MANY")
|
267
|
+
|
268
|
+
self._print_and_log(
|
269
|
+
f"Notebook {temp_notebook_path} has True False questions"
|
270
|
+
)
|
271
|
+
|
272
|
+
# Extract all the multiple choice questions
|
273
|
+
data = extract_SELECT_MANY(temp_notebook_path)
|
274
|
+
|
275
|
+
# determine the output file path
|
276
|
+
solution_path = f"{os.path.splitext(new_notebook_path)[0]}_solutions.py"
|
277
|
+
|
278
|
+
# Extract the first value cells
|
279
|
+
value = extract_raw_cells(temp_notebook_path, markers[0])
|
280
|
+
|
281
|
+
data = NotebookProcessor.merge_metadata(value, data)
|
282
|
+
|
283
|
+
# for data_ in data:
|
284
|
+
# Generate the solution file
|
285
|
+
self.generate_solution_MCQ(data, output_file=solution_path)
|
286
|
+
|
287
|
+
question_path = f"{new_notebook_path.replace(".ipynb", "")}_questions.py"
|
288
|
+
|
289
|
+
generate_select_many_file(data, output_file=question_path)
|
290
|
+
|
291
|
+
replace_cells_between_markers(
|
292
|
+
data, markers, temp_notebook_path, temp_notebook_path
|
293
|
+
)
|
294
|
+
|
295
|
+
if self.has_assignment(temp_notebook_path, "# ASSIGNMENT CONFIG"):
|
296
|
+
self.run_otter_assign(
|
297
|
+
temp_notebook_path, os.path.join(notebook_subfolder, "dist")
|
298
|
+
)
|
299
|
+
student_notebook = os.path.join(
|
300
|
+
notebook_subfolder, "dist", "student", f"{notebook_name}.ipynb"
|
301
|
+
)
|
302
|
+
self.clean_notebook(student_notebook)
|
303
|
+
NotebookProcessor.replace_temp_in_notebook(
|
304
|
+
student_notebook, student_notebook
|
305
|
+
)
|
306
|
+
autograder_notebook = os.path.join(
|
307
|
+
notebook_subfolder, "dist", "autograder", f"{notebook_name}.ipynb"
|
308
|
+
)
|
309
|
+
NotebookProcessor.replace_temp_in_notebook(
|
310
|
+
autograder_notebook, autograder_notebook
|
311
|
+
)
|
312
|
+
shutil.copy(student_notebook, self.root_folder)
|
313
|
+
self._print_and_log(
|
314
|
+
f"Copied and cleaned student notebook: {student_notebook} -> {self.root_folder}"
|
315
|
+
)
|
316
|
+
|
317
|
+
# If Otter does not run, move the student file to the main directory
|
318
|
+
if "student_notebook" not in locals():
|
319
|
+
path_ = shutil.copy(temp_notebook_path, self.root_folder)
|
320
|
+
self._print_and_log(
|
321
|
+
f"Copied and cleaned student notebook: {path_} -> {self.root_folder}"
|
322
|
+
)
|
323
|
+
|
324
|
+
# Move the solution file to the autograder folder
|
325
|
+
if "solution_path" in locals():
|
326
|
+
# gets importable file name
|
327
|
+
importable_file_name = sanitize_string(
|
328
|
+
os.path.splitext(os.path.basename(solution_path))[0]
|
329
|
+
)
|
330
|
+
|
331
|
+
# Move the solution file to the autograder folder
|
332
|
+
os.rename(
|
333
|
+
solution_path,
|
334
|
+
os.path.join(autograder_path, f"{importable_file_name}.py"),
|
335
|
+
)
|
336
|
+
|
337
|
+
if "question_path" in locals():
|
338
|
+
shutil.move(question_path, student_path)
|
339
|
+
|
340
|
+
# Remove the temp copy of the notebook
|
341
|
+
os.remove(temp_notebook_path)
|
342
|
+
|
343
|
+
# Remove all postfix from filenames in dist
|
344
|
+
NotebookProcessor.remove_postfix(autograder_path, "_solutions")
|
345
|
+
NotebookProcessor.remove_postfix(student_path, "_questions")
|
346
|
+
NotebookProcessor.remove_postfix(self.root_folder, "_temp")
|
347
|
+
|
348
|
+
### CODE TO ENSURE THAT STUDENT NOTEBOOK IS IMPORTABLE
|
349
|
+
if "question_path" in locals():
|
350
|
+
|
351
|
+
# question_root_path = os.path.dirname(question_path)
|
352
|
+
question_file_name = os.path.basename(question_path)
|
353
|
+
question_file_name_sanitized = sanitize_string(question_file_name.replace("_questions", ""))
|
354
|
+
if question_file_name_sanitized.endswith("_py"):
|
355
|
+
question_file_name_sanitized = question_file_name_sanitized[:-3] + ".py"
|
356
|
+
|
357
|
+
# Rename the file
|
358
|
+
os.rename(os.path.join(student_path, question_file_name.replace("_questions", "")), os.path.join(student_path, question_file_name_sanitized))
|
359
|
+
|
360
|
+
# Ensure the "questions" folder exists
|
361
|
+
questions_folder_jbook = os.path.join(self.root_folder, "questions")
|
362
|
+
os.makedirs(questions_folder_jbook, exist_ok=True)
|
363
|
+
|
364
|
+
# Copy the renamed file to the "questions" folder
|
365
|
+
shutil.copy(os.path.join(student_path, question_file_name_sanitized), os.path.join(questions_folder_jbook, question_file_name_sanitized))
|
366
|
+
|
367
|
+
|
368
|
+
@staticmethod
|
369
|
+
def replace_temp_in_notebook(input_file, output_file):
|
370
|
+
"""
|
371
|
+
Replaces occurrences of '_temp.ipynb' with '.ipynb' in a Jupyter Notebook.
|
372
|
+
|
373
|
+
Parameters:
|
374
|
+
input_file (str): Path to the input Jupyter Notebook file.
|
375
|
+
output_file (str): Path to the output Jupyter Notebook file.
|
376
|
+
|
377
|
+
Returns:
|
378
|
+
None: Writes the modified notebook to the output file.
|
379
|
+
"""
|
380
|
+
# Load the notebook data
|
381
|
+
with open(input_file, "r", encoding="utf-8") as f:
|
382
|
+
notebook_data = json.load(f)
|
383
|
+
|
384
|
+
# Iterate through each cell and update its content
|
385
|
+
for cell in notebook_data.get("cells", []):
|
386
|
+
if "source" in cell:
|
387
|
+
# Replace occurrences of '_temp.ipynb' in the cell source
|
388
|
+
cell["source"] = [
|
389
|
+
line.replace("_temp.ipynb", ".ipynb") for line in cell["source"]
|
390
|
+
]
|
391
|
+
|
392
|
+
# Write the updated notebook to the output file
|
393
|
+
with open(output_file, "w", encoding="utf-8") as f:
|
394
|
+
json.dump(notebook_data, f, indent=2)
|
395
|
+
|
396
|
+
@staticmethod
|
397
|
+
def merge_metadata(raw, data):
|
398
|
+
"""
|
399
|
+
Merges raw metadata with extracted question data.
|
400
|
+
|
401
|
+
This method combines metadata from two sources: raw metadata and question data.
|
402
|
+
It ensures that the points associated with each question are appropriately distributed
|
403
|
+
and added to the final merged metadata.
|
404
|
+
|
405
|
+
Args:
|
406
|
+
raw (list): A list of dictionaries containing raw metadata.
|
407
|
+
Each dictionary must have a 'points' key with a value
|
408
|
+
that can be either a list of points or a string representing a single point value.
|
409
|
+
data (list): A list of dictionaries containing extracted question data.
|
410
|
+
Each dictionary represents a set of questions and their details.
|
411
|
+
|
412
|
+
Returns:
|
413
|
+
list: A list of dictionaries where each dictionary represents a question
|
414
|
+
with merged metadata and associated points.
|
415
|
+
|
416
|
+
Raises:
|
417
|
+
KeyError: If 'points' is missing from any raw metadata entry.
|
418
|
+
IndexError: If the number of items in `raw` and `data` do not match.
|
419
|
+
|
420
|
+
Example:
|
421
|
+
raw = [
|
422
|
+
{"points": [1.0, 2.0]},
|
423
|
+
{"points": "3.0"}
|
424
|
+
]
|
425
|
+
data = [
|
426
|
+
{"Q1": {"question_text": "What is 2+2?"}},
|
427
|
+
{"Q2": {"question_text": "What is 3+3?"}}
|
428
|
+
]
|
429
|
+
merged = merge_metadata(raw, data)
|
430
|
+
print(merged)
|
431
|
+
# Output:
|
432
|
+
# [
|
433
|
+
# {"Q1": {"question_text": "What is 2+2?", "points": 1.0}},
|
434
|
+
# {"Q2": {"question_text": "What is 3+3?", "points": 3.0}}
|
435
|
+
# ]
|
436
|
+
"""
|
437
|
+
merged_data = []
|
438
|
+
|
439
|
+
# Loop through each question set in the data
|
440
|
+
for i, _data in enumerate(data):
|
441
|
+
# Handle 'points' from raw metadata: convert single string value to a list if necessary
|
442
|
+
if isinstance(raw[i]["points"], str):
|
443
|
+
points_ = [float(raw[i]["points"])] * len(
|
444
|
+
_data
|
445
|
+
) # Distribute the same point value
|
446
|
+
else:
|
447
|
+
points_ = raw[i]["points"] # Use provided list of points
|
448
|
+
|
449
|
+
# Remove 'points' from raw metadata to avoid overwriting
|
450
|
+
raw[i].pop("points", None)
|
451
|
+
|
452
|
+
# Handle 'grade' from raw metadata
|
453
|
+
if "grade" in raw[i]:
|
454
|
+
grade_ = [raw[i]["grade"]]
|
455
|
+
|
456
|
+
# Merge each question's metadata with corresponding raw metadata
|
457
|
+
for j, (key, value) in enumerate(_data.items()):
|
458
|
+
# Combine raw metadata with question data
|
459
|
+
data[i][key] = data[i][key] | raw[i]
|
460
|
+
# Assign the correct point value to the question
|
461
|
+
data[i][key]["points"] = points_[j]
|
462
|
+
|
463
|
+
if "grade" in raw[i]:
|
464
|
+
data[i][key]["grade"] = grade_
|
465
|
+
|
466
|
+
return data
|
467
|
+
|
468
|
+
@staticmethod
|
469
|
+
def has_assignment(notebook_path, *tags):
|
470
|
+
"""
|
471
|
+
Determines if a Jupyter notebook contains any of the specified configuration tags.
|
472
|
+
|
473
|
+
This method checks for the presence of specific content in a Jupyter notebook
|
474
|
+
to identify whether it includes any of the required headings or tags.
|
475
|
+
|
476
|
+
Args:
|
477
|
+
notebook_path (str): The file path to the Jupyter notebook to be checked.
|
478
|
+
*tags (str): Variable-length argument list of tags to search for.
|
479
|
+
Defaults to ("# ASSIGNMENT CONFIG",).
|
480
|
+
|
481
|
+
Returns:
|
482
|
+
bool: True if the notebook contains any of the specified tags, False otherwise.
|
483
|
+
|
484
|
+
Dependencies:
|
485
|
+
- The `check_for_heading` function must be implemented. It should search
|
486
|
+
for specific headings or content in a notebook file and return a boolean
|
487
|
+
value indicating if any of the tags exist.
|
488
|
+
|
489
|
+
Example:
|
490
|
+
def check_for_heading(notebook_path, keywords):
|
491
|
+
# Mock implementation of content check
|
492
|
+
with open(notebook_path, 'r') as file:
|
493
|
+
content = file.read()
|
494
|
+
return any(keyword in content for keyword in keywords)
|
495
|
+
|
496
|
+
notebook_path = "path/to/notebook.ipynb"
|
497
|
+
# Check for default tags
|
498
|
+
contains_config = has_assignment(notebook_path)
|
499
|
+
self._print_and_log(f"Contains assignment config: {contains_config}")
|
500
|
+
|
501
|
+
# Check for custom tags
|
502
|
+
contains_custom = has_assignment(notebook_path, "# CUSTOM CONFIG", "# ANOTHER CONFIG")
|
503
|
+
self._print_and_log(f"Contains custom config: {contains_custom}")
|
504
|
+
"""
|
505
|
+
# Default tags if none are provided
|
506
|
+
if not tags:
|
507
|
+
tags = ["# ASSIGNMENT CONFIG", "# BEGIN MULTIPLE CHOICE"]
|
508
|
+
|
509
|
+
# Use the helper function to check for the presence of any specified tag
|
510
|
+
return check_for_heading(notebook_path, tags)
|
511
|
+
|
512
|
+
@staticmethod
|
513
|
+
def run_otter_assign(notebook_path, dist_folder):
|
514
|
+
"""
|
515
|
+
Runs `otter assign` on the given notebook and outputs to the specified distribution folder.
|
516
|
+
"""
|
517
|
+
try:
|
518
|
+
os.makedirs(dist_folder, exist_ok=True)
|
519
|
+
command = ["otter", "assign", notebook_path, dist_folder]
|
520
|
+
subprocess.run(command, check=True)
|
521
|
+
logger.info(f"Otter assign completed: {notebook_path} -> {dist_folder}")
|
522
|
+
|
523
|
+
# Remove all postfix _test from filenames in dist_folder
|
524
|
+
NotebookProcessor.remove_postfix(dist_folder)
|
525
|
+
|
526
|
+
except subprocess.CalledProcessError as e:
|
527
|
+
logger.info(f"Error running `otter assign` for {notebook_path}: {e}")
|
528
|
+
except Exception as e:
|
529
|
+
logger.info(
|
530
|
+
f"Unexpected error during `otter assign` for {notebook_path}: {e}"
|
531
|
+
)
|
532
|
+
|
533
|
+
@staticmethod
|
534
|
+
def generate_solution_MCQ(data_list, output_file="output.py"):
|
535
|
+
"""
|
536
|
+
Generates a Python file with solutions and total points based on the input data.
|
537
|
+
If the file already exists, it appends new solutions to the existing solution dictionary.
|
538
|
+
|
539
|
+
Args:
|
540
|
+
data_list (list): A list of dictionaries containing question metadata.
|
541
|
+
output_file (str): Path to the output Python file.
|
542
|
+
"""
|
543
|
+
|
544
|
+
solutions = {}
|
545
|
+
total_points = 0.0
|
546
|
+
|
547
|
+
# If the output file exists, load the existing solutions and total_points
|
548
|
+
if os.path.exists(output_file):
|
549
|
+
spec = importlib.util.spec_from_file_location(
|
550
|
+
"existing_module", output_file
|
551
|
+
)
|
552
|
+
existing_module = importlib.util.module_from_spec(spec)
|
553
|
+
spec.loader.exec_module(existing_module) # Load the module dynamically
|
554
|
+
|
555
|
+
# Attempt to read existing solutions and total_points
|
556
|
+
if hasattr(existing_module, "solutions"):
|
557
|
+
solutions.update(existing_module.solutions)
|
558
|
+
if hasattr(existing_module, "total_points"):
|
559
|
+
total_points += existing_module.total_points
|
560
|
+
|
561
|
+
# Process new question data and update solutions and total_points
|
562
|
+
for question_set in data_list:
|
563
|
+
for key, question_data in question_set.items():
|
564
|
+
solution_key = f"q{question_data['question number']}-{question_data['subquestion_number']}-{key}"
|
565
|
+
solutions[solution_key] = question_data["solution"]
|
566
|
+
total_points += question_data["points"]
|
567
|
+
|
568
|
+
# Write updated total_points and solutions back to the file
|
569
|
+
with open(output_file, "w", encoding="utf-8") as f:
|
570
|
+
f.write("from typing import Any\n\n")
|
571
|
+
f.write(f"total_points: float = {total_points}\n\n")
|
572
|
+
|
573
|
+
f.write("solutions: dict[str, Any] = {\n")
|
574
|
+
for key, solution in solutions.items():
|
575
|
+
# For safety, we assume solutions are strings, but if not, repr would be safer
|
576
|
+
f.write(f' "{key}": {repr(solution)},\n')
|
577
|
+
f.write("}\n")
|
578
|
+
|
579
|
+
@staticmethod
|
580
|
+
def generate_solution_MCQ(data_list, output_file="output.py"):
|
581
|
+
"""
|
582
|
+
Generates a Python file with solutions and total points based on the input data.
|
583
|
+
If the file already exists, it appends new solutions to the existing solution dictionary.
|
584
|
+
|
585
|
+
Args:
|
586
|
+
data_list (list): A list of dictionaries containing question metadata.
|
587
|
+
output_file (str): Path to the output Python file.
|
588
|
+
"""
|
589
|
+
|
590
|
+
solutions = {}
|
591
|
+
total_points = 0.0
|
592
|
+
|
593
|
+
# If the output file exists, load the existing solutions and total_points
|
594
|
+
if os.path.exists(output_file):
|
595
|
+
spec = importlib.util.spec_from_file_location(
|
596
|
+
"existing_module", output_file
|
597
|
+
)
|
598
|
+
existing_module = importlib.util.module_from_spec(spec)
|
599
|
+
spec.loader.exec_module(existing_module) # Load the module dynamically
|
600
|
+
|
601
|
+
# Attempt to read existing solutions and total_points
|
602
|
+
if hasattr(existing_module, "solutions"):
|
603
|
+
solutions.update(existing_module.solutions)
|
604
|
+
if hasattr(existing_module, "total_points"):
|
605
|
+
total_points += existing_module.total_points
|
606
|
+
|
607
|
+
# Process new question data and update solutions and total_points
|
608
|
+
for question_set in data_list:
|
609
|
+
for key, question_data in question_set.items():
|
610
|
+
solution_key = f"q{question_data['question number']}-{question_data['subquestion_number']}-{key}"
|
611
|
+
solutions[solution_key] = question_data["solution"]
|
612
|
+
total_points += question_data["points"]
|
613
|
+
|
614
|
+
# Write updated total_points and solutions back to the file
|
615
|
+
with open(output_file, "w", encoding="utf-8") as f:
|
616
|
+
f.write("from typing import Any\n\n")
|
617
|
+
f.write(f"total_points: float = {total_points}\n\n")
|
618
|
+
|
619
|
+
f.write("solutions: dict[str, Any] = {\n")
|
620
|
+
for key, solution in solutions.items():
|
621
|
+
# For safety, we assume solutions are strings, but if not, repr would be safer
|
622
|
+
f.write(f' "{key}": {repr(solution)},\n')
|
623
|
+
f.write("}\n")
|
624
|
+
|
625
|
+
def extract_MCQ(ipynb_file):
|
626
|
+
"""
|
627
|
+
Extracts questions from markdown cells and organizes them as a nested dictionary,
|
628
|
+
including subquestion numbers.
|
629
|
+
|
630
|
+
Args:
|
631
|
+
ipynb_file (str): Path to the .ipynb file.
|
632
|
+
|
633
|
+
Returns:
|
634
|
+
dict: A nested dictionary where the first-level key is the question name (text after ##),
|
635
|
+
and the value is a dictionary with keys: 'name', 'subquestion_number',
|
636
|
+
'question_text', 'OPTIONS', and 'solution'.
|
637
|
+
"""
|
638
|
+
try:
|
639
|
+
# Load the notebook file
|
640
|
+
with open(ipynb_file, "r", encoding="utf-8") as f:
|
641
|
+
notebook_data = json.load(f)
|
642
|
+
|
643
|
+
cells = notebook_data.get("cells", [])
|
644
|
+
results = {}
|
645
|
+
within_section = False
|
646
|
+
subquestion_number = 0 # Counter for subquestions
|
647
|
+
|
648
|
+
for cell in cells:
|
649
|
+
if cell.get("cell_type") == "raw":
|
650
|
+
# Check for the start and end labels in raw cells
|
651
|
+
raw_content = "".join(cell.get("source", []))
|
652
|
+
if "# BEGIN MULTIPLE CHOICE" in raw_content:
|
653
|
+
within_section = True
|
654
|
+
subquestion_number = (
|
655
|
+
0 # Reset counter at the start of a new section
|
656
|
+
)
|
657
|
+
continue
|
658
|
+
elif "# END MULTIPLE CHOICE" in raw_content:
|
659
|
+
within_section = False
|
660
|
+
continue
|
661
|
+
|
662
|
+
if within_section and cell.get("cell_type") == "markdown":
|
663
|
+
# Parse markdown cell content
|
664
|
+
markdown_content = "".join(cell.get("source", []))
|
665
|
+
|
666
|
+
# Extract title (## heading)
|
667
|
+
title_match = re.search(
|
668
|
+
r"^##\s*(.+)", markdown_content, re.MULTILINE
|
669
|
+
)
|
670
|
+
title = title_match.group(1).strip() if title_match else None
|
671
|
+
|
672
|
+
if title:
|
673
|
+
subquestion_number += (
|
674
|
+
1 # Increment the subquestion number for each question
|
675
|
+
)
|
676
|
+
|
677
|
+
# Extract question text (### heading)
|
678
|
+
question_text_match = re.search(
|
679
|
+
r"^###\s*\*\*(.+)\*\*", markdown_content, re.MULTILINE
|
680
|
+
)
|
681
|
+
question_text = (
|
682
|
+
question_text_match.group(1).strip()
|
683
|
+
if question_text_match
|
684
|
+
else None
|
685
|
+
)
|
686
|
+
|
687
|
+
# Extract OPTIONS (lines after #### options)
|
688
|
+
options_match = re.search(
|
689
|
+
r"####\s*options\s*(.+?)(?=####|$)",
|
690
|
+
markdown_content,
|
691
|
+
re.DOTALL | re.IGNORECASE,
|
692
|
+
)
|
693
|
+
options = (
|
694
|
+
[
|
695
|
+
line.strip()
|
696
|
+
for line in options_match.group(1).strip().splitlines()
|
697
|
+
if line.strip()
|
698
|
+
]
|
699
|
+
if options_match
|
700
|
+
else []
|
701
|
+
)
|
702
|
+
|
703
|
+
# Extract solution (line after #### SOLUTION)
|
704
|
+
solution_match = re.search(
|
705
|
+
r"####\s*SOLUTION\s*(.+)", markdown_content, re.IGNORECASE
|
706
|
+
)
|
707
|
+
solution = (
|
708
|
+
solution_match.group(1).strip() if solution_match else None
|
709
|
+
)
|
710
|
+
|
711
|
+
# Create nested dictionary for the question
|
712
|
+
results[title] = {
|
713
|
+
"name": title,
|
714
|
+
"subquestion_number": subquestion_number,
|
715
|
+
"question_text": question_text,
|
716
|
+
"OPTIONS": options,
|
717
|
+
"solution": solution,
|
718
|
+
}
|
719
|
+
|
720
|
+
return results
|
721
|
+
|
722
|
+
except FileNotFoundError:
|
723
|
+
print(f"File {ipynb_file} not found.")
|
724
|
+
return {}
|
725
|
+
except json.JSONDecodeError:
|
726
|
+
print("Invalid JSON in notebook file.")
|
727
|
+
return {}
|
728
|
+
|
729
|
+
@staticmethod
|
730
|
+
def remove_postfix(dist_folder, suffix="_temp"):
|
731
|
+
logging.info(f"Removing postfix '{suffix}' from filenames in {dist_folder}")
|
732
|
+
for root, _, files in os.walk(dist_folder):
|
733
|
+
for file in files:
|
734
|
+
if suffix in file:
|
735
|
+
old_file_path = os.path.join(root, file)
|
736
|
+
new_file_path = os.path.join(root, file.replace(suffix, ""))
|
737
|
+
os.rename(old_file_path, new_file_path)
|
738
|
+
logging.info(f"Renamed: {old_file_path} -> {new_file_path}")
|
739
|
+
|
740
|
+
@staticmethod
|
741
|
+
def clean_notebook(notebook_path):
|
742
|
+
"""
|
743
|
+
Cleans a Jupyter notebook to remove unwanted cells and set cell metadata.
|
744
|
+
"""
|
745
|
+
clean_notebook(notebook_path)
|
746
|
+
|
747
|
+
|
748
|
+
def extract_raw_cells(ipynb_file, heading="# BEGIN MULTIPLE CHOICE"):
|
749
|
+
"""
|
750
|
+
Extracts all metadata from value cells in a Jupyter Notebook file for a specified heading.
|
751
|
+
|
752
|
+
Args:
|
753
|
+
ipynb_file (str): Path to the .ipynb file.
|
754
|
+
heading (str): The heading to search for in value cells.
|
755
|
+
|
756
|
+
Returns:
|
757
|
+
list of dict: A list of dictionaries containing extracted metadata for each heading occurrence.
|
758
|
+
"""
|
759
|
+
try:
|
760
|
+
with open(ipynb_file, "r", encoding="utf-8") as f:
|
761
|
+
notebook_data = json.load(f)
|
762
|
+
|
763
|
+
# Extract value cell content
|
764
|
+
raw_cells = [
|
765
|
+
"".join(
|
766
|
+
cell.get("source", [])
|
767
|
+
) # Join multiline sources into a single string
|
768
|
+
for cell in notebook_data.get("cells", [])
|
769
|
+
if cell.get("cell_type") == "raw"
|
770
|
+
]
|
771
|
+
|
772
|
+
# Process each value cell to extract metadata
|
773
|
+
metadata_list = []
|
774
|
+
for raw_cell in raw_cells:
|
775
|
+
metadata_list.extend(_extract_metadata_from_heading(raw_cell, heading))
|
776
|
+
|
777
|
+
return metadata_list
|
778
|
+
|
779
|
+
except FileNotFoundError:
|
780
|
+
print(f"File {ipynb_file} not found.")
|
781
|
+
return []
|
782
|
+
except json.JSONDecodeError:
|
783
|
+
print("Invalid JSON in notebook file.")
|
784
|
+
return []
|
785
|
+
|
786
|
+
|
787
|
+
def _extract_metadata_from_heading(raw_cell, heading="# BEGIN MULTIPLE CHOICE"):
|
788
|
+
"""
|
789
|
+
Extracts metadata for a single value cell string each time the heading is found.
|
790
|
+
|
791
|
+
Args:
|
792
|
+
raw_cell (str): String containing value cell content.
|
793
|
+
heading (str): The heading to identify sections.
|
794
|
+
|
795
|
+
Returns:
|
796
|
+
list of dict: A list of dictionaries containing extracted key-value pairs.
|
797
|
+
"""
|
798
|
+
metadata_list = []
|
799
|
+
lines = raw_cell.split("\n")
|
800
|
+
current_metadata = None
|
801
|
+
|
802
|
+
for line in lines:
|
803
|
+
if line.startswith(heading):
|
804
|
+
if current_metadata:
|
805
|
+
metadata_list.append(current_metadata) # Save previous metadata
|
806
|
+
current_metadata = {} # Start new metadata block
|
807
|
+
elif line.startswith("##") and current_metadata is not None:
|
808
|
+
# Extract key and value from lines
|
809
|
+
key, value = line[3:].split(":", 1)
|
810
|
+
current_metadata[key.strip()] = value.strip()
|
811
|
+
|
812
|
+
if current_metadata: # Append the last metadata block
|
813
|
+
metadata_list.append(current_metadata)
|
814
|
+
|
815
|
+
return metadata_list
|
816
|
+
|
817
|
+
|
818
|
+
def extract_SELECT_MANY(ipynb_file):
|
819
|
+
"""
|
820
|
+
Extracts questions marked by `# BEGIN SELECT MANY` and `# END SELECT MANY` in markdown cells,
|
821
|
+
including all lines under the SOLUTION header until the first blank line or whitespace-only line.
|
822
|
+
|
823
|
+
Args:
|
824
|
+
ipynb_file (str): Path to the .ipynb file.
|
825
|
+
|
826
|
+
Returns:
|
827
|
+
list: A list of dictionaries, where each dictionary corresponds to questions within
|
828
|
+
a section. Each dictionary contains parsed questions with details like
|
829
|
+
'name', 'subquestion_number', 'question_text', and 'solution'.
|
830
|
+
"""
|
831
|
+
try:
|
832
|
+
# Load the notebook file
|
833
|
+
with open(ipynb_file, "r", encoding="utf-8") as f:
|
834
|
+
notebook_data = json.load(f)
|
835
|
+
|
836
|
+
cells = notebook_data.get("cells", [])
|
837
|
+
sections = [] # List to store results for each section
|
838
|
+
current_section = {} # Current section being processed
|
839
|
+
within_section = False
|
840
|
+
subquestion_number = 0 # Counter for subquestions
|
841
|
+
|
842
|
+
for cell in cells:
|
843
|
+
if cell.get("cell_type") == "raw":
|
844
|
+
# Check for the start and end labels in raw cells
|
845
|
+
raw_content = "".join(cell.get("source", []))
|
846
|
+
if "# BEGIN SELECT MANY" in raw_content:
|
847
|
+
within_section = True
|
848
|
+
subquestion_number = (
|
849
|
+
0 # Reset counter at the start of a new section
|
850
|
+
)
|
851
|
+
current_section = {} # Prepare a new section dictionary
|
852
|
+
continue
|
853
|
+
elif "# END SELECT MANY" in raw_content:
|
854
|
+
within_section = False
|
855
|
+
if current_section:
|
856
|
+
sections.append(current_section) # Save the current section
|
857
|
+
continue
|
858
|
+
|
859
|
+
if within_section and cell.get("cell_type") == "markdown":
|
860
|
+
# Parse markdown cell content
|
861
|
+
markdown_content = "".join(cell.get("source", []))
|
862
|
+
|
863
|
+
# Extract title (## heading)
|
864
|
+
title_match = re.search(r"^##\s*(.+)", markdown_content, re.MULTILINE)
|
865
|
+
title = title_match.group(1).strip() if title_match else None
|
866
|
+
|
867
|
+
if title:
|
868
|
+
subquestion_number += (
|
869
|
+
1 # Increment subquestion number for each question
|
870
|
+
)
|
871
|
+
|
872
|
+
# Extract question text (### heading)
|
873
|
+
question_text_match = re.search(
|
874
|
+
r"^###\s*\*\*(.+)\*\*", markdown_content, re.MULTILINE
|
875
|
+
)
|
876
|
+
question_text = (
|
877
|
+
question_text_match.group(1).strip()
|
878
|
+
if question_text_match
|
879
|
+
else None
|
880
|
+
)
|
881
|
+
|
882
|
+
# Extract OPTIONS (lines after #### options)
|
883
|
+
options_match = re.search(
|
884
|
+
r"####\s*options\s*(.+?)(?=####|$)",
|
885
|
+
markdown_content,
|
886
|
+
re.DOTALL | re.IGNORECASE,
|
887
|
+
)
|
888
|
+
options = (
|
889
|
+
[
|
890
|
+
line.strip()
|
891
|
+
for line in options_match.group(1).strip().splitlines()
|
892
|
+
if line.strip()
|
893
|
+
]
|
894
|
+
if options_match
|
895
|
+
else []
|
896
|
+
)
|
897
|
+
|
898
|
+
# Extract all lines under the SOLUTION header
|
899
|
+
solution_start = markdown_content.find("#### SOLUTION")
|
900
|
+
if solution_start != -1:
|
901
|
+
solution = []
|
902
|
+
lines = markdown_content[solution_start:].splitlines()
|
903
|
+
for line in lines[1:]: # Skip the "#### SOLUTION" line
|
904
|
+
if line.strip(): # Non-blank line after trimming spaces
|
905
|
+
solution.append(line.strip())
|
906
|
+
else:
|
907
|
+
break
|
908
|
+
|
909
|
+
# Add question details to the current section
|
910
|
+
current_section[title] = {
|
911
|
+
"name": title,
|
912
|
+
"subquestion_number": subquestion_number,
|
913
|
+
"question_text": question_text,
|
914
|
+
"solution": solution,
|
915
|
+
"OPTIONS": options,
|
916
|
+
}
|
917
|
+
|
918
|
+
return sections
|
919
|
+
|
920
|
+
except FileNotFoundError:
|
921
|
+
print(f"File {ipynb_file} not found.")
|
922
|
+
return []
|
923
|
+
except json.JSONDecodeError:
|
924
|
+
print("Invalid JSON in notebook file.")
|
925
|
+
return []
|
926
|
+
|
927
|
+
|
928
|
+
def extract_TF(ipynb_file):
|
929
|
+
"""
|
930
|
+
Extracts True False questions from markdown cells within sections marked by
|
931
|
+
`# BEGIN TF` and `# END TF`.
|
932
|
+
|
933
|
+
Args:
|
934
|
+
ipynb_file (str): Path to the .ipynb file.
|
935
|
+
|
936
|
+
Returns:
|
937
|
+
list: A list of dictionaries, where each dictionary corresponds to questions within
|
938
|
+
a section. Each dictionary contains parsed questions with details like
|
939
|
+
'name', 'subquestion_number', 'question_text', and 'solution'.
|
940
|
+
"""
|
941
|
+
try:
|
942
|
+
# Load the notebook file
|
943
|
+
with open(ipynb_file, "r", encoding="utf-8") as f:
|
944
|
+
notebook_data = json.load(f)
|
945
|
+
|
946
|
+
cells = notebook_data.get("cells", [])
|
947
|
+
sections = [] # List to store results for each section
|
948
|
+
current_section = {} # Current section being processed
|
949
|
+
within_section = False
|
950
|
+
subquestion_number = 0 # Counter for subquestions
|
951
|
+
|
952
|
+
for cell in cells:
|
953
|
+
if cell.get("cell_type") == "raw":
|
954
|
+
# Check for the start and end labels in raw cells
|
955
|
+
raw_content = "".join(cell.get("source", []))
|
956
|
+
if "# BEGIN TF" in raw_content:
|
957
|
+
within_section = True
|
958
|
+
subquestion_number = (
|
959
|
+
0 # Reset counter at the start of a new section
|
960
|
+
)
|
961
|
+
current_section = {} # Prepare a new section dictionary
|
962
|
+
continue
|
963
|
+
elif "# END TF" in raw_content:
|
964
|
+
within_section = False
|
965
|
+
if current_section:
|
966
|
+
sections.append(current_section) # Save the current section
|
967
|
+
continue
|
968
|
+
|
969
|
+
if within_section and cell.get("cell_type") == "markdown":
|
970
|
+
# Parse markdown cell content
|
971
|
+
markdown_content = "".join(cell.get("source", []))
|
972
|
+
|
973
|
+
# Extract title (## heading)
|
974
|
+
title_match = re.search(r"^##\s*(.+)", markdown_content, re.MULTILINE)
|
975
|
+
title = title_match.group(1).strip() if title_match else None
|
976
|
+
|
977
|
+
if title:
|
978
|
+
subquestion_number += (
|
979
|
+
1 # Increment subquestion number for each question
|
980
|
+
)
|
981
|
+
|
982
|
+
# Extract question text (### heading)
|
983
|
+
question_text_match = re.search(
|
984
|
+
r"^###\s*\*\*(.+)\*\*", markdown_content, re.MULTILINE
|
985
|
+
)
|
986
|
+
question_text = (
|
987
|
+
question_text_match.group(1).strip()
|
988
|
+
if question_text_match
|
989
|
+
else None
|
990
|
+
)
|
991
|
+
|
992
|
+
# Extract solution (line after #### SOLUTION)
|
993
|
+
solution_match = re.search(
|
994
|
+
r"####\s*SOLUTION\s*(.+)", markdown_content, re.IGNORECASE
|
995
|
+
)
|
996
|
+
solution = (
|
997
|
+
solution_match.group(1).strip() if solution_match else None
|
998
|
+
)
|
999
|
+
|
1000
|
+
# Add question details to the current section
|
1001
|
+
current_section[title] = {
|
1002
|
+
"name": title,
|
1003
|
+
"subquestion_number": subquestion_number,
|
1004
|
+
"question_text": question_text,
|
1005
|
+
"solution": solution,
|
1006
|
+
}
|
1007
|
+
|
1008
|
+
return sections
|
1009
|
+
|
1010
|
+
except FileNotFoundError:
|
1011
|
+
print(f"File {ipynb_file} not found.")
|
1012
|
+
return []
|
1013
|
+
except json.JSONDecodeError:
|
1014
|
+
print("Invalid JSON in notebook file.")
|
1015
|
+
return []
|
1016
|
+
|
1017
|
+
|
1018
|
+
def extract_MCQ(ipynb_file):
|
1019
|
+
"""
|
1020
|
+
Extracts multiple-choice questions from markdown cells within sections marked by
|
1021
|
+
`# BEGIN MULTIPLE CHOICE` and `# END MULTIPLE CHOICE`.
|
1022
|
+
|
1023
|
+
Args:
|
1024
|
+
ipynb_file (str): Path to the .ipynb file.
|
1025
|
+
|
1026
|
+
Returns:
|
1027
|
+
list: A list of dictionaries, where each dictionary corresponds to questions within
|
1028
|
+
a section. Each dictionary contains parsed questions with details like
|
1029
|
+
'name', 'subquestion_number', 'question_text', 'OPTIONS', and 'solution'.
|
1030
|
+
"""
|
1031
|
+
try:
|
1032
|
+
# Load the notebook file
|
1033
|
+
with open(ipynb_file, "r", encoding="utf-8") as f:
|
1034
|
+
notebook_data = json.load(f)
|
1035
|
+
|
1036
|
+
cells = notebook_data.get("cells", [])
|
1037
|
+
sections = [] # List to store results for each section
|
1038
|
+
current_section = {} # Current section being processed
|
1039
|
+
within_section = False
|
1040
|
+
subquestion_number = 0 # Counter for subquestions
|
1041
|
+
|
1042
|
+
for cell in cells:
|
1043
|
+
if cell.get("cell_type") == "raw":
|
1044
|
+
# Check for the start and end labels in raw cells
|
1045
|
+
raw_content = "".join(cell.get("source", []))
|
1046
|
+
if "# BEGIN MULTIPLE CHOICE" in raw_content:
|
1047
|
+
within_section = True
|
1048
|
+
subquestion_number = (
|
1049
|
+
0 # Reset counter at the start of a new section
|
1050
|
+
)
|
1051
|
+
current_section = {} # Prepare a new section dictionary
|
1052
|
+
continue
|
1053
|
+
elif "# END MULTIPLE CHOICE" in raw_content:
|
1054
|
+
within_section = False
|
1055
|
+
if current_section:
|
1056
|
+
sections.append(current_section) # Save the current section
|
1057
|
+
continue
|
1058
|
+
|
1059
|
+
if within_section and cell.get("cell_type") == "markdown":
|
1060
|
+
# Parse markdown cell content
|
1061
|
+
markdown_content = "".join(cell.get("source", []))
|
1062
|
+
|
1063
|
+
# Extract title (## heading)
|
1064
|
+
title_match = re.search(r"^##\s*(.+)", markdown_content, re.MULTILINE)
|
1065
|
+
title = title_match.group(1).strip() if title_match else None
|
1066
|
+
|
1067
|
+
if title:
|
1068
|
+
subquestion_number += (
|
1069
|
+
1 # Increment subquestion number for each question
|
1070
|
+
)
|
1071
|
+
|
1072
|
+
# Extract question text (### heading)
|
1073
|
+
question_text_match = re.search(
|
1074
|
+
r"^###\s*\*\*(.+)\*\*", markdown_content, re.MULTILINE
|
1075
|
+
)
|
1076
|
+
question_text = (
|
1077
|
+
question_text_match.group(1).strip()
|
1078
|
+
if question_text_match
|
1079
|
+
else None
|
1080
|
+
)
|
1081
|
+
|
1082
|
+
# Extract OPTIONS (lines after #### options)
|
1083
|
+
options_match = re.search(
|
1084
|
+
r"####\s*options\s*(.+?)(?=####|$)",
|
1085
|
+
markdown_content,
|
1086
|
+
re.DOTALL | re.IGNORECASE,
|
1087
|
+
)
|
1088
|
+
options = (
|
1089
|
+
[
|
1090
|
+
line.strip()
|
1091
|
+
for line in options_match.group(1).strip().splitlines()
|
1092
|
+
if line.strip()
|
1093
|
+
]
|
1094
|
+
if options_match
|
1095
|
+
else []
|
1096
|
+
)
|
1097
|
+
|
1098
|
+
# Extract solution (line after #### SOLUTION)
|
1099
|
+
solution_match = re.search(
|
1100
|
+
r"####\s*SOLUTION\s*(.+)", markdown_content, re.IGNORECASE
|
1101
|
+
)
|
1102
|
+
solution = (
|
1103
|
+
solution_match.group(1).strip() if solution_match else None
|
1104
|
+
)
|
1105
|
+
|
1106
|
+
# Add question details to the current section
|
1107
|
+
current_section[title] = {
|
1108
|
+
"name": title,
|
1109
|
+
"subquestion_number": subquestion_number,
|
1110
|
+
"question_text": question_text,
|
1111
|
+
"OPTIONS": options,
|
1112
|
+
"solution": solution,
|
1113
|
+
}
|
1114
|
+
|
1115
|
+
return sections
|
1116
|
+
|
1117
|
+
except FileNotFoundError:
|
1118
|
+
print(f"File {ipynb_file} not found.")
|
1119
|
+
return []
|
1120
|
+
except json.JSONDecodeError:
|
1121
|
+
print("Invalid JSON in notebook file.")
|
1122
|
+
return []
|
1123
|
+
|
1124
|
+
|
1125
|
+
def check_for_heading(notebook_path, search_strings):
|
1126
|
+
"""
|
1127
|
+
Checks if a Jupyter notebook contains a heading cell whose source matches any of the given strings.
|
1128
|
+
"""
|
1129
|
+
try:
|
1130
|
+
with open(notebook_path, "r", encoding="utf-8") as f:
|
1131
|
+
notebook = nbformat.read(f, as_version=4)
|
1132
|
+
for cell in notebook.cells:
|
1133
|
+
if cell.cell_type == "raw" and cell.source.startswith("#"):
|
1134
|
+
if any(
|
1135
|
+
search_string in cell.source for search_string in search_strings
|
1136
|
+
):
|
1137
|
+
return True
|
1138
|
+
except Exception as e:
|
1139
|
+
logger.info(f"Error reading notebook {notebook_path}: {e}")
|
1140
|
+
return False
|
1141
|
+
|
1142
|
+
|
1143
|
+
def clean_notebook(notebook_path):
|
1144
|
+
"""
|
1145
|
+
Removes specific cells and makes Markdown cells non-editable and non-deletable by updating their metadata.
|
1146
|
+
"""
|
1147
|
+
try:
|
1148
|
+
with open(notebook_path, "r", encoding="utf-8") as f:
|
1149
|
+
notebook = nbformat.read(f, as_version=4)
|
1150
|
+
|
1151
|
+
cleaned_cells = []
|
1152
|
+
for cell in notebook.cells:
|
1153
|
+
if not hasattr(cell, "cell_type") or not hasattr(cell, "source"):
|
1154
|
+
continue
|
1155
|
+
|
1156
|
+
if (
|
1157
|
+
"## Submission" not in cell.source
|
1158
|
+
and "# Save your notebook first," not in cell.source
|
1159
|
+
):
|
1160
|
+
if cell.cell_type == "markdown":
|
1161
|
+
cell.metadata["editable"] = cell.metadata.get("editable", False)
|
1162
|
+
cell.metadata["deletable"] = cell.metadata.get("deletable", False)
|
1163
|
+
if cell.cell_type == "code":
|
1164
|
+
cell.metadata["tags"] = cell.metadata.get("tags", [])
|
1165
|
+
if "skip-execution" not in cell.metadata["tags"]:
|
1166
|
+
cell.metadata["tags"].append("skip-execution")
|
1167
|
+
|
1168
|
+
cleaned_cells.append(cell)
|
1169
|
+
else:
|
1170
|
+
(f"Removed cell: {cell.source.strip()[:50]}...")
|
1171
|
+
|
1172
|
+
notebook.cells = cleaned_cells
|
1173
|
+
|
1174
|
+
with open(notebook_path, "w", encoding="utf-8") as f:
|
1175
|
+
nbformat.write(notebook, f)
|
1176
|
+
logger.info(f"Cleaned notebook: {notebook_path}")
|
1177
|
+
|
1178
|
+
except Exception as e:
|
1179
|
+
logger.info(f"Error cleaning notebook {notebook_path}: {e}")
|
1180
|
+
|
1181
|
+
|
1182
|
+
def ensure_imports(output_file, header_lines):
|
1183
|
+
"""
|
1184
|
+
Ensures specified header lines are present at the top of the file.
|
1185
|
+
|
1186
|
+
Args:
|
1187
|
+
output_file (str): The path of the file to check and modify.
|
1188
|
+
header_lines (list of str): Lines to ensure are present at the top.
|
1189
|
+
|
1190
|
+
Returns:
|
1191
|
+
str: The existing content of the file (without the header).
|
1192
|
+
"""
|
1193
|
+
existing_content = ""
|
1194
|
+
if os.path.exists(output_file):
|
1195
|
+
with open(output_file, "r", encoding="utf-8") as f:
|
1196
|
+
existing_content = f.read()
|
1197
|
+
|
1198
|
+
# Determine missing lines
|
1199
|
+
missing_lines = [line for line in header_lines if line not in existing_content]
|
1200
|
+
|
1201
|
+
# Write the updated content back to the file
|
1202
|
+
with open(output_file, "w", encoding="utf-8") as f:
|
1203
|
+
# Add missing lines at the top
|
1204
|
+
f.writelines(missing_lines)
|
1205
|
+
# Retain the existing content
|
1206
|
+
f.write(existing_content)
|
1207
|
+
|
1208
|
+
return existing_content
|
1209
|
+
|
1210
|
+
|
1211
|
+
def replace_cells_between_markers(data, markers, ipynb_file, output_file):
|
1212
|
+
"""
|
1213
|
+
Replaces the cells between specified markers in a Jupyter Notebook (.ipynb file)
|
1214
|
+
with provided replacement cells and writes the result to the output file.
|
1215
|
+
|
1216
|
+
Parameters:
|
1217
|
+
data (list): A list of dictionaries with data for creating replacement cells.
|
1218
|
+
markers (tuple): A tuple containing two strings: the BEGIN and END markers.
|
1219
|
+
ipynb_file (str): Path to the input Jupyter Notebook file.
|
1220
|
+
output_file (str): Path to the output Jupyter Notebook file.
|
1221
|
+
|
1222
|
+
Returns:
|
1223
|
+
None: Writes the modified notebook to the output file.
|
1224
|
+
"""
|
1225
|
+
begin_marker, end_marker = markers
|
1226
|
+
file_name_ipynb = ipynb_file.split("/")[-1].replace("_temp.ipynb", "")
|
1227
|
+
|
1228
|
+
file_name_ipynb = sanitize_string(file_name_ipynb)
|
1229
|
+
|
1230
|
+
# Iterate over each set of replacement data
|
1231
|
+
for data_ in data:
|
1232
|
+
dict_ = data_[next(iter(data_.keys()))]
|
1233
|
+
|
1234
|
+
# Create the replacement cells
|
1235
|
+
replacement_cells = {
|
1236
|
+
"cell_type": "code",
|
1237
|
+
"metadata": {},
|
1238
|
+
"source": [
|
1239
|
+
"# Run this block of code by pressing Shift + Enter to display the question\n",
|
1240
|
+
f"from questions.{file_name_ipynb} import Question{dict_['question number']}\n",
|
1241
|
+
f"Question{dict_['question number']}().show()\n",
|
1242
|
+
],
|
1243
|
+
"outputs": [],
|
1244
|
+
"execution_count": None,
|
1245
|
+
}
|
1246
|
+
|
1247
|
+
# Process the notebook cells
|
1248
|
+
new_cells = []
|
1249
|
+
inside_markers = False
|
1250
|
+
done = False
|
1251
|
+
|
1252
|
+
# Load the notebook data
|
1253
|
+
with open(ipynb_file, "r", encoding="utf-8") as f:
|
1254
|
+
notebook_data = json.load(f)
|
1255
|
+
|
1256
|
+
for cell in notebook_data["cells"]:
|
1257
|
+
if cell.get("cell_type") == "raw" and not done:
|
1258
|
+
if any(begin_marker in line for line in cell.get("source", [])):
|
1259
|
+
# Enter the marked block
|
1260
|
+
inside_markers = True
|
1261
|
+
new_cells.append(replacement_cells)
|
1262
|
+
continue
|
1263
|
+
elif inside_markers:
|
1264
|
+
if any(end_marker in line for line in cell.get("source", [])):
|
1265
|
+
# Exit the marked block
|
1266
|
+
inside_markers = False
|
1267
|
+
done = True
|
1268
|
+
continue
|
1269
|
+
else:
|
1270
|
+
continue
|
1271
|
+
else:
|
1272
|
+
new_cells.append(cell)
|
1273
|
+
elif inside_markers:
|
1274
|
+
# Skip cells inside the marked block
|
1275
|
+
continue
|
1276
|
+
else:
|
1277
|
+
new_cells.append(cell)
|
1278
|
+
continue
|
1279
|
+
|
1280
|
+
if done:
|
1281
|
+
# Add cells outside the marked block
|
1282
|
+
new_cells.append(cell)
|
1283
|
+
continue
|
1284
|
+
|
1285
|
+
# Update the notebook with modified cells, preserving metadata
|
1286
|
+
notebook_data["cells"] = new_cells
|
1287
|
+
|
1288
|
+
# Write the modified notebook to the output file
|
1289
|
+
with open(output_file, "w", encoding="utf-8") as f:
|
1290
|
+
json.dump(notebook_data, f, indent=2)
|
1291
|
+
|
1292
|
+
# Update ipynb_file to the output file for subsequent iterations
|
1293
|
+
ipynb_file = output_file
|
1294
|
+
|
1295
|
+
|
1296
|
+
def generate_mcq_file(data_dict, output_file="mc_questions.py"):
|
1297
|
+
"""
|
1298
|
+
Generates a Python file defining an MCQuestion class from a dictionary.
|
1299
|
+
|
1300
|
+
Args:
|
1301
|
+
data_dict (dict): A nested dictionary containing question metadata.
|
1302
|
+
output_file (str): The path for the output Python file.
|
1303
|
+
|
1304
|
+
Returns:
|
1305
|
+
None
|
1306
|
+
"""
|
1307
|
+
|
1308
|
+
# Define header lines
|
1309
|
+
header_lines = [
|
1310
|
+
"from pykubegrader.widgets.multiple_choice import MCQuestion, MCQ\n",
|
1311
|
+
"import pykubegrader.initialize\n",
|
1312
|
+
"import panel as pn\n\n",
|
1313
|
+
"pn.extension()\n\n",
|
1314
|
+
]
|
1315
|
+
|
1316
|
+
# Ensure header lines are present
|
1317
|
+
existing_content = ensure_imports(output_file, header_lines)
|
1318
|
+
|
1319
|
+
for question_dict in data_dict:
|
1320
|
+
with open(output_file, "a", encoding="utf-8") as f:
|
1321
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1322
|
+
if i == 0:
|
1323
|
+
# Write the MCQuestion class
|
1324
|
+
f.write(
|
1325
|
+
f"class Question{q_value['question number']}(MCQuestion):\n"
|
1326
|
+
)
|
1327
|
+
f.write(" def __init__(self):\n")
|
1328
|
+
f.write(" super().__init__(\n")
|
1329
|
+
f.write(f" title=f'{q_value['question_text']}',\n")
|
1330
|
+
f.write(" style=MCQ,\n")
|
1331
|
+
f.write(
|
1332
|
+
f" question_number={q_value['question number']},\n"
|
1333
|
+
)
|
1334
|
+
break
|
1335
|
+
|
1336
|
+
keys = []
|
1337
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1338
|
+
# Write keys
|
1339
|
+
keys.append(f"q{q_value['subquestion_number']}-{q_value['name']}")
|
1340
|
+
|
1341
|
+
f.write(f" keys={keys},\n")
|
1342
|
+
|
1343
|
+
options = []
|
1344
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1345
|
+
# Write options
|
1346
|
+
options.append(q_value["OPTIONS"])
|
1347
|
+
|
1348
|
+
f.write(f" options={options},\n")
|
1349
|
+
|
1350
|
+
descriptions = []
|
1351
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1352
|
+
# Write descriptions
|
1353
|
+
descriptions.append(q_value["question_text"])
|
1354
|
+
f.write(f" descriptions={descriptions},\n")
|
1355
|
+
|
1356
|
+
points = []
|
1357
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1358
|
+
# Write points
|
1359
|
+
points.append(q_value["points"])
|
1360
|
+
|
1361
|
+
f.write(f" points={points},\n")
|
1362
|
+
f.write(" )\n")
|
1363
|
+
|
1364
|
+
|
1365
|
+
def generate_select_many_file(data_dict, output_file="select_many_questions.py"):
|
1366
|
+
"""
|
1367
|
+
Generates a Python file defining an MCQuestion class from a dictionary.
|
1368
|
+
|
1369
|
+
Args:
|
1370
|
+
data_dict (dict): A nested dictionary containing question metadata.
|
1371
|
+
output_file (str): The path for the output Python file.
|
1372
|
+
|
1373
|
+
Returns:
|
1374
|
+
None
|
1375
|
+
"""
|
1376
|
+
|
1377
|
+
# Define header lines
|
1378
|
+
header_lines = [
|
1379
|
+
"from pykubegrader.widgets.select_many import MultiSelect, SelectMany\n",
|
1380
|
+
"import pykubegrader.initialize\n",
|
1381
|
+
"import panel as pn\n\n",
|
1382
|
+
"pn.extension()\n\n",
|
1383
|
+
]
|
1384
|
+
|
1385
|
+
# Ensure header lines are present
|
1386
|
+
existing_content = ensure_imports(output_file, header_lines)
|
1387
|
+
|
1388
|
+
for question_dict in data_dict:
|
1389
|
+
with open(output_file, "a", encoding="utf-8") as f:
|
1390
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1391
|
+
if i == 0:
|
1392
|
+
# Write the MCQuestion class
|
1393
|
+
f.write(
|
1394
|
+
f"class Question{q_value['question number']}(SelectMany):\n"
|
1395
|
+
)
|
1396
|
+
f.write(" def __init__(self):\n")
|
1397
|
+
f.write(" super().__init__(\n")
|
1398
|
+
f.write(f" title=f'{q_value['question_text']}',\n")
|
1399
|
+
f.write(" style=MultiSelect,\n")
|
1400
|
+
f.write(
|
1401
|
+
f" question_number={q_value['question number']},\n"
|
1402
|
+
)
|
1403
|
+
break
|
1404
|
+
|
1405
|
+
keys = []
|
1406
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1407
|
+
# Write keys
|
1408
|
+
keys.append(f"q{q_value['subquestion_number']}-{q_value['name']}")
|
1409
|
+
|
1410
|
+
f.write(f" keys={keys},\n")
|
1411
|
+
|
1412
|
+
descriptions = []
|
1413
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1414
|
+
# Write descriptions
|
1415
|
+
descriptions.append(q_value["question_text"])
|
1416
|
+
f.write(f" descriptions={descriptions},\n")
|
1417
|
+
|
1418
|
+
options = []
|
1419
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1420
|
+
# Write options
|
1421
|
+
options.append(q_value["OPTIONS"])
|
1422
|
+
|
1423
|
+
f.write(f" options={options},\n")
|
1424
|
+
|
1425
|
+
points = []
|
1426
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1427
|
+
# Write points
|
1428
|
+
points.append(q_value["points"])
|
1429
|
+
|
1430
|
+
f.write(f" points={points},\n")
|
1431
|
+
|
1432
|
+
first_key = next(iter(question_dict))
|
1433
|
+
if "grade" in question_dict[first_key]:
|
1434
|
+
grade = question_dict[first_key]["grade"]
|
1435
|
+
f.write(f" grade='{grade}',\n")
|
1436
|
+
|
1437
|
+
f.write(" )\n")
|
1438
|
+
|
1439
|
+
|
1440
|
+
def generate_tf_file(data_dict, output_file="tf_questions.py"):
|
1441
|
+
"""
|
1442
|
+
Generates a Python file defining an MCQuestion class from a dictionary.
|
1443
|
+
|
1444
|
+
Args:
|
1445
|
+
data_dict (dict): A nested dictionary containing question metadata.
|
1446
|
+
output_file (str): The path for the output Python file.
|
1447
|
+
|
1448
|
+
Returns:
|
1449
|
+
None
|
1450
|
+
"""
|
1451
|
+
|
1452
|
+
# Define header lines
|
1453
|
+
header_lines = [
|
1454
|
+
"from pykubegrader.widgets.true_false import TFQuestion, TrueFalse_style\n",
|
1455
|
+
"import pykubegrader.initialize\n",
|
1456
|
+
"import panel as pn\n\n",
|
1457
|
+
"pn.extension()\n\n",
|
1458
|
+
]
|
1459
|
+
|
1460
|
+
# Ensure header lines are present
|
1461
|
+
existing_content = ensure_imports(output_file, header_lines)
|
1462
|
+
|
1463
|
+
for question_dict in data_dict:
|
1464
|
+
with open(output_file, "a", encoding="utf-8") as f:
|
1465
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1466
|
+
if i == 0:
|
1467
|
+
# Write the MCQuestion class
|
1468
|
+
f.write(
|
1469
|
+
f"class Question{q_value['question number']}(TFQuestion):\n"
|
1470
|
+
)
|
1471
|
+
f.write(" def __init__(self):\n")
|
1472
|
+
f.write(" super().__init__(\n")
|
1473
|
+
f.write(f" title=f'{q_value['question_text']}',\n")
|
1474
|
+
f.write(" style=TrueFalse_style,\n")
|
1475
|
+
f.write(
|
1476
|
+
f" question_number={q_value['question number']},\n"
|
1477
|
+
)
|
1478
|
+
break
|
1479
|
+
|
1480
|
+
keys = []
|
1481
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1482
|
+
# Write keys
|
1483
|
+
keys.append(f"q{q_value['subquestion_number']}-{q_value['name']}")
|
1484
|
+
|
1485
|
+
f.write(f" keys={keys},\n")
|
1486
|
+
|
1487
|
+
descriptions = []
|
1488
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1489
|
+
# Write descriptions
|
1490
|
+
descriptions.append(q_value["question_text"])
|
1491
|
+
f.write(f" descriptions={descriptions},\n")
|
1492
|
+
|
1493
|
+
points = []
|
1494
|
+
for i, (q_key, q_value) in enumerate(question_dict.items()):
|
1495
|
+
# Write points
|
1496
|
+
points.append(q_value["points"])
|
1497
|
+
|
1498
|
+
f.write(f" points={points},\n")
|
1499
|
+
f.write(" )\n")
|
1500
|
+
|
1501
|
+
|
1502
|
+
def sanitize_string(input_string):
|
1503
|
+
"""
|
1504
|
+
Converts a string into a valid Python variable name.
|
1505
|
+
|
1506
|
+
Args:
|
1507
|
+
input_string (str): The string to convert.
|
1508
|
+
|
1509
|
+
Returns:
|
1510
|
+
str: A valid Python variable name.
|
1511
|
+
"""
|
1512
|
+
# Replace invalid characters with underscores
|
1513
|
+
sanitized = re.sub(r"\W|^(?=\d)", "_", input_string)
|
1514
|
+
return sanitized
|
1515
|
+
|
1516
|
+
|
1517
|
+
def main():
|
1518
|
+
parser = argparse.ArgumentParser(
|
1519
|
+
description="Recursively process Jupyter notebooks with '# ASSIGNMENT CONFIG', move them to a solutions folder, and run otter assign."
|
1520
|
+
)
|
1521
|
+
parser.add_argument(
|
1522
|
+
"root_folder", type=str, help="Path to the root folder to process"
|
1523
|
+
)
|
1524
|
+
args = parser.parse_args()
|
1525
|
+
|
1526
|
+
processor = NotebookProcessor(args.root_folder)
|
1527
|
+
processor.process_notebooks()
|
1528
|
+
|
1529
|
+
|
1530
|
+
if __name__ == "__main__":
|
1531
|
+
sys.exit(main())
|