PraisonAI 2.0.53__cp311-cp311-macosx_15_0_arm64.whl → 2.2.16__cp311-cp311-macosx_15_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of PraisonAI might be problematic. Click here for more details.

@@ -0,0 +1,306 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ This script finetunes a vision language model using Unsloth's fast training framework.
5
+ It supports vision tasks by converting raw image-caption samples into a conversation format,
6
+ adding vision-specific LoRA adapters, and training using TRL's SFTTrainer with UnslothVisionDataCollator.
7
+ """
8
+
9
+ import os
10
+ import sys
11
+ import yaml
12
+ import torch
13
+ import shutil
14
+ import subprocess
15
+ import gc # For garbage collection
16
+
17
+ from datasets import load_dataset, concatenate_datasets, Dataset
18
+ from unsloth import FastVisionModel, is_bf16_supported
19
+ from unsloth.trainer import UnslothVisionDataCollator
20
+ from transformers import TrainingArguments
21
+ from trl import SFTTrainer
22
+ from tqdm import tqdm # Add progress bar
23
+
24
+
25
+ class TrainVisionModel:
26
+ def __init__(self, config_path="config.yaml"):
27
+ self.load_config(config_path)
28
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
+ self.model = None
30
+ self.hf_tokenizer = None # The underlying tokenizer
31
+
32
+ def load_config(self, path):
33
+ with open(path, "r") as file:
34
+ self.config = yaml.safe_load(file)
35
+ print("DEBUG: Loaded config:", self.config)
36
+
37
+ def print_system_info(self):
38
+ print("DEBUG: PyTorch version:", torch.__version__)
39
+ print("DEBUG: CUDA version:", torch.version.cuda)
40
+ if torch.cuda.is_available():
41
+ print("DEBUG: CUDA Device Capability:", torch.cuda.get_device_capability())
42
+ else:
43
+ print("DEBUG: CUDA is not available")
44
+ print("DEBUG: Python Version:", sys.version)
45
+ print("DEBUG: Python Path:", sys.executable)
46
+
47
+ def check_gpu(self):
48
+ gpu_stats = torch.cuda.get_device_properties(0)
49
+ print(f"DEBUG: GPU = {gpu_stats.name}. Max memory = {round(gpu_stats.total_memory/(1024**3),3)} GB.")
50
+
51
+ def check_ram(self):
52
+ from psutil import virtual_memory
53
+ ram_gb = virtual_memory().total / 1e9
54
+ print(f"DEBUG: Your runtime has {ram_gb:.1f} gigabytes of available RAM")
55
+ if ram_gb < 20:
56
+ print("DEBUG: Not using a high-RAM runtime")
57
+ else:
58
+ print("DEBUG: You are using a high-RAM runtime!")
59
+
60
+ def prepare_model(self):
61
+ print("DEBUG: Preparing vision model and tokenizer...")
62
+ self.model, original_tokenizer = FastVisionModel.from_pretrained(
63
+ model_name=self.config["model_name"],
64
+ load_in_4bit=self.config["load_in_4bit"],
65
+ use_gradient_checkpointing="unsloth"
66
+ )
67
+ print("DEBUG: Vision model and original tokenizer loaded.")
68
+
69
+ # Use the full processor that supports image inputs.
70
+ self.hf_tokenizer = original_tokenizer
71
+
72
+ # Set pad token if needed
73
+ if not hasattr(self.hf_tokenizer, 'pad_token') or self.hf_tokenizer.pad_token is None:
74
+ if hasattr(self.hf_tokenizer, 'eos_token'):
75
+ self.hf_tokenizer.pad_token = self.hf_tokenizer.eos_token
76
+ elif hasattr(self.hf_tokenizer, 'bos_token'):
77
+ self.hf_tokenizer.pad_token = self.hf_tokenizer.bos_token
78
+
79
+ # Set max length
80
+ if hasattr(self.hf_tokenizer, 'model_max_length'):
81
+ self.hf_tokenizer.model_max_length = self.config.get("max_seq_length", 2048)
82
+
83
+ # Add vision-specific LoRA adapters
84
+ self.model = FastVisionModel.get_peft_model(
85
+ self.model,
86
+ finetune_vision_layers=self.config.get("finetune_vision_layers", False),
87
+ finetune_language_layers=self.config.get("finetune_language_layers", True),
88
+ finetune_attention_modules=self.config.get("finetune_attention_modules", True),
89
+ finetune_mlp_modules=self.config.get("finetune_mlp_modules", True),
90
+ r=16,
91
+ lora_alpha=16,
92
+ lora_dropout=0,
93
+ bias="none",
94
+ random_state=3407,
95
+ use_rslora=False,
96
+ loftq_config=None
97
+ )
98
+ print("DEBUG: Vision LoRA adapters added.")
99
+
100
+ def convert_sample(self, sample):
101
+
102
+ instruction = self.config.get(
103
+ "vision_instruction",
104
+ "You are an expert radiographer. Describe accurately what you see in this image."
105
+ )
106
+ conversation = [
107
+ {
108
+ "role": "user",
109
+ "content": [
110
+ {"type": "text", "text": instruction},
111
+ {"type": "image", "image": sample["image"]}
112
+ ]
113
+ },
114
+ {
115
+ "role": "assistant",
116
+ "content": [
117
+ {"type": "text", "text": sample["caption"]}
118
+ ]
119
+ },
120
+ ]
121
+
122
+ return {"messages": conversation}
123
+
124
+ def load_datasets(self):
125
+ all_converted = []
126
+ for dataset_info in self.config["dataset"]:
127
+ print("\nDEBUG: Loading vision dataset:", dataset_info)
128
+ ds = load_dataset(
129
+ dataset_info["name"],
130
+ split=dataset_info.get("split_type", "train")
131
+ )
132
+ print("DEBUG: Dataset size:", len(ds))
133
+ print("DEBUG: First raw sample:", ds[0])
134
+ print("DEBUG: Dataset features:", ds.features)
135
+
136
+ print("\nDEBUG: Converting dataset to vision conversation format...")
137
+ converted_ds = [self.convert_sample(sample) for sample in ds]
138
+
139
+ # Debug first converted sample
140
+ print("\nDEBUG: First converted sample structure:")
141
+ first = converted_ds[0]
142
+ print("DEBUG: Message keys:", first["messages"][0]["content"][1].keys())
143
+ print("DEBUG: Image type in converted:", type(first["messages"][0]["content"][1].get("image")))
144
+
145
+ all_converted.extend(converted_ds)
146
+
147
+ print("\nDEBUG: Combined vision dataset has", len(all_converted), "examples.")
148
+ return all_converted
149
+
150
+ def train_model(self):
151
+ print("DEBUG: Starting vision training...")
152
+ raw_dataset = self.load_datasets()
153
+
154
+ # Build training arguments using TrainingArguments
155
+ training_args = TrainingArguments(
156
+ per_device_train_batch_size=self.config.get("per_device_train_batch_size", 1),
157
+ gradient_accumulation_steps=self.config.get("gradient_accumulation_steps", 4),
158
+ warmup_steps=self.config.get("warmup_steps", 5),
159
+ max_steps=self.config.get("max_steps", 30),
160
+ learning_rate=self.config.get("learning_rate", 2e-4),
161
+ fp16=self.config.get("fp16", not is_bf16_supported()),
162
+ bf16=self.config.get("bf16", is_bf16_supported()),
163
+ logging_steps=self.config.get("logging_steps", 1),
164
+ optim=self.config.get("optim", "adamw_8bit"),
165
+ weight_decay=self.config.get("weight_decay", 0.01),
166
+ lr_scheduler_type=self.config.get("lr_scheduler_type", "linear"),
167
+ seed=self.config.get("seed", 3407),
168
+ output_dir=self.config.get("output_dir", "outputs"),
169
+ report_to="none" if not os.getenv("PRAISON_WANDB") else "wandb",
170
+ remove_unused_columns=False,
171
+ # Add memory optimization settings
172
+ gradient_checkpointing=True,
173
+ max_grad_norm=1.0,
174
+ )
175
+
176
+ trainer = SFTTrainer(
177
+ model=self.model,
178
+ tokenizer=self.hf_tokenizer,
179
+ data_collator=UnslothVisionDataCollator(self.model, self.hf_tokenizer),
180
+ train_dataset=raw_dataset,
181
+ args=training_args,
182
+ max_seq_length=self.config.get("max_seq_length", 2048),
183
+ dataset_text_field="", # Required for vision training
184
+ dataset_kwargs={"skip_prepare_dataset": True}, # Required for vision training
185
+ packing=False # Explicitly set packing to False
186
+ )
187
+ print("DEBUG: Beginning vision trainer.train() ...")
188
+ trainer.train()
189
+ print("DEBUG: Vision training complete. Saving model and tokenizer locally...")
190
+ self.model.save_pretrained("lora_vision_model")
191
+ self.hf_tokenizer.save_pretrained("lora_vision_model")
192
+ print("DEBUG: Saved vision model and tokenizer to 'lora_vision_model'.")
193
+
194
+ def vision_inference(self, instruction, image):
195
+ FastVisionModel.for_inference(self.model)
196
+ messages = [
197
+ {"role": "user", "content": [
198
+ {"type": "image"},
199
+ {"type": "text", "text": instruction}
200
+ ]}
201
+ ]
202
+ input_text = self.hf_tokenizer.apply_chat_template(messages, add_generation_prompt=True)
203
+ inputs = self.hf_tokenizer(
204
+ image,
205
+ input_text,
206
+ add_special_tokens=False,
207
+ return_tensors="pt"
208
+ ).to("cuda")
209
+ outputs = self.model.generate(
210
+ **inputs,
211
+ max_new_tokens=128,
212
+ use_cache=True,
213
+ temperature=1.5,
214
+ min_p=0.1
215
+ )
216
+ print("DEBUG: Vision inference output:", self.hf_tokenizer.batch_decode(outputs))
217
+
218
+ def save_model_merged(self):
219
+ if os.path.exists(self.config["hf_model_name"]):
220
+ shutil.rmtree(self.config["hf_model_name"])
221
+ self.model.push_to_hub_merged(
222
+ self.config["hf_model_name"],
223
+ self.hf_tokenizer,
224
+ save_method="merged_16bit",
225
+ token=os.getenv("HF_TOKEN")
226
+ )
227
+
228
+ def push_model_gguf(self):
229
+ self.model.push_to_hub_gguf(
230
+ self.config["hf_model_name"],
231
+ self.hf_tokenizer,
232
+ quantization_method=self.config.get("quantization_method", "q4_k_m"),
233
+ token=os.getenv("HF_TOKEN")
234
+ )
235
+
236
+ def save_model_gguf(self):
237
+ self.model.save_pretrained_gguf(
238
+ self.config["hf_model_name"],
239
+ self.hf_tokenizer,
240
+ quantization_method="q4_k_m"
241
+ )
242
+
243
+ def prepare_modelfile_content(self):
244
+ output_model = self.config["hf_model_name"]
245
+
246
+ template = '''{{- range $index, $_ := .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
247
+
248
+ {{ .Content }}
249
+ {{- if gt (len (slice $.Messages $index)) 1 }}<|eot_id|>
250
+ {{- else if ne .Role "assistant" }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
251
+
252
+ {{ end }}
253
+ {{- end }}'''
254
+
255
+ return f"""FROM {output_model}
256
+ TEMPLATE {template}
257
+ PARAMETER temperature 0.6
258
+ PARAMETER top_p 0.9
259
+ """
260
+
261
+ def create_and_push_ollama_model(self):
262
+ modelfile_content = self.prepare_modelfile_content()
263
+ with open("Modelfile", "w") as file:
264
+ file.write(modelfile_content)
265
+ subprocess.run(["ollama", "serve"])
266
+ subprocess.run(["ollama", "create", f"{self.config['ollama_model']}:{self.config['model_parameters']}", "-f", "Modelfile"])
267
+ subprocess.run(["ollama", "push", f"{self.config['ollama_model']}:{self.config['model_parameters']}"])
268
+
269
+ def run(self):
270
+ self.print_system_info()
271
+ self.check_gpu()
272
+ self.check_ram()
273
+ if self.config.get("train", "true").lower() == "true":
274
+ self.prepare_model()
275
+ self.train_model()
276
+ if self.config.get("huggingface_save", "true").lower() == "true":
277
+ self.save_model_merged()
278
+ if self.config.get("huggingface_save_gguf", "true").lower() == "true":
279
+ self.push_model_gguf()
280
+ if self.config.get("ollama_save", "true").lower() == "true":
281
+ self.create_and_push_ollama_model()
282
+
283
+
284
+ def main():
285
+ import argparse
286
+ parser = argparse.ArgumentParser(description="PraisonAI Vision Training Script")
287
+ parser.add_argument("command", choices=["train", "inference"], help="Command to execute")
288
+ parser.add_argument("--config", default="config.yaml", help="Path to configuration file")
289
+ args = parser.parse_args()
290
+
291
+ trainer_obj = TrainVisionModel(config_path=args.config)
292
+ if args.command == "train":
293
+ trainer_obj.run()
294
+ elif args.command == "inference":
295
+ # For inference, we load a sample image from the first dataset
296
+ instr = trainer_obj.config.get("vision_instruction", "You are an expert radiographer. Describe accurately what you see in this image.")
297
+ ds_info = trainer_obj.config["dataset"][0]
298
+ ds = load_dataset(ds_info["name"], split=ds_info.get("split_type", "train"))
299
+ sample_image = ds[0]["image"]
300
+ if trainer_obj.model is None or trainer_obj.hf_tokenizer is None:
301
+ trainer_obj.prepare_model()
302
+ trainer_obj.vision_inference(instr, sample_image)
303
+
304
+
305
+ if __name__ == "__main__":
306
+ main()
praisonai/ui/code.py CHANGED
@@ -100,7 +100,8 @@ async def start():
100
100
  )
101
101
  cl.user_session.set("settings", settings)
102
102
  await settings.send()
103
- gatherer = ContextGatherer()
103
+ repo_path_to_use = os.environ.get("PRAISONAI_CODE_REPO_PATH", ".")
104
+ gatherer = ContextGatherer(directory=repo_path_to_use)
104
105
  context, token_count, context_tree = gatherer.run()
105
106
  msg = cl.Message(content="""Token Count: {token_count},
106
107
  Files include: \n```bash\n{context_tree}\n"""
@@ -200,7 +201,8 @@ tools = [{
200
201
  async def main(message: cl.Message):
201
202
  model_name = load_setting("model_name") or os.getenv("MODEL_NAME") or "gpt-4o-mini"
202
203
  message_history = cl.user_session.get("message_history", [])
203
- gatherer = ContextGatherer()
204
+ repo_path_to_use = os.environ.get("PRAISONAI_CODE_REPO_PATH", ".")
205
+ gatherer = ContextGatherer(directory=repo_path_to_use)
204
206
  context, token_count, context_tree = gatherer.run()
205
207
  now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
206
208
 
@@ -70,7 +70,7 @@ class SQLAlchemyDataLayer(BaseDataLayer):
70
70
  logger.info("SQLAlchemyDataLayer storage client initialized")
71
71
  else:
72
72
  self.storage_provider = None
73
- logger.warn(
73
+ logger.warning(
74
74
  "SQLAlchemyDataLayer storage client is not initialized and elements will not be persisted!"
75
75
  )
76
76
 
@@ -98,11 +98,11 @@ class SQLAlchemyDataLayer(BaseDataLayer):
98
98
  return result.rowcount
99
99
  except SQLAlchemyError as e:
100
100
  await session.rollback()
101
- logger.warn(f"An error occurred: {e}")
101
+ logger.warning(f"An error occurred: {e}")
102
102
  return None
103
103
  except Exception as e:
104
104
  await session.rollback()
105
- logger.warn(f"An unexpected error occurred: {e}")
105
+ logger.warning(f"An unexpected error occurred: {e}")
106
106
  return None
107
107
 
108
108
  async def get_current_timestamp(self) -> str:
@@ -456,7 +456,7 @@ class SQLAlchemyDataLayer(BaseDataLayer):
456
456
  logger.info(f"SQLAlchemy: create_element, element_id = {element.id}")
457
457
 
458
458
  if not self.storage_provider:
459
- logger.warn("SQLAlchemy: create_element error. No storage client!")
459
+ logger.warning("SQLAlchemy: create_element error. No storage client!")
460
460
  return
461
461
  if not element.for_id:
462
462
  return
@@ -0,0 +1,140 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ This script handles uploading trained vision models to Hugging Face and Ollama.
5
+ It reads configuration from config.yaml and provides options to upload in different formats.
6
+ """
7
+
8
+ import os
9
+ import yaml
10
+ import torch
11
+ import shutil
12
+ import subprocess
13
+ from unsloth import FastVisionModel
14
+
15
+ class UploadVisionModel:
16
+ def __init__(self, config_path="config.yaml"):
17
+ self.load_config(config_path)
18
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
+ self.model = None
20
+ self.hf_tokenizer = None
21
+
22
+ def load_config(self, path):
23
+ """Load configuration from yaml file."""
24
+ with open(path, "r") as file:
25
+ self.config = yaml.safe_load(file)
26
+ print("DEBUG: Loaded config:", self.config)
27
+
28
+ def prepare_model(self):
29
+ """Load the trained model for uploading."""
30
+ print("DEBUG: Loading trained model and tokenizer...")
31
+ self.model, original_tokenizer = FastVisionModel.from_pretrained(
32
+ model_name=self.config.get("output_dir", "lora_model"),
33
+ load_in_4bit=self.config.get("load_in_4bit", True)
34
+ )
35
+ self.hf_tokenizer = original_tokenizer
36
+ print("DEBUG: Model and tokenizer loaded successfully.")
37
+
38
+ def save_model_merged(self):
39
+ """Save merged model to Hugging Face Hub."""
40
+ print(f"DEBUG: Saving merged model to Hugging Face Hub: {self.config['hf_model_name']}")
41
+ if os.path.exists(self.config["hf_model_name"]):
42
+ shutil.rmtree(self.config["hf_model_name"])
43
+ self.model.push_to_hub_merged(
44
+ self.config["hf_model_name"],
45
+ self.hf_tokenizer,
46
+ save_method="merged_16bit",
47
+ token=os.getenv("HF_TOKEN")
48
+ )
49
+ print("DEBUG: Model saved to Hugging Face Hub successfully.")
50
+
51
+ def push_model_gguf(self):
52
+ """Push model in GGUF format to Hugging Face Hub."""
53
+ print(f"DEBUG: Pushing GGUF model to Hugging Face Hub: {self.config['hf_model_name']}")
54
+ self.model.push_to_hub_gguf(
55
+ self.config["hf_model_name"],
56
+ self.hf_tokenizer,
57
+ quantization_method=self.config.get("quantization_method", "q4_k_m"),
58
+ token=os.getenv("HF_TOKEN")
59
+ )
60
+ print("DEBUG: GGUF model pushed to Hugging Face Hub successfully.")
61
+
62
+ def prepare_modelfile_content(self):
63
+ """Prepare Ollama modelfile content using Llama 3.2 vision template."""
64
+ output_model = self.config["hf_model_name"]
65
+
66
+ # Using Llama 3.2 vision template format
67
+ template = """{{- range $index, $_ := .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
68
+
69
+ {{ .Content }}
70
+ {{- if gt (len (slice $.Messages $index)) 1 }}<|eot_id|>
71
+ {{- else if ne .Role "assistant" }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
72
+
73
+ {{ end }}
74
+ {{- end }}"""
75
+
76
+ # Assemble the modelfile content with Llama 3.2 vision parameters
77
+ modelfile = f"FROM {output_model}\n"
78
+ modelfile += "TEMPLATE \"""" + template + "\"""\n"
79
+ modelfile += "PARAMETER temperature 0.6\n"
80
+ modelfile += "PARAMETER top_p 0.9\n"
81
+ return modelfile
82
+
83
+ def create_and_push_ollama_model(self):
84
+ """Create and push model to Ollama."""
85
+ print(f"DEBUG: Creating Ollama model: {self.config['ollama_model']}:{self.config['model_parameters']}")
86
+ modelfile_content = self.prepare_modelfile_content()
87
+ with open("Modelfile", "w") as file:
88
+ file.write(modelfile_content)
89
+
90
+ print("DEBUG: Starting Ollama server...")
91
+ subprocess.run(["ollama", "serve"])
92
+
93
+ print("DEBUG: Creating Ollama model...")
94
+ subprocess.run([
95
+ "ollama", "create",
96
+ f"{self.config['ollama_model']}:{self.config['model_parameters']}",
97
+ "-f", "Modelfile"
98
+ ])
99
+
100
+ print("DEBUG: Pushing model to Ollama...")
101
+ subprocess.run([
102
+ "ollama", "push",
103
+ f"{self.config['ollama_model']}:{self.config['model_parameters']}"
104
+ ])
105
+ print("DEBUG: Model pushed to Ollama successfully.")
106
+
107
+ def upload(self, target="all"):
108
+ """
109
+ Upload the model to specified targets.
110
+ Args:
111
+ target (str): One of 'all', 'huggingface', 'huggingface_gguf', or 'ollama'
112
+ """
113
+ self.prepare_model()
114
+
115
+ if target in ["all", "huggingface"]:
116
+ self.save_model_merged()
117
+
118
+ if target in ["all", "huggingface_gguf"]:
119
+ self.push_model_gguf()
120
+
121
+ if target in ["all", "ollama"]:
122
+ self.create_and_push_ollama_model()
123
+
124
+ def main():
125
+ import argparse
126
+ parser = argparse.ArgumentParser(description="Upload Vision Model to Various Platforms")
127
+ parser.add_argument("--config", default="config.yaml", help="Path to configuration file")
128
+ parser.add_argument(
129
+ "--target",
130
+ choices=["all", "huggingface", "huggingface_gguf", "ollama"],
131
+ default="all",
132
+ help="Target platform to upload to"
133
+ )
134
+ args = parser.parse_args()
135
+
136
+ uploader = UploadVisionModel(config_path=args.config)
137
+ uploader.upload(target=args.target)
138
+
139
+ if __name__ == "__main__":
140
+ main()
@@ -0,0 +1,103 @@
1
+ Metadata-Version: 2.3
2
+ Name: PraisonAI
3
+ Version: 2.2.16
4
+ Summary: PraisonAI is an AI Agents Framework with Self Reflection. PraisonAI application combines PraisonAI Agents, AutoGen, and CrewAI into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.
5
+ Author: Mervin Praison
6
+ Requires-Python: >=3.10,<3.13
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: Programming Language :: Python :: 3.10
9
+ Classifier: Programming Language :: Python :: 3.11
10
+ Classifier: Programming Language :: Python :: 3.12
11
+ Provides-Extra: agentops
12
+ Provides-Extra: anthropic
13
+ Provides-Extra: api
14
+ Provides-Extra: autogen
15
+ Provides-Extra: call
16
+ Provides-Extra: chat
17
+ Provides-Extra: code
18
+ Provides-Extra: cohere
19
+ Provides-Extra: crewai
20
+ Provides-Extra: google
21
+ Provides-Extra: gradio
22
+ Provides-Extra: openai
23
+ Provides-Extra: realtime
24
+ Provides-Extra: ui
25
+ Requires-Dist: PyYAML (>=6.0)
26
+ Requires-Dist: agentops (>=0.3.12) ; extra == "agentops"
27
+ Requires-Dist: aiosqlite (>=0.20.0) ; extra == "chat"
28
+ Requires-Dist: aiosqlite (>=0.20.0) ; extra == "code"
29
+ Requires-Dist: aiosqlite (>=0.20.0) ; extra == "realtime"
30
+ Requires-Dist: aiosqlite (>=0.20.0) ; extra == "ui"
31
+ Requires-Dist: chainlit (==2.5.5) ; extra == "chat"
32
+ Requires-Dist: chainlit (==2.5.5) ; extra == "code"
33
+ Requires-Dist: chainlit (==2.5.5) ; extra == "realtime"
34
+ Requires-Dist: chainlit (==2.5.5) ; extra == "ui"
35
+ Requires-Dist: crawl4ai (>=0.6.0) ; extra == "chat"
36
+ Requires-Dist: crawl4ai (>=0.6.0) ; extra == "code"
37
+ Requires-Dist: crawl4ai (>=0.6.0) ; extra == "realtime"
38
+ Requires-Dist: crewai (>=0.32.0) ; extra == "crewai"
39
+ Requires-Dist: crewai ; extra == "autogen"
40
+ Requires-Dist: duckduckgo_search (>=6.3.0) ; extra == "realtime"
41
+ Requires-Dist: fastapi (>=0.115.0) ; extra == "api"
42
+ Requires-Dist: fastapi (>=0.95.0) ; extra == "call"
43
+ Requires-Dist: flaml[automl] (>=2.3.1) ; extra == "call"
44
+ Requires-Dist: flask (>=3.0.0) ; extra == "api"
45
+ Requires-Dist: gradio (>=4.26.0) ; extra == "gradio"
46
+ Requires-Dist: greenlet (>=3.0.3) ; extra == "chat"
47
+ Requires-Dist: greenlet (>=3.0.3) ; extra == "code"
48
+ Requires-Dist: greenlet (>=3.0.3) ; extra == "realtime"
49
+ Requires-Dist: greenlet (>=3.0.3) ; extra == "ui"
50
+ Requires-Dist: instructor (>=1.3.3)
51
+ Requires-Dist: langchain-anthropic (>=0.3.0) ; extra == "anthropic"
52
+ Requires-Dist: langchain-cohere (>=0.3.0,<0.4.0) ; extra == "cohere"
53
+ Requires-Dist: langchain-google-genai (>=2.1.0) ; extra == "google"
54
+ Requires-Dist: langchain-openai (>=0.2.1,<0.3.0) ; extra == "openai"
55
+ Requires-Dist: litellm (>=1.68.0) ; extra == "chat"
56
+ Requires-Dist: litellm (>=1.68.0) ; extra == "code"
57
+ Requires-Dist: litellm (>=1.68.0) ; extra == "realtime"
58
+ Requires-Dist: markdown (>=3.5)
59
+ Requires-Dist: mcp (>=1.6.0)
60
+ Requires-Dist: openai (>=1.54.0) ; extra == "call"
61
+ Requires-Dist: playwright (>=1.47.0) ; extra == "chat"
62
+ Requires-Dist: playwright (>=1.47.0) ; extra == "code"
63
+ Requires-Dist: plotly (>=5.24.0) ; extra == "realtime"
64
+ Requires-Dist: praisonai-tools (>=0.0.15) ; extra == "autogen"
65
+ Requires-Dist: praisonai-tools (>=0.0.15) ; extra == "crewai"
66
+ Requires-Dist: praisonaiagents (>=0.0.89)
67
+ Requires-Dist: pyautogen (>=0.2.19) ; extra == "autogen"
68
+ Requires-Dist: pydantic (<=2.10.1) ; extra == "chat"
69
+ Requires-Dist: pydantic (<=2.10.1) ; extra == "code"
70
+ Requires-Dist: pydantic (<=2.10.1) ; extra == "ui"
71
+ Requires-Dist: pyngrok (>=1.4.0) ; extra == "call"
72
+ Requires-Dist: pyparsing (>=3.0.0)
73
+ Requires-Dist: python-dotenv (>=0.19.0)
74
+ Requires-Dist: rich (>=13.7)
75
+ Requires-Dist: rich ; extra == "call"
76
+ Requires-Dist: rich ; extra == "chat"
77
+ Requires-Dist: sqlalchemy (>=2.0.36) ; extra == "chat"
78
+ Requires-Dist: sqlalchemy (>=2.0.36) ; extra == "code"
79
+ Requires-Dist: sqlalchemy (>=2.0.36) ; extra == "realtime"
80
+ Requires-Dist: sqlalchemy (>=2.0.36) ; extra == "ui"
81
+ Requires-Dist: tavily-python (==0.5.0) ; extra == "chat"
82
+ Requires-Dist: tavily-python (==0.5.0) ; extra == "code"
83
+ Requires-Dist: tavily-python (==0.5.0) ; extra == "realtime"
84
+ Requires-Dist: twilio (>=7.0.0) ; extra == "call"
85
+ Requires-Dist: uvicorn (>=0.20.0) ; extra == "call"
86
+ Requires-Dist: uvicorn (>=0.34.0) ; extra == "api"
87
+ Requires-Dist: websockets (>=12.0) ; extra == "call"
88
+ Requires-Dist: websockets (>=12.0) ; extra == "realtime"
89
+ Requires-Dist: yfinance (>=0.2.44) ; extra == "realtime"
90
+ Project-URL: Homepage, https://docs.praison.ai
91
+ Project-URL: Repository, https://github.com/mervinpraison/PraisonAI
92
+ Description-Content-Type: text/markdown
93
+
94
+ # PraisonAI Package
95
+
96
+ This is the PraisonAI package, which serves as a wrapper for PraisonAIAgents.
97
+
98
+ It provides a simple and intuitive interface for working with AI agents and their capabilities.
99
+
100
+ ## Directory Structure
101
+
102
+ The main package code is located in the `praisonai` subdirectory.
103
+