PraisonAI 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of PraisonAI might be problematic. Click here for more details.

praisonAI/__init__.py ADDED
@@ -0,0 +1 @@
1
+ from .version import __version__
praisonAI/__main__.py ADDED
@@ -0,0 +1,4 @@
1
+ from .cli import main
2
+
3
+ if __name__ == "__main__":
4
+ main()
praisonAI/cli.py ADDED
@@ -0,0 +1,114 @@
1
+ import sys
2
+ from .version import __version__
3
+ import yaml, os
4
+ from rich import print
5
+ from dotenv import load_dotenv
6
+ from crewai import Agent, Task, Crew
7
+ load_dotenv()
8
+ import autogen
9
+ config_list = [
10
+ {
11
+ 'model': os.environ.get("OPENAI_MODEL_NAME", "gpt-3.5-turbo"),
12
+ 'base_url': os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
13
+ }
14
+ ]
15
+
16
+ def generate_crew_and_kickoff(agent_file, framework=None):
17
+ with open(agent_file, 'r') as f:
18
+ config = yaml.safe_load(f)
19
+
20
+ topic = config['topic']
21
+ framework = framework or config.get('framework')
22
+
23
+ agents = {}
24
+ tasks = []
25
+ if framework == "autogen":
26
+ # Load the LLM configuration dynamically
27
+ print(config_list)
28
+ llm_config = {"config_list": config_list}
29
+
30
+ for role, details in config['roles'].items():
31
+ agent_name = details['role'].format(topic=topic).replace("{topic}", topic)
32
+ agent_goal = details['goal'].format(topic=topic)
33
+ # Creating an AssistantAgent for each role dynamically
34
+ agents[role] = autogen.AssistantAgent(
35
+ name=agent_name,
36
+ llm_config=llm_config,
37
+ system_message=details['backstory'].format(topic=topic)+". Reply \"TERMINATE\" in the end when everything is done.",
38
+ )
39
+
40
+ # Preparing tasks for initiate_chats
41
+ for task_name, task_details in details.get('tasks', {}).items():
42
+ description_filled = task_details['description'].format(topic=topic)
43
+ expected_output_filled = task_details['expected_output'].format(topic=topic)
44
+
45
+ chat_task = {
46
+ "recipient": agents[role],
47
+ "message": description_filled,
48
+ "summary_method": "last_msg", # Customize as needed
49
+ # Additional fields like carryover can be added based on dependencies
50
+ }
51
+ tasks.append(chat_task)
52
+
53
+ # Assuming the user proxy agent is set up as per your requirements
54
+ user = autogen.UserProxyAgent(
55
+ name="User",
56
+ human_input_mode="NEVER",
57
+ is_termination_msg=lambda x: (x.get("content") or "").rstrip().endswith("TERMINATE"),
58
+ code_execution_config={
59
+ "work_dir": "coding",
60
+ "use_docker": False,
61
+ },
62
+ # additional setup for the user proxy agent
63
+ )
64
+ response = user.initiate_chats(tasks)
65
+ result = "### Output ###\n"+response[-1].summary if hasattr(response[-1], 'summary') else ""
66
+ else:
67
+ for role, details in config['roles'].items():
68
+ role_filled = details['role'].format(topic=topic)
69
+ goal_filled = details['goal'].format(topic=topic)
70
+ backstory_filled = details['backstory'].format(topic=topic)
71
+
72
+ # Assume tools are loaded and handled here as per your requirements
73
+ agent = Agent(role=role_filled, goal=goal_filled, backstory=backstory_filled)
74
+ agents[role] = agent
75
+
76
+ for task_name, task_details in details.get('tasks', {}).items():
77
+ description_filled = task_details['description'].format(topic=topic)
78
+ expected_output_filled = task_details['expected_output'].format(topic=topic)
79
+
80
+ task = Task(description=description_filled, expected_output=expected_output_filled, agent=agent)
81
+ tasks.append(task)
82
+
83
+ crew = Crew(
84
+ agents=list(agents.values()),
85
+ tasks=tasks,
86
+ verbose=2
87
+ )
88
+
89
+ result = crew.kickoff()
90
+ return result
91
+
92
+ def main(args=None):
93
+ if args is None:
94
+ args = sys.argv[1:] # Skip the script name
95
+
96
+ invocation_cmd = "praisonai"
97
+ version_string = f"PraisonAI version {__version__}"
98
+ framework = "crewai" # Default framework
99
+
100
+ if "--framework" in args:
101
+ framework_index = args.index("--framework")
102
+ framework = args[framework_index + 1]
103
+ args = args[:framework_index] + args[framework_index + 2:]
104
+
105
+ if args:
106
+ agent_file = args[-1] # Assuming the last argument is the agent file
107
+ else:
108
+ agent_file = "agents.yaml"
109
+
110
+ result = generate_crew_and_kickoff(agent_file, framework)
111
+ print(result)
112
+
113
+ if __name__ == "__main__":
114
+ main()
praisonAI/test.py ADDED
@@ -0,0 +1,93 @@
1
+ import yaml, os
2
+ from rich import print
3
+ from dotenv import load_dotenv
4
+ from crewai import Agent, Task, Crew
5
+ load_dotenv()
6
+ import autogen
7
+ config_list = [
8
+ {
9
+ 'model': os.environ.get("OPENAI_MODEL_NAME", "gpt-3.5-turbo"),
10
+ 'base_url': os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
11
+ }
12
+ ]
13
+
14
+ def generate_crew_and_kickoff(agent_file):
15
+ with open(agent_file, 'r') as f:
16
+ config = yaml.safe_load(f)
17
+
18
+ topic = config['topic']
19
+ framework = config['framework']
20
+
21
+ agents = {}
22
+ tasks = []
23
+ if framework == "autogen":
24
+ # Load the LLM configuration dynamically
25
+ print(config_list)
26
+ llm_config = {"config_list": config_list}
27
+
28
+ for role, details in config['roles'].items():
29
+ agent_name = details['role'].format(topic=topic).replace("{topic}", topic)
30
+ agent_goal = details['goal'].format(topic=topic)
31
+ # Creating an AssistantAgent for each role dynamically
32
+ agents[role] = autogen.AssistantAgent(
33
+ name=agent_name,
34
+ llm_config=llm_config,
35
+ system_message=details['backstory'].format(topic=topic)+". Reply \"TERMINATE\" in the end when everything is done.",
36
+ )
37
+
38
+ # Preparing tasks for initiate_chats
39
+ for task_name, task_details in details.get('tasks', {}).items():
40
+ description_filled = task_details['description'].format(topic=topic)
41
+ expected_output_filled = task_details['expected_output'].format(topic=topic)
42
+
43
+ chat_task = {
44
+ "recipient": agents[role],
45
+ "message": description_filled,
46
+ "summary_method": "last_msg", # Customize as needed
47
+ # Additional fields like carryover can be added based on dependencies
48
+ }
49
+ tasks.append(chat_task)
50
+
51
+ # Assuming the user proxy agent is set up as per your requirements
52
+ user = autogen.UserProxyAgent(
53
+ name="User",
54
+ human_input_mode="NEVER",
55
+ is_termination_msg=lambda x: (x.get("content") or "").rstrip().endswith("TERMINATE"),
56
+ code_execution_config={
57
+ "work_dir": "coding",
58
+ "use_docker": False,
59
+ },
60
+ # additional setup for the user proxy agent
61
+ )
62
+ response = user.initiate_chats(tasks)
63
+ result = "### Output ###\n"+response[-1].summary if hasattr(response[-1], 'summary') else ""
64
+ else:
65
+ for role, details in config['roles'].items():
66
+ role_filled = details['role'].format(topic=topic)
67
+ goal_filled = details['goal'].format(topic=topic)
68
+ backstory_filled = details['backstory'].format(topic=topic)
69
+
70
+ # Assume tools are loaded and handled here as per your requirements
71
+ agent = Agent(role=role_filled, goal=goal_filled, backstory=backstory_filled)
72
+ agents[role] = agent
73
+
74
+ for task_name, task_details in details.get('tasks', {}).items():
75
+ description_filled = task_details['description'].format(topic=topic)
76
+ expected_output_filled = task_details['expected_output'].format(topic=topic)
77
+
78
+ task = Task(description=description_filled, expected_output=expected_output_filled, agent=agent)
79
+ tasks.append(task)
80
+
81
+ crew = Crew(
82
+ agents=list(agents.values()),
83
+ tasks=tasks,
84
+ verbose=2
85
+ )
86
+
87
+ result = crew.kickoff()
88
+ return result
89
+
90
+ if __name__ == "__main__":
91
+ agent_file = "agents.yaml"
92
+ result = generate_crew_and_kickoff(agent_file)
93
+ print(result)
praisonAI/version.py ADDED
@@ -0,0 +1 @@
1
+ __version__ = "0.0.1"
@@ -0,0 +1,22 @@
1
+ Metadata-Version: 2.1
2
+ Name: praisonAI
3
+ Version: 0.0.1
4
+ Summary: praisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customization, and efficient human-agent collaboration.
5
+ Author: Mervin Praison
6
+ Description-Content-Type: text/markdown
7
+
8
+ # Praison AI
9
+
10
+ Praison AI, leveraging both AutoGen and CrewAI or any other agent framework, represents a low-code, centralised framework designed to simplify the creation and orchestration of multi-agent systems for various LLM applications, emphasizing ease of use, customization, and human-agent interaction.
11
+
12
+ ## Installation
13
+
14
+ ```bash
15
+ pip install praisonai
16
+ ```
17
+
18
+ ## Run
19
+
20
+ ```bash
21
+ praisonai
22
+ ```
@@ -0,0 +1,9 @@
1
+ praisonAI/__init__.py,sha256=8zLGg-DfQhnDl2Ky0n-zXpN-8e-g7iR0AcaI4l4Vvpk,32
2
+ praisonAI/__main__.py,sha256=0g3iknXOS9gZUcpL_trgAcuCJnZZKjdsT_xt61WOVb4,60
3
+ praisonAI/cli.py,sha256=OQYvURs2HCxoUruhAhkolqSAnx7kXxaeg2XzUPZMwIw,4345
4
+ praisonAI/test.py,sha256=4bAqitWeywjZtxoOAdcBTLaYDRflZH3LSYtOpWrZBI4,3707
5
+ praisonAI/version.py,sha256=ugyuFliEqtAwQmH4sTlc16YXKYbFWDmfyk87fErB8-8,21
6
+ praisonAI-0.0.1.dist-info/METADATA,sha256=nHYm4Z2hEsqYeEDZs5N8_UfCTIip9Bj4adIiGIGhto4,747
7
+ praisonAI-0.0.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
8
+ praisonAI-0.0.1.dist-info/top_level.txt,sha256=7tEg2pqQqKr4CaCDaFHktvbpEswYcW-pHXGrAwY-6qk,10
9
+ praisonAI-0.0.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.43.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ praisonAI