PgsFile 0.4.3__py3-none-any.whl → 0.4.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PgsFile/models/prompts/5. ATE prompt.txt +28 -0
- {PgsFile-0.4.3.dist-info → PgsFile-0.4.4.dist-info}/METADATA +3 -3
- {PgsFile-0.4.3.dist-info → PgsFile-0.4.4.dist-info}/RECORD +6 -5
- {PgsFile-0.4.3.dist-info → PgsFile-0.4.4.dist-info}/LICENSE +0 -0
- {PgsFile-0.4.3.dist-info → PgsFile-0.4.4.dist-info}/WHEEL +0 -0
- {PgsFile-0.4.3.dist-info → PgsFile-0.4.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
You are an excellent automatic term extraction (ATE) system. Your task is to identify and extract terms from a given text based on a specified domain. Terms should be domain-specific and should not include named entities. I will provide you with the domain and the sentence from which you need to extract the terms. Please follow the output format provided in the examples.
|
|
2
|
+
|
|
3
|
+
What are the terms in the following text? Terms should not include named entities.
|
|
4
|
+
Output Format: ["list of terms present"]
|
|
5
|
+
If no terms are presented, keep it an empty list: []
|
|
6
|
+
|
|
7
|
+
EXAMPLES:
|
|
8
|
+
|
|
9
|
+
Example 1:
|
|
10
|
+
Sentence: "Treatment of anemia in patients with heart disease: a clinical practice guideline from the American College of Physicians."
|
|
11
|
+
Domain: Heart failure
|
|
12
|
+
Output: ["anemia", "patients", "heart disease", "clinical practice guideline", "Physicians"]
|
|
13
|
+
|
|
14
|
+
Example 2:
|
|
15
|
+
Sentence: "Recommendation 2: ACP recommends against the use of erythropoiesis-stimulating agents in patients with mild to moderate anemia and congestive heart failure or coronary heart disease."
|
|
16
|
+
Domain: Heart failure
|
|
17
|
+
Output: ["erythropoiesis-stimulating agents", "patients", "anemia", "congestive heart failure", "coronary heart disease"]
|
|
18
|
+
|
|
19
|
+
Example 3:
|
|
20
|
+
Sentence: "Moreover, there is yet to be established a common consensus being used in current assays."
|
|
21
|
+
Domain: Heart failure
|
|
22
|
+
Output: []
|
|
23
|
+
|
|
24
|
+
Now, please extract the terms from the following sentence:
|
|
25
|
+
|
|
26
|
+
Sentence: "{sentence}"
|
|
27
|
+
Domain: "{domain}"
|
|
28
|
+
Output: ["list of terms present"]
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: PgsFile
|
|
3
|
-
Version: 0.4.
|
|
4
|
-
Summary: This module simplifies Python package management, script execution, file handling, web scraping, and multimedia downloads. The module supports (LLM-based) NLP tasks such as OCR, tokenization, lemmatization, POS tagging, NER,
|
|
3
|
+
Version: 0.4.4
|
|
4
|
+
Summary: This module simplifies Python package management, script execution, file handling, web scraping, and multimedia downloads. The module supports (LLM-based) NLP tasks such as OCR, tokenization, lemmatization, POS tagging, NER, ATE, dependency parsing, MDD, WSD, LIWC, and MIP analysis. It also generates word lists, and plots data, aiding literary students. Ideal for scraping data, cleaning text, and analyzing language, it offers user-friendly tools to streamline workflows.
|
|
5
5
|
Home-page: https://mp.weixin.qq.com/s/lWMkYDWQMjBJNKY2vMYTpw
|
|
6
6
|
Author: Pan Guisheng
|
|
7
7
|
Author-email: panguisheng@sufe.edu.cn
|
|
@@ -34,7 +34,7 @@ Key Features:
|
|
|
34
34
|
4. **Data Storage:** Write and append data to text files, Excel, JSON, and JSON lines.
|
|
35
35
|
5. **File and Folder Processing:** Manage file paths, create directories, move or copy files, and search for files with specific keywords.
|
|
36
36
|
6. **Data Cleaning:** Clean text, handle punctuation, remove stopwords, and prepare data for analysis, utilizing valuable corpora and dictionaries such as CET-4/6 vocabulary, BE21 and BNC-COCA word lists.
|
|
37
|
-
7. **NLP:** Perform OCR, word tokenization, lemmatization, POS tagging, NER, dependency parsing,
|
|
37
|
+
7. **NLP:** Perform OCR, word tokenization, lemmatization, POS tagging, NER, dependency parsing, ATE, MDD, WSD, LIWC, and MIP analysis using prepared LLM prompts.
|
|
38
38
|
8. **Math Operations:** Format numbers, convert decimals to percentages, and validate data.
|
|
39
39
|
9. **Visualization:** Process images (e.g., make white pixels transparent, resize images) and manage fonts for rendering text.
|
|
40
40
|
|
|
@@ -2589,8 +2589,9 @@ PgsFile/models/prompts/1. MIP prompt.txt,sha256=4lHlHmleayRytqr1n9jtt6vn1rQvyf4B
|
|
|
2589
2589
|
PgsFile/models/prompts/2. WSD prompt.txt,sha256=o-ZFtCRUCDrXgm040WTQch9v2Y_r2SIlrZaquilJjgQ,2348
|
|
2590
2590
|
PgsFile/models/prompts/3. ICTCLAS Prompt.txt,sha256=VFn6N_JViAbyy9NazA8gjX6SGo5mgBcZOf95aC9JB84,592
|
|
2591
2591
|
PgsFile/models/prompts/4. OCR prompt.txt,sha256=YxUQ2IlE52k0fcBnGsuOHqWAmfiEmIu6iRz5zecQ8dk,260
|
|
2592
|
-
PgsFile
|
|
2593
|
-
PgsFile-0.4.
|
|
2594
|
-
PgsFile-0.4.
|
|
2595
|
-
PgsFile-0.4.
|
|
2596
|
-
PgsFile-0.4.
|
|
2592
|
+
PgsFile/models/prompts/5. ATE prompt.txt,sha256=ZJo9BhbbUf7CVXi2Gb5DAsV_2PGgzly2I7ze0grCo2k,1486
|
|
2593
|
+
PgsFile-0.4.4.dist-info/LICENSE,sha256=cE5c-QToSkG1KTUsU8drQXz1vG0EbJWuU4ybHTRb5SE,1138
|
|
2594
|
+
PgsFile-0.4.4.dist-info/METADATA,sha256=v5uaJMu-osgt3sNpoatLlJpwjxCRBEkwwpWJw95oV20,2948
|
|
2595
|
+
PgsFile-0.4.4.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
|
2596
|
+
PgsFile-0.4.4.dist-info/top_level.txt,sha256=028hCfwhF3UpfD6X0rwtWpXI1RKSTeZ1ALwagWaSmX8,8
|
|
2597
|
+
PgsFile-0.4.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|