PVNet 5.0.20__py3-none-any.whl → 5.0.21__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pvnet/models/late_fusion/encoders/encoders3d.py +22 -10
- {pvnet-5.0.20.dist-info → pvnet-5.0.21.dist-info}/METADATA +1 -1
- {pvnet-5.0.20.dist-info → pvnet-5.0.21.dist-info}/RECORD +6 -6
- {pvnet-5.0.20.dist-info → pvnet-5.0.21.dist-info}/WHEEL +0 -0
- {pvnet-5.0.20.dist-info → pvnet-5.0.21.dist-info}/licenses/LICENSE +0 -0
- {pvnet-5.0.20.dist-info → pvnet-5.0.21.dist-info}/top_level.txt +0 -0
|
@@ -25,6 +25,7 @@ class DefaultPVNet(AbstractNWPSatelliteEncoder):
|
|
|
25
25
|
spatial_kernel_size: int = 3,
|
|
26
26
|
temporal_kernel_size: int = 3,
|
|
27
27
|
padding: int | tuple[int, ...] = (1, 0, 0),
|
|
28
|
+
stride: int | tuple[int, ...] = 1,
|
|
28
29
|
):
|
|
29
30
|
"""This is the original encoding module used in PVNet, with a few minor tweaks.
|
|
30
31
|
|
|
@@ -39,29 +40,38 @@ class DefaultPVNet(AbstractNWPSatelliteEncoder):
|
|
|
39
40
|
spatial_kernel_size: The spatial size of the kernel used in the conv3d layers.
|
|
40
41
|
temporal_kernel_size: The temporal size of the kernel used in the conv3d layers.
|
|
41
42
|
padding: The padding used in the conv3d layers. If an int, the same padding
|
|
42
|
-
is used in all dimensions
|
|
43
|
+
is used in all dimensions. The dimensions are (time, space, space)
|
|
44
|
+
stride: The stride used in conv3d layers. If an int, the same stride is used
|
|
45
|
+
in all dimensions
|
|
43
46
|
"""
|
|
44
47
|
|
|
45
48
|
super().__init__(sequence_length, image_size_pixels, in_channels, out_features)
|
|
46
49
|
|
|
47
50
|
if isinstance(padding, int):
|
|
48
51
|
padding = (padding, padding, padding)
|
|
52
|
+
|
|
53
|
+
if isinstance(stride, int):
|
|
54
|
+
stride = (stride, stride, stride)
|
|
49
55
|
|
|
50
56
|
# Check that the output shape of the convolutional layers will be at least 1x1
|
|
51
|
-
cnn_spatial_output_size =
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
)
|
|
57
|
+
cnn_spatial_output_size = image_size_pixels
|
|
58
|
+
|
|
59
|
+
for _ in range(number_of_conv3d_layers):
|
|
60
|
+
cnn_spatial_output_size = (
|
|
61
|
+
cnn_spatial_output_size - spatial_kernel_size + 2 * padding[1]
|
|
62
|
+
) // stride[1] + 1
|
|
63
|
+
|
|
59
64
|
if not (cnn_spatial_output_size >= 1):
|
|
60
65
|
raise ValueError(
|
|
61
66
|
f"cannot use this many conv3d layers ({number_of_conv3d_layers}) with this input "
|
|
62
67
|
f"spatial size ({image_size_pixels})"
|
|
63
68
|
)
|
|
64
69
|
|
|
70
|
+
cnn_sequence_length = (
|
|
71
|
+
sequence_length
|
|
72
|
+
- ((temporal_kernel_size - 2 * padding[0]) - 1) * number_of_conv3d_layers
|
|
73
|
+
)
|
|
74
|
+
|
|
65
75
|
conv_layers = []
|
|
66
76
|
|
|
67
77
|
conv_layers += [
|
|
@@ -70,16 +80,18 @@ class DefaultPVNet(AbstractNWPSatelliteEncoder):
|
|
|
70
80
|
out_channels=conv3d_channels,
|
|
71
81
|
kernel_size=(temporal_kernel_size, spatial_kernel_size, spatial_kernel_size),
|
|
72
82
|
padding=padding,
|
|
83
|
+
stride=stride,
|
|
73
84
|
),
|
|
74
85
|
nn.ELU(),
|
|
75
86
|
]
|
|
76
|
-
for
|
|
87
|
+
for _ in range(0, number_of_conv3d_layers - 1):
|
|
77
88
|
conv_layers += [
|
|
78
89
|
nn.Conv3d(
|
|
79
90
|
in_channels=conv3d_channels,
|
|
80
91
|
out_channels=conv3d_channels,
|
|
81
92
|
kernel_size=(temporal_kernel_size, spatial_kernel_size, spatial_kernel_size),
|
|
82
93
|
padding=padding,
|
|
94
|
+
stride=stride,
|
|
83
95
|
),
|
|
84
96
|
nn.ELU(),
|
|
85
97
|
]
|
|
@@ -14,7 +14,7 @@ pvnet/models/late_fusion/basic_blocks.py,sha256=_cYGVyAIyEJS4wd-DEAXQXu0br66guZJ
|
|
|
14
14
|
pvnet/models/late_fusion/late_fusion.py,sha256=VpP1aY646iO-JBlYkyoBlj0Z-gzsqaHnMgpNzjTqAIo,15735
|
|
15
15
|
pvnet/models/late_fusion/encoders/__init__.py,sha256=bLBQdnCeLYhwISW0t88ZZBz-ebS94m7ZwBcsofWMHR4,51
|
|
16
16
|
pvnet/models/late_fusion/encoders/basic_blocks.py,sha256=DGkFFIZv4S4FLTaAIOrAngAFBpgZQHfkGM4dzezZLk4,3044
|
|
17
|
-
pvnet/models/late_fusion/encoders/encoders3d.py,sha256=
|
|
17
|
+
pvnet/models/late_fusion/encoders/encoders3d.py,sha256=9fmqVHO73F-jN62w065cgEQI_icNFC2nQH6ZEGvTHxU,7116
|
|
18
18
|
pvnet/models/late_fusion/linear_networks/__init__.py,sha256=16dLdGfH4QWNrI1fUB-cXWx24lArqo2lWIjdUCWbcBY,96
|
|
19
19
|
pvnet/models/late_fusion/linear_networks/basic_blocks.py,sha256=RnwdeuX_-itY4ncM0NphZ5gRSOpogo7927XIlZJ9LM0,2787
|
|
20
20
|
pvnet/models/late_fusion/linear_networks/networks.py,sha256=exEIz_Z85f8nSwcvp4wqiiLECEAg9YbkKhSZJvFy75M,2231
|
|
@@ -25,8 +25,8 @@ pvnet/training/__init__.py,sha256=FKxmPZ59Vuj5_mXomN4saJ3En5M-aDMxSs6OttTQOcg,49
|
|
|
25
25
|
pvnet/training/lightning_module.py,sha256=TkvLtOPswRtTIwcmAvNOSHg2RvIMzHsJVvs_d0xiRmQ,12891
|
|
26
26
|
pvnet/training/plots.py,sha256=4xID7TBA4IazaARaCN5AoG5fFPJF1wIprn0y6I0C31c,2469
|
|
27
27
|
pvnet/training/train.py,sha256=1tDA34ianCRfilS0yEeIpR9nsQWaJiiZfTD2qRUmgEc,5214
|
|
28
|
-
pvnet-5.0.
|
|
29
|
-
pvnet-5.0.
|
|
30
|
-
pvnet-5.0.
|
|
31
|
-
pvnet-5.0.
|
|
32
|
-
pvnet-5.0.
|
|
28
|
+
pvnet-5.0.21.dist-info/licenses/LICENSE,sha256=tKUnlSmcLBWMJWkHx3UjZGdrjs9LidGwLo0jsBUBAwU,1077
|
|
29
|
+
pvnet-5.0.21.dist-info/METADATA,sha256=U9vJ-SUfmklLUZrq2YnD2zsSGO3Bq7o7FpyrDtHYcfE,16371
|
|
30
|
+
pvnet-5.0.21.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
31
|
+
pvnet-5.0.21.dist-info/top_level.txt,sha256=4mg6WjeW05SR7pg3-Q4JRE2yAoutHYpspOsiUzYVNv0,6
|
|
32
|
+
pvnet-5.0.21.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|