ObjectNat 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ObjectNat might be problematic. Click here for more details.

@@ -1 +1 @@
1
- from .graph_utils import gdf_to_graph, graph_to_gdf
1
+ from .graph_utils import gdf_to_graph, graph_to_gdf
@@ -1,173 +1,173 @@
1
- import math
2
-
3
- import geopandas as gpd
4
- from shapely import LineString, MultiPolygon, Point, Polygon
5
- from shapely.ops import polygonize, unary_union
6
-
7
- from objectnat import config
8
-
9
- logger = config.logger
10
-
11
-
12
- def polygons_to_multilinestring(geom: Polygon | MultiPolygon):
13
- # pylint: disable-next=redefined-outer-name,reimported,import-outside-toplevel
14
- from shapely import LineString, MultiLineString, MultiPolygon
15
-
16
- def convert_polygon(polygon: Polygon):
17
- lines = []
18
- exterior = LineString(polygon.exterior)
19
- lines.append(exterior)
20
- interior = [LineString(p) for p in polygon.interiors]
21
- lines = lines + interior
22
- return lines
23
-
24
- def convert_multipolygon(polygon: MultiPolygon):
25
- return MultiLineString(sum([convert_polygon(p) for p in polygon.geoms], []))
26
-
27
- if geom.geom_type == "Polygon":
28
- return MultiLineString(convert_polygon(geom))
29
- return convert_multipolygon(geom)
30
-
31
-
32
- def explode_linestring(geometry: LineString) -> list[LineString]:
33
- """A function to return all segments of a linestring as a list of linestrings"""
34
- coords_ext = geometry.coords # Create a list of all line node coordinates
35
- result = [LineString(part) for part in zip(coords_ext, coords_ext[1:])]
36
- return result
37
-
38
-
39
- def point_side_of_line(line: LineString, point: Point) -> int:
40
- """A positive indicates the left-hand side a negative indicates the right-hand side"""
41
- x1, y1 = line.coords[0]
42
- x2, y2 = line.coords[-1]
43
- x, y = point.coords[0]
44
- cross_product = (x2 - x1) * (y - y1) - (y2 - y1) * (x - x1)
45
- if cross_product > 0:
46
- return 1
47
- return -1
48
-
49
-
50
- def get_point_from_a_thorough_b(a: Point, b: Point, dist):
51
- """
52
- Func to get Point from point a thorough point b on dist
53
- """
54
- direction = math.atan2(b.y - a.y, b.x - a.x)
55
- c_x = a.x + dist * math.cos(direction)
56
- c_y = a.y + dist * math.sin(direction)
57
- return Point(c_x, c_y)
58
-
59
-
60
- def gdf_to_circle_zones_from_point(
61
- gdf: gpd.GeoDataFrame, point_from: Point, zone_radius, resolution=4, explode_multigeom=True
62
- ) -> gpd.GeoDataFrame:
63
- """n_segments = 4*resolution,e.g. if resolution = 4 that means there will be 16 segments"""
64
- crs = gdf.crs
65
- buffer = point_from.buffer(zone_radius, resolution=resolution)
66
- gdf_unary = gdf.clip(buffer, keep_geom_type=True).union_all()
67
- gdf_geometry = (
68
- gpd.GeoDataFrame(geometry=[gdf_unary], crs=crs)
69
- .explode(index_parts=True)
70
- .geometry.apply(polygons_to_multilinestring)
71
- .union_all()
72
- )
73
- zones_lines = [LineString([Point(coords1), Point(point_from)]) for coords1 in buffer.exterior.coords[:-1]]
74
- if explode_multigeom:
75
- return (
76
- gpd.GeoDataFrame(geometry=list(polygonize(unary_union([gdf_geometry] + zones_lines))), crs=crs)
77
- .clip(gdf_unary, keep_geom_type=True)
78
- .explode(index_parts=False)
79
- )
80
- return gpd.GeoDataFrame(geometry=list(polygonize(unary_union([gdf_geometry] + zones_lines))), crs=crs).clip(
81
- gdf_unary, keep_geom_type=True
82
- )
83
-
84
-
85
- def remove_inner_geom(polygon: Polygon | MultiPolygon):
86
- """function to get rid of inner polygons"""
87
- if isinstance(polygon, Polygon):
88
- return Polygon(polygon.exterior.coords)
89
- if isinstance(polygon, MultiPolygon):
90
- polys = []
91
- for poly in polygon.geoms:
92
- polys.append(Polygon(poly.exterior.coords))
93
- return MultiPolygon(polys)
94
- else:
95
- return Polygon()
96
-
97
-
98
- def combine_geometry(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
99
- """
100
- Combine geometry of intersecting layers into a single GeoDataFrame.
101
- Parameters
102
- ----------
103
- gdf: gpd.GeoDataFrame
104
- A GeoPandas GeoDataFrame
105
-
106
- Returns
107
- -------
108
- gpd.GeoDataFrame
109
- The combined GeoDataFrame with aggregated in lists columns.
110
-
111
- Examples
112
- --------
113
- >>> gdf = gpd.read_file('path_to_your_file.geojson')
114
- >>> result = combine_geometry(gdf)
115
- """
116
-
117
- crs = gdf.crs
118
-
119
- enclosures = gpd.GeoDataFrame(
120
- geometry=list(polygonize(gdf["geometry"].apply(polygons_to_multilinestring).union_all())), crs=crs
121
- )
122
- enclosures_points = enclosures.copy()
123
- enclosures_points.geometry = enclosures.representative_point()
124
- joined = gpd.sjoin(enclosures_points, gdf, how="inner", predicate="within").reset_index()
125
- cols = joined.columns.tolist()
126
- cols.remove("geometry")
127
- joined = joined.groupby("index").agg({column: list for column in cols})
128
- joined["geometry"] = enclosures
129
- joined = gpd.GeoDataFrame(joined, geometry="geometry", crs=crs)
130
- return joined
131
-
132
-
133
- def distribute_points_on_linestrings(lines: gpd.GeoDataFrame, radius, lloyd_relax_n=2) -> gpd.GeoDataFrame:
134
- lines = lines.copy()
135
- lines = lines.explode(ignore_index=True)
136
- lines = lines[lines.geom_type == "LineString"]
137
- original_crs = lines.crs
138
- lines = lines.to_crs(crs=lines.estimate_utm_crs())
139
- lines = lines.reset_index(drop=True)
140
- lines = lines[["geometry"]]
141
- radius = radius * 1.1
142
- segmentized = lines.geometry.apply(lambda x: x.simplify(radius).segmentize(radius))
143
- points = [Point(pt) for line in segmentized for pt in line.coords]
144
-
145
- points = gpd.GeoDataFrame(geometry=points, crs=lines.crs)
146
- lines["lines"] = lines.geometry
147
- geom_concave = lines.buffer(5, resolution=1).union_all()
148
-
149
- for i in range(lloyd_relax_n):
150
- points.geometry = points.voronoi_polygons().clip(geom_concave).centroid
151
- points = points.sjoin_nearest(lines, how="left")
152
- points = points[~points.index.duplicated(keep="first")]
153
- points["geometry"] = points["lines"].interpolate(points["lines"].project(points.geometry))
154
- points.drop(columns=["lines", "index_right"], inplace=True)
155
-
156
- return points.dropna().to_crs(original_crs)
157
-
158
-
159
- def distribute_points_on_polygons(
160
- polygons: gpd.GeoDataFrame, radius, only_exterior=True, lloyd_relax_n=2
161
- ) -> gpd.GeoDataFrame:
162
- polygons = polygons.copy()
163
- polygons = polygons.explode(ignore_index=True)
164
- polygons = polygons[polygons.geom_type == "Polygon"]
165
-
166
- if only_exterior:
167
- polygons.geometry = polygons.geometry.apply(lambda x: LineString(x.exterior))
168
- else:
169
- polygons = gpd.GeoDataFrame(
170
- geometry=list(polygons.geometry.apply(polygons_to_multilinestring)), crs=polygons.crs
171
- )
172
-
173
- return distribute_points_on_linestrings(polygons, radius, lloyd_relax_n=lloyd_relax_n)
1
+ import math
2
+
3
+ import geopandas as gpd
4
+ from shapely import LineString, MultiPolygon, Point, Polygon
5
+ from shapely.ops import polygonize, unary_union
6
+
7
+ from objectnat import config
8
+
9
+ logger = config.logger
10
+
11
+
12
+ def polygons_to_multilinestring(geom: Polygon | MultiPolygon):
13
+ # pylint: disable-next=redefined-outer-name,reimported,import-outside-toplevel
14
+ from shapely import LineString, MultiLineString, MultiPolygon
15
+
16
+ def convert_polygon(polygon: Polygon):
17
+ lines = []
18
+ exterior = LineString(polygon.exterior)
19
+ lines.append(exterior)
20
+ interior = [LineString(p) for p in polygon.interiors]
21
+ lines = lines + interior
22
+ return lines
23
+
24
+ def convert_multipolygon(polygon: MultiPolygon):
25
+ return MultiLineString(sum([convert_polygon(p) for p in polygon.geoms], []))
26
+
27
+ if geom.geom_type == "Polygon":
28
+ return MultiLineString(convert_polygon(geom))
29
+ return convert_multipolygon(geom)
30
+
31
+
32
+ def explode_linestring(geometry: LineString) -> list[LineString]:
33
+ """A function to return all segments of a linestring as a list of linestrings"""
34
+ coords_ext = geometry.coords # Create a list of all line node coordinates
35
+ result = [LineString(part) for part in zip(coords_ext, coords_ext[1:])]
36
+ return result
37
+
38
+
39
+ def point_side_of_line(line: LineString, point: Point) -> int:
40
+ """A positive indicates the left-hand side a negative indicates the right-hand side"""
41
+ x1, y1 = line.coords[0]
42
+ x2, y2 = line.coords[-1]
43
+ x, y = point.coords[0]
44
+ cross_product = (x2 - x1) * (y - y1) - (y2 - y1) * (x - x1)
45
+ if cross_product > 0:
46
+ return 1
47
+ return -1
48
+
49
+
50
+ def get_point_from_a_thorough_b(a: Point, b: Point, dist):
51
+ """
52
+ Func to get Point from point a thorough point b on dist
53
+ """
54
+ direction = math.atan2(b.y - a.y, b.x - a.x)
55
+ c_x = a.x + dist * math.cos(direction)
56
+ c_y = a.y + dist * math.sin(direction)
57
+ return Point(c_x, c_y)
58
+
59
+
60
+ def gdf_to_circle_zones_from_point(
61
+ gdf: gpd.GeoDataFrame, point_from: Point, zone_radius, resolution=4, explode_multigeom=True
62
+ ) -> gpd.GeoDataFrame:
63
+ """n_segments = 4*resolution,e.g. if resolution = 4 that means there will be 16 segments"""
64
+ crs = gdf.crs
65
+ buffer = point_from.buffer(zone_radius, resolution=resolution)
66
+ gdf_unary = gdf.clip(buffer, keep_geom_type=True).union_all()
67
+ gdf_geometry = (
68
+ gpd.GeoDataFrame(geometry=[gdf_unary], crs=crs)
69
+ .explode(index_parts=True)
70
+ .geometry.apply(polygons_to_multilinestring)
71
+ .union_all()
72
+ )
73
+ zones_lines = [LineString([Point(coords1), Point(point_from)]) for coords1 in buffer.exterior.coords[:-1]]
74
+ if explode_multigeom:
75
+ return (
76
+ gpd.GeoDataFrame(geometry=list(polygonize(unary_union([gdf_geometry] + zones_lines))), crs=crs)
77
+ .clip(gdf_unary, keep_geom_type=True)
78
+ .explode(index_parts=False)
79
+ )
80
+ return gpd.GeoDataFrame(geometry=list(polygonize(unary_union([gdf_geometry] + zones_lines))), crs=crs).clip(
81
+ gdf_unary, keep_geom_type=True
82
+ )
83
+
84
+
85
+ def remove_inner_geom(polygon: Polygon | MultiPolygon):
86
+ """function to get rid of inner polygons"""
87
+ if isinstance(polygon, Polygon):
88
+ return Polygon(polygon.exterior.coords)
89
+ if isinstance(polygon, MultiPolygon):
90
+ polys = []
91
+ for poly in polygon.geoms:
92
+ polys.append(Polygon(poly.exterior.coords))
93
+ return MultiPolygon(polys)
94
+ else:
95
+ return Polygon()
96
+
97
+
98
+ def combine_geometry(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
99
+ """
100
+ Combine geometry of intersecting layers into a single GeoDataFrame.
101
+ Parameters
102
+ ----------
103
+ gdf: gpd.GeoDataFrame
104
+ A GeoPandas GeoDataFrame
105
+
106
+ Returns
107
+ -------
108
+ gpd.GeoDataFrame
109
+ The combined GeoDataFrame with aggregated in lists columns.
110
+
111
+ Examples
112
+ --------
113
+ >>> gdf = gpd.read_file('path_to_your_file.geojson')
114
+ >>> result = combine_geometry(gdf)
115
+ """
116
+
117
+ crs = gdf.crs
118
+
119
+ enclosures = gpd.GeoDataFrame(
120
+ geometry=list(polygonize(gdf["geometry"].apply(polygons_to_multilinestring).union_all())), crs=crs
121
+ )
122
+ enclosures_points = enclosures.copy()
123
+ enclosures_points.geometry = enclosures.representative_point()
124
+ joined = gpd.sjoin(enclosures_points, gdf, how="inner", predicate="within").reset_index()
125
+ cols = joined.columns.tolist()
126
+ cols.remove("geometry")
127
+ joined = joined.groupby("index").agg({column: list for column in cols})
128
+ joined["geometry"] = enclosures
129
+ joined = gpd.GeoDataFrame(joined, geometry="geometry", crs=crs)
130
+ return joined
131
+
132
+
133
+ def distribute_points_on_linestrings(lines: gpd.GeoDataFrame, radius, lloyd_relax_n=2) -> gpd.GeoDataFrame:
134
+ lines = lines.copy()
135
+ lines = lines.explode(ignore_index=True)
136
+ lines = lines[lines.geom_type == "LineString"]
137
+ original_crs = lines.crs
138
+ lines = lines.to_crs(crs=lines.estimate_utm_crs())
139
+ lines = lines.reset_index(drop=True)
140
+ lines = lines[["geometry"]]
141
+ radius = radius * 1.1
142
+ segmentized = lines.geometry.apply(lambda x: x.simplify(radius).segmentize(radius))
143
+ points = [Point(pt) for line in segmentized for pt in line.coords]
144
+
145
+ points = gpd.GeoDataFrame(geometry=points, crs=lines.crs)
146
+ lines["lines"] = lines.geometry
147
+ geom_concave = lines.buffer(5, resolution=1).union_all()
148
+
149
+ for i in range(lloyd_relax_n):
150
+ points.geometry = points.voronoi_polygons().clip(geom_concave).centroid
151
+ points = points.sjoin_nearest(lines, how="left")
152
+ points = points[~points.index.duplicated(keep="first")]
153
+ points["geometry"] = points["lines"].interpolate(points["lines"].project(points.geometry))
154
+ points.drop(columns=["lines", "index_right"], inplace=True)
155
+
156
+ return points.dropna().to_crs(original_crs)
157
+
158
+
159
+ def distribute_points_on_polygons(
160
+ polygons: gpd.GeoDataFrame, radius, only_exterior=True, lloyd_relax_n=2
161
+ ) -> gpd.GeoDataFrame:
162
+ polygons = polygons.copy()
163
+ polygons = polygons.explode(ignore_index=True)
164
+ polygons = polygons[polygons.geom_type == "Polygon"]
165
+
166
+ if only_exterior:
167
+ polygons.geometry = polygons.geometry.apply(lambda x: LineString(x.exterior))
168
+ else:
169
+ polygons = gpd.GeoDataFrame(
170
+ geometry=list(polygons.geometry.apply(polygons_to_multilinestring)), crs=polygons.crs
171
+ )
172
+
173
+ return distribute_points_on_linestrings(polygons, radius, lloyd_relax_n=lloyd_relax_n)
@@ -1,32 +1,32 @@
1
- import numpy as np
2
-
3
-
4
- def min_max_normalization(data, new_min=0, new_max=1):
5
- """
6
- Min-max normalization for a given array of data.
7
-
8
- Parameters
9
- ----------
10
- data: numpy.ndarray
11
- Input data to be normalized.
12
- new_min: float, optional
13
- New minimum value for normalization. Defaults to 0.
14
- new_max: float, optional
15
- New maximum value for normalization. Defaults to 1.
16
-
17
- Returns
18
- -------
19
- numpy.ndarray
20
- Normalized data.
21
-
22
- Examples
23
- --------
24
- >>> import numpy as np
25
- >>> data = np.array([1, 2, 3, 4, 5])
26
- >>> normalized_data = min_max_normalization(data, new_min=0, new_max=1)
27
- """
28
-
29
- min_value = np.min(data)
30
- max_value = np.max(data)
31
- normalized_data = (data - min_value) / (max_value - min_value) * (new_max - new_min) + new_min
32
- return normalized_data
1
+ import numpy as np
2
+
3
+
4
+ def min_max_normalization(data, new_min=0, new_max=1):
5
+ """
6
+ Min-max normalization for a given array of data.
7
+
8
+ Parameters
9
+ ----------
10
+ data: numpy.ndarray
11
+ Input data to be normalized.
12
+ new_min: float, optional
13
+ New minimum value for normalization. Defaults to 0.
14
+ new_max: float, optional
15
+ New maximum value for normalization. Defaults to 1.
16
+
17
+ Returns
18
+ -------
19
+ numpy.ndarray
20
+ Normalized data.
21
+
22
+ Examples
23
+ --------
24
+ >>> import numpy as np
25
+ >>> data = np.array([1, 2, 3, 4, 5])
26
+ >>> normalized_data = min_max_normalization(data, new_min=0, new_max=1)
27
+ """
28
+
29
+ min_value = np.min(data)
30
+ max_value = np.max(data)
31
+ normalized_data = (data - min_value) / (max_value - min_value) * (new_max - new_min) + new_min
32
+ return normalized_data
@@ -1,6 +1,6 @@
1
- from .visibility_analysis import (
2
- calculate_visibility_catchment_area,
3
- get_visibilities_from_points,
4
- get_visibility,
5
- get_visibility_accurate,
6
- )
1
+ from .visibility_analysis import (
2
+ calculate_visibility_catchment_area,
3
+ get_visibilities_from_points,
4
+ get_visibility,
5
+ get_visibility_accurate,
6
+ )
@@ -1,8 +1,9 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: ObjectNat
3
- Version: 1.2.1
3
+ Version: 1.2.2
4
4
  Summary: ObjectNat is an open-source library created for geospatial analysis created by IDU team
5
5
  License: BSD-3-Clause
6
+ License-File: LICENSE.txt
6
7
  Author: DDonnyy
7
8
  Author-email: 63115678+DDonnyy@users.noreply.github.com
8
9
  Requires-Python: >=3.10,<3.13
@@ -44,28 +45,28 @@ Each feature is accompanied by a Jupyter notebook example and full documentation
44
45
 
45
46
  1. **[Isochrones and Transport Accessibility](./examples/isochrone_generator.ipynb)**
46
47
  Analyze areas reachable within a given time along a transport network.
47
- 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/isochrones.html)
48
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/isochrones.html)
48
49
 
49
50
  2. **[Coverage Zones](./examples/coverage_zones.ipynb)**
50
51
  Build zones of reachability for each point using routing or simple radius.
51
- 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/coverage.html)
52
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/coverage.html)
52
53
 
53
54
  3. **[Service Provision Analysis](./examples/calculate_provision.ipynb)**
54
55
  Evaluate service availability and model demand-supply balance.
55
- 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/provision.html)
56
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/provision.html)
56
57
 
57
58
  4. **[Visibility Analysis](./examples/visibility_analysis.ipynb)**
58
59
  Estimate visibility to nearby buildings from selected points.
59
- 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/visibility.html)
60
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/visibility.html)
60
61
 
61
62
  5. **[Noise Simulation](./examples/noise_simulation.ipynb)**
62
63
  Simulate noise propagation considering obstacles and environment.
63
- 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/noise.html)
64
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/noise.html)
64
65
  🔗 [Detailed theory in the Wiki](https://github.com/DDonnyy/ObjectNat/wiki/Noise-simulation)
65
66
 
66
67
  6. **[Point Clusterization](./examples/point_clusterization.ipynb)**
67
68
  Group nearby points into clusters and analyze service composition.
68
- 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/clustering.html)
69
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/clustering.html)
69
70
 
70
71
  ---
71
72
 
@@ -0,0 +1,33 @@
1
+ objectnat/__init__.py,sha256=VZ0TaIuB73EOl5Tin4Cs6-TCEOgBImCNYozwHD3bI_g,248
2
+ objectnat/_api.py,sha256=0R1nypAQUcbQ9YSLw_MUgUWoNl8c1zMZteV8wGzdkvc,711
3
+ objectnat/_config.py,sha256=fGPsMZqA8FVBBOINxRiTFkOOZsNLyablM5G0tdKeQB4,1306
4
+ objectnat/_version.py,sha256=rTrUbw2CeioGu2bqQWB_ZsbWrK8mfBzgGdEKgPrvi_M,19
5
+ objectnat/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ objectnat/methods/coverage_zones/__init__.py,sha256=3uTDC1xf3zgQRqSQR4URp__HjZ8eVUtjK8r3mGq-zuQ,161
7
+ objectnat/methods/coverage_zones/graph_coverage.py,sha256=e4seTrhOTqEZ8DhE9xiH_fe-TwPNZXH3ujEq87CuEA0,4190
8
+ objectnat/methods/coverage_zones/radius_voronoi_coverage.py,sha256=A-O6WhgpJTizIHGiJ9JuP882iHbNejh0EW10H493kDM,1631
9
+ objectnat/methods/coverage_zones/stepped_coverage.py,sha256=e-zNE0JP4Q1Crb-JEbIZc0dYFzZXle2LjTxJPGS-7XE,5659
10
+ objectnat/methods/isochrones/__init__.py,sha256=bDfUZPbS3_PuTEB2QcRTYjvyJtUvjbDhAw6QJvD_ih4,90
11
+ objectnat/methods/isochrones/isochrone_utils.py,sha256=dJwvoGXUypwU2_oF-rdxNZm90gOi-RUp_0WM1C2HaPU,6870
12
+ objectnat/methods/isochrones/isochrones.py,sha256=VgpwubX7VEFStXyXM0B58cpFoCn3AboVekIU8GtXWls,11573
13
+ objectnat/methods/noise/__init__.py,sha256=-zWdeD3sUr4HO8yEHiQuQm_FXviqZONffkthJ5v9VtA,186
14
+ objectnat/methods/noise/noise_init_data.py,sha256=Vp-R_yH7CgYqZEtbGAdr1iiIbgauReniLQ_a2TcszhY,503
15
+ objectnat/methods/noise/noise_reduce.py,sha256=B85ifAN_mHiBKJso-cZiSkj7588w2sA-ugGvEal4CBw,6885
16
+ objectnat/methods/noise/noise_simulation.py,sha256=-2pTzV-nShJfhgPg4AejKlMSvlTlnQDBCngLPZhFX8w,22389
17
+ objectnat/methods/noise/noise_simulation_simplified.py,sha256=igj4hI3rPDdKYgabq0aH0Evhy2jg-uTstLSqFjx2VSw,11094
18
+ objectnat/methods/point_clustering/__init__.py,sha256=pX2qDUCvs9LJI36mr65vbdRml6AE8hIYYxIJLdQZQxs,61
19
+ objectnat/methods/point_clustering/cluster_points_in_polygons.py,sha256=reY5ekJrAJUdWwVMvvZBp5T34H4K2V4mt3rQuyoUYPQ,5193
20
+ objectnat/methods/provision/__init__.py,sha256=0Uy66n2xH0Y45JyhIYHEVfC2rig6bMYp6PV2KkNhbK8,80
21
+ objectnat/methods/provision/provision.py,sha256=xf3y5ZfGD1rGSCqvUd2JFSEzcPe7Af_bIyA38pBTtrU,5157
22
+ objectnat/methods/provision/provision_exceptions.py,sha256=lznEmlmZDzGIOtapZVqZDMutIi5eGbFuVCYeVa7VZWk,1687
23
+ objectnat/methods/provision/provision_model.py,sha256=edzXSnGwTjc5kw4k6ZbO886uHp6xIyqSNdJ9YuZTdmE,14998
24
+ objectnat/methods/utils/__init__.py,sha256=sGXy4KUOe5I0UYztnB4rIl2HNd-oqnqRYrBsiU-dpNY,52
25
+ objectnat/methods/utils/geom_utils.py,sha256=PdUjQDZ8drJ1ZFCFabDJnD6oFvgHeAQrsbeivuDOdcI,6385
26
+ objectnat/methods/utils/graph_utils.py,sha256=aOtFZbuPAiGhkglMJBi9xcsb8XBbVFW7535DrhjWx1w,12667
27
+ objectnat/methods/utils/math_utils.py,sha256=Vc8U15LtFOwgIt1YSOSKWYOIiW_1XLuMGOa6ejBpEUk,839
28
+ objectnat/methods/visibility/__init__.py,sha256=Mx1kaoV-yfQUxlMkgNF4AhjSweFEJMEx3NBis5OM3mA,161
29
+ objectnat/methods/visibility/visibility_analysis.py,sha256=nXcDQ9zewpM4FFSXuYophUNsh6wiHSIHjM88vV6Iv_U,20843
30
+ objectnat-1.2.2.dist-info/licenses/LICENSE.txt,sha256=gI3AMqmBc4AdVW3_l1YV4pBBhle1fvAqiK62uA543uI,1526
31
+ objectnat-1.2.2.dist-info/METADATA,sha256=og2Gul8hS_YIua9eXocfsKwFZ3-juQGp6hrAXFXvy-c,4536
32
+ objectnat-1.2.2.dist-info/WHEEL,sha256=M5asmiAlL6HEcOq52Yi5mmk9KmTVjY2RDPtO4p9DMrc,88
33
+ objectnat-1.2.2.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.0
2
+ Generator: poetry-core 2.2.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,33 +0,0 @@
1
- objectnat/__init__.py,sha256=VZ0TaIuB73EOl5Tin4Cs6-TCEOgBImCNYozwHD3bI_g,248
2
- objectnat/_api.py,sha256=tor-BVRvbVeqGUrFlNc3pVJ_N3gpyDgMpxQfHgV5Y1U,725
3
- objectnat/_config.py,sha256=bt9wohg8Hjwxril5PzotO5fjaIcown9vHq6kvXa3tzo,1353
4
- objectnat/_version.py,sha256=1ZlkgkmphZGnGYOHAq5WqbnpVdTi39MMaQJd1wOEceI,19
5
- objectnat/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- objectnat/methods/coverage_zones/__init__.py,sha256=iebp-RbU60GRjIosd0Yvypz8-XNCme7f1Aah2nqynig,164
7
- objectnat/methods/coverage_zones/graph_coverage.py,sha256=e4seTrhOTqEZ8DhE9xiH_fe-TwPNZXH3ujEq87CuEA0,4190
8
- objectnat/methods/coverage_zones/radius_voronoi_coverage.py,sha256=A-O6WhgpJTizIHGiJ9JuP882iHbNejh0EW10H493kDM,1631
9
- objectnat/methods/coverage_zones/stepped_coverage.py,sha256=e-zNE0JP4Q1Crb-JEbIZc0dYFzZXle2LjTxJPGS-7XE,5659
10
- objectnat/methods/isochrones/__init__.py,sha256=inpyVZ4Mfz53k8HxW1zz3XFAqOE1xOQfpnfsS2f-a58,91
11
- objectnat/methods/isochrones/isochrone_utils.py,sha256=84OLlj0tbnJAg7H_k0Il3wRHzdFhlMNU4G3w8z1_x6c,7037
12
- objectnat/methods/isochrones/isochrones.py,sha256=VgpwubX7VEFStXyXM0B58cpFoCn3AboVekIU8GtXWls,11573
13
- objectnat/methods/noise/__init__.py,sha256=fXlEuZ1z9Pw7cP4YRcbLaQnEgJIRkFdr2dTe2ypMhgg,189
14
- objectnat/methods/noise/noise_init_data.py,sha256=jMFOqi5T7FYqcKjYg8AOIr_VNYbRZQks9wGULYNaMlw,513
15
- objectnat/methods/noise/noise_reduce.py,sha256=KuVYLF5-hQGDqki6KU4BtgEufQ8tkOZvBWjFFjgw4m4,7040
16
- objectnat/methods/noise/noise_simulation.py,sha256=-2pTzV-nShJfhgPg4AejKlMSvlTlnQDBCngLPZhFX8w,22389
17
- objectnat/methods/noise/noise_simulation_simplified.py,sha256=igj4hI3rPDdKYgabq0aH0Evhy2jg-uTstLSqFjx2VSw,11094
18
- objectnat/methods/point_clustering/__init__.py,sha256=SLRcjLZ_NyQvKBu5SHZTt7snCWpa0n7HlJqxlACJMyM,62
19
- objectnat/methods/point_clustering/cluster_points_in_polygons.py,sha256=reY5ekJrAJUdWwVMvvZBp5T34H4K2V4mt3rQuyoUYPQ,5193
20
- objectnat/methods/provision/__init__.py,sha256=a8h_Md3rBnmXK0o-MuaYiTIMRFMFu0bRZJ7ZP0P2hDQ,81
21
- objectnat/methods/provision/provision.py,sha256=4NpZiUBllflt1woIOXAf1zh7MAB5Q6DegN67fXpJHu0,4947
22
- objectnat/methods/provision/provision_exceptions.py,sha256=ofZOEv0jIZRNBgfrwqphkIHUWaGDo2WOa-hf7EuCM1g,1746
23
- objectnat/methods/provision/provision_model.py,sha256=texAsht4DeBHveJpp6FEvsA4nE13kbf6iYXZD-xK7mw,14866
24
- objectnat/methods/utils/__init__.py,sha256=1jhuPYwWwlNALtiO6n5IF-5z85nLKX4aC-ZaI85LEMM,53
25
- objectnat/methods/utils/geom_utils.py,sha256=lCuMayV1iu8WJVVtwbswxfvl4B4dwxAqRcFfF1jd98M,6558
26
- objectnat/methods/utils/graph_utils.py,sha256=aOtFZbuPAiGhkglMJBi9xcsb8XBbVFW7535DrhjWx1w,12667
27
- objectnat/methods/utils/math_utils.py,sha256=Gcoi7MOmoWlu0ao5465GLtnP2eW4ZXKsGU9NyvUDR6E,871
28
- objectnat/methods/visibility/__init__.py,sha256=vgrN4OTnap4fYfqm5GgNi787TZ85GbS9LbGfTIyTg-I,167
29
- objectnat/methods/visibility/visibility_analysis.py,sha256=nXcDQ9zewpM4FFSXuYophUNsh6wiHSIHjM88vV6Iv_U,20843
30
- objectnat-1.2.1.dist-info/LICENSE.txt,sha256=gI3AMqmBc4AdVW3_l1YV4pBBhle1fvAqiK62uA543uI,1526
31
- objectnat-1.2.1.dist-info/METADATA,sha256=8s9EHELAA7LodH5DMtuKTF1JN3NyyBbWINlzqzKDCtw,4510
32
- objectnat-1.2.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
- objectnat-1.2.1.dist-info/RECORD,,