ObjectNat 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ObjectNat might be problematic. Click here for more details.
- objectnat/_api.py +1 -0
- objectnat/_version.py +1 -1
- objectnat/methods/isochrones.py +1 -1
- objectnat/methods/living_buildings_osm.py +4 -6
- objectnat/methods/noise/__init__.py +3 -0
- objectnat/methods/noise/noise_exceptions.py +14 -0
- objectnat/methods/noise/noise_init_data.py +10 -0
- objectnat/methods/noise/noise_reduce.py +155 -0
- objectnat/methods/noise/noise_sim.py +418 -0
- objectnat/methods/provision/provision.py +15 -8
- objectnat/methods/provision/provision_exceptions.py +4 -4
- objectnat/methods/provision/provision_model.py +106 -88
- objectnat/methods/utils/__init__.py +0 -0
- objectnat/methods/utils/geom_utils.py +79 -0
- objectnat/methods/visibility_analysis.py +63 -43
- {objectnat-0.2.5.dist-info → objectnat-0.2.7.dist-info}/METADATA +31 -28
- objectnat-0.2.7.dist-info/RECORD +26 -0
- objectnat/utils/__init__.py +0 -1
- objectnat/utils/utils.py +0 -19
- objectnat-0.2.5.dist-info/RECORD +0 -21
- {objectnat-0.2.5.dist-info → objectnat-0.2.7.dist-info}/LICENSE.txt +0 -0
- {objectnat-0.2.5.dist-info → objectnat-0.2.7.dist-info}/WHEEL +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ObjectNat
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.7
|
|
4
4
|
Summary: ObjectNat is an open-source library created for geospatial analysis created by IDU team
|
|
5
5
|
License: BSD-3-Clause
|
|
6
6
|
Author: DDonnyy
|
|
@@ -12,14 +12,12 @@ Classifier: Programming Language :: Python :: 3.10
|
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.11
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.12
|
|
14
14
|
Requires-Dist: geopandas (>=0.14.3,<0.15.0)
|
|
15
|
-
Requires-Dist: iduedu (>=0.2.
|
|
16
|
-
Requires-Dist: joblib (>=1.4.2,<2.0.0)
|
|
15
|
+
Requires-Dist: iduedu (>=0.2.2,<0.3.0)
|
|
17
16
|
Requires-Dist: networkx (>=3.3,<4.0)
|
|
18
|
-
Requires-Dist: numpy (>=1.
|
|
17
|
+
Requires-Dist: numpy (>=1.26.4,<2.0.0)
|
|
19
18
|
Requires-Dist: pandarallel (>=1.6.5,<2.0.0)
|
|
20
19
|
Requires-Dist: pandas (>=2.2.0,<3.0.0)
|
|
21
20
|
Requires-Dist: population-restorator (>=0.2.3,<0.3.0)
|
|
22
|
-
Requires-Dist: pulp (>=2.8.0,<3.0.0)
|
|
23
21
|
Requires-Dist: scikit-learn (>=1.4.0,<2.0.0)
|
|
24
22
|
Requires-Dist: tqdm (>=4.66.2,<5.0.0)
|
|
25
23
|
Description-Content-Type: text/markdown
|
|
@@ -43,45 +41,52 @@ Description-Content-Type: text/markdown
|
|
|
43
41
|
|
|
44
42
|
## Features and how to use
|
|
45
43
|
|
|
46
|
-
1. **[City graph from OSM (IduEdu)](./examples/get_any_graph.ipynb)** - Functions to assemble a road, pedestrian,
|
|
47
|
-
|
|
44
|
+
1. **[City graph from OSM (IduEdu)](./examples/get_any_graph.ipynb)** - Functions to assemble a road, pedestrian, and public transport graph
|
|
45
|
+
from OpenStreetMap (OSM) and creating Intermodal graph.
|
|
48
46
|
|
|
49
47
|
<img src="https://github.com/user-attachments/assets/8dc98da9-8462-415e-8cc8-bdfca788e206" alt="IntermodalGraph" height="250">
|
|
50
48
|
|
|
51
|
-
2. **[Adjacency matrix](./examples/calculate_adjacency_matrix.ipynb)** - Calculate adjacency matrix based on the provided
|
|
52
|
-
|
|
49
|
+
2. **[Adjacency matrix](./examples/calculate_adjacency_matrix.ipynb)** - Calculate adjacency matrix based on the provided graph and edge weight type
|
|
50
|
+
(time or distance). The intermodal graph can be obtained using the previous example.
|
|
53
51
|
|
|
54
52
|
3. **[Isochrones,transport accessibility](./examples/isochrone_generator.ipynb)** - Function for generating isochrones to
|
|
55
|
-
|
|
56
|
-
|
|
53
|
+
analyze transportation accessibility from specified starting coordinates. Isochrones can be constructed based on
|
|
54
|
+
pedestrian, automobile, or public transport graphs, or a combination thereof.
|
|
57
55
|
|
|
58
56
|
<img src="https://github.com/user-attachments/assets/37f308a5-db56-497d-b080-4edef3584fe5" alt="isochrones" height="250">
|
|
59
57
|
|
|
60
58
|
4. **[Population restoration](./examples/restore_population.ipynb)** - Function for resettling population into the provided
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
5. **[Service provision](./examples/calculate_provision.ipynb)** - Function for calculating the provision of residential
|
|
64
|
-
|
|
59
|
+
layer of residential buildings. This function distributes people among dwellings based on the total city population
|
|
60
|
+
and the living area of each house.
|
|
61
|
+
5. **[Service provision](./examples/calculate_provision.ipynb)** - Function for calculating the provision of residential buildings and population
|
|
62
|
+
with services.
|
|
65
63
|
|
|
66
64
|
<img src="https://github.com/user-attachments/assets/5f2b3c55-9a02-4d70-80f4-503b77023eda" alt="ProvisionSchools" height="250">
|
|
67
65
|
|
|
68
66
|
6. **[Visibility analysis](./examples/visibility_analysis.ipynb)** - Function to get a quick estimate of visibility from a
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
results. Points can be generated using a road graph and random point distribution along edges.
|
|
67
|
+
given point(s) to buildings within a given distance. Also, there is a visibility catchment area calculator for a large
|
|
68
|
+
urban area. This function is designed to work with at least 1000 points spaced 10-20 meters apart for optimal
|
|
69
|
+
results. Points can be generated using a road graph and random point distribution along edges.
|
|
73
70
|
|
|
74
71
|
<img src="https://github.com/user-attachments/assets/2927ac86-01e8-4b0e-9ea8-72ad81c13cf5" alt="visibility-from-point" height="250">
|
|
75
72
|
|
|
76
73
|
<img src="https://github.com/user-attachments/assets/b5b0d4b3-a02f-4ade-8772-475703cd6435" alt="visibility-catchment-area" height="250">
|
|
77
|
-
|
|
78
|
-
7. **[
|
|
79
|
-
|
|
80
|
-
|
|
74
|
+
|
|
75
|
+
7. **[Noise simulation](./examples/noise_simulation.ipynb)** - Simulates noise propagation from a set of source points
|
|
76
|
+
considering obstacles, trees, and environmental factors.
|
|
77
|
+
**[Detailed information in Wiki](https://github.com/DDonnyy/ObjectNat/wiki/Noise-simulation)**
|
|
78
|
+
|
|
79
|
+
<img src="https://github.com/user-attachments/assets/dd185867-67c4-4d03-8905-d06dd1d36fb3" alt="noise_sim" height="250">
|
|
80
|
+
|
|
81
|
+
8. **[Point clusterization](./examples/point_clusterization.ipynb)** - Function to generate cluster polygons for given
|
|
82
|
+
points based on a specified minimum distance and minimum points per cluster. Optionally, calculate the relative ratio
|
|
83
|
+
between types of services within the clusters.
|
|
81
84
|
|
|
82
85
|
<img src="https://github.com/user-attachments/assets/2a9ad722-87d2-4954-9612-5ac3765aa824" alt="service-clusterization" height="250">
|
|
83
86
|
|
|
84
|
-
|
|
87
|
+
9. **[Living buildings from OSM](./examples/download_buildings_from_osm.ipynb)** - This function downloads building geometries from OpenStreetMap (OSM)
|
|
88
|
+
for a specified territory and assigns attributes to each building. Specifically, it determines whether a building
|
|
89
|
+
is residential (`is_living` attribute) and estimates the approximate number of inhabitants (`approximate_pop` attribute).
|
|
85
90
|
|
|
86
91
|
<img src="https://github.com/user-attachments/assets/d60dcd85-1a2e-4342-aae4-561aeda18858" alt="Living buildings" height="250">
|
|
87
92
|
|
|
@@ -104,10 +109,8 @@ config.set_overpass_url('http://your.overpass-api.de/interpreter/URL')
|
|
|
104
109
|
```
|
|
105
110
|
## Contacts
|
|
106
111
|
|
|
107
|
-
- [NCCR](https://actcognitive.org/) - National
|
|
108
|
-
|
|
109
|
-
- [IDU](https://idu.itmo.ru/) - Institute of
|
|
110
|
-
Design and Urban Studies
|
|
112
|
+
- [NCCR](https://actcognitive.org/) - National Center for Cognitive Research
|
|
113
|
+
- [IDU](https://idu.itmo.ru/) - Institute of Design and Urban Studies
|
|
111
114
|
- [Natalya Chichkova](https://t.me/nancy_nat) - project manager
|
|
112
115
|
- [Danila Oleynikov (Donny)](https://t.me/ddonny_dd) - lead software engineer
|
|
113
116
|
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
objectnat/__init__.py,sha256=OnDvrLPLEeYIE_9qOVYgMc-PkRzIqShtGxirguEXiRU,260
|
|
2
|
+
objectnat/_api.py,sha256=UX9XwHzpXbkPZksovT33kn5_g9r0qm_cGVbGLsBLoZg,746
|
|
3
|
+
objectnat/_config.py,sha256=sv13J3yMw1cmmkgPMf08zinLwPKYwXHJGfchqmurSg8,2268
|
|
4
|
+
objectnat/_version.py,sha256=ZQLNbaBb3Roa6Z5LEm--iZickCQhYJVSrDpqf4YBbzc,18
|
|
5
|
+
objectnat/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
+
objectnat/methods/balanced_buildings.py,sha256=hLT2QgmGWpROtnL8SJQIujeP6q9ou15yIdHpv66CfMs,2892
|
|
7
|
+
objectnat/methods/cluster_points_in_polygons.py,sha256=ANoPHB89Ih6SYUTs0VoYqW7zi9GVIytSOGySoQ3vby4,5073
|
|
8
|
+
objectnat/methods/coverage_zones.py,sha256=yMeK1DjneMAxxKv9busEKdAsP25xiJMcPCixlJCDI4s,2835
|
|
9
|
+
objectnat/methods/isochrones.py,sha256=EbcTMCz9W9_QzvL7Of_nXWVEMv_3CqqiEvLX0Z_pagY,6123
|
|
10
|
+
objectnat/methods/living_buildings_osm.py,sha256=DW7k-SWJA3Ot8qoE1FEsEH8PkB_uLQwd7KGVwfYFanE,5786
|
|
11
|
+
objectnat/methods/noise/__init__.py,sha256=7B05RT3g9NXzTBC9OLKkzlHF7EOdZfVs_QZJibTfusU,150
|
|
12
|
+
objectnat/methods/noise/noise_exceptions.py,sha256=nTav5kp6RNpi0kxD9cMULTApOuvAu9wEiX28fkLAnOc,634
|
|
13
|
+
objectnat/methods/noise/noise_init_data.py,sha256=Vp-R_yH7CgYqZEtbGAdr1iiIbgauReniLQ_a2TcszhY,503
|
|
14
|
+
objectnat/methods/noise/noise_reduce.py,sha256=B85ifAN_mHiBKJso-cZiSkj7588w2sA-ugGvEal4CBw,6885
|
|
15
|
+
objectnat/methods/noise/noise_sim.py,sha256=YWTzFnwIamsb9qlIZTWPNh26Z1S29uoS54ImHWYH8qg,20109
|
|
16
|
+
objectnat/methods/provision/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
17
|
+
objectnat/methods/provision/provision.py,sha256=YDhEbGQksfaLPmqt0GOl7zsBdOlCxXesznZQ40vODjY,4749
|
|
18
|
+
objectnat/methods/provision/provision_exceptions.py,sha256=lznEmlmZDzGIOtapZVqZDMutIi5eGbFuVCYeVa7VZWk,1687
|
|
19
|
+
objectnat/methods/provision/provision_model.py,sha256=lL-Oynm_0Z0PXbw2bnQ1gB1kmZmSR4pBmVtqWD_JQo4,14452
|
|
20
|
+
objectnat/methods/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
21
|
+
objectnat/methods/utils/geom_utils.py,sha256=HxC5xSDHFaTZW2HgUuXeRabGfDuz0J009hLVM60rLE4,2923
|
|
22
|
+
objectnat/methods/visibility_analysis.py,sha256=PolNPU9Qyc6DrOWUwZDY_ErODxrCsfrn-zfg1pIt7Po,21618
|
|
23
|
+
objectnat-0.2.7.dist-info/LICENSE.txt,sha256=yPEioMfTd7JAQgAU6J13inS1BSjwd82HFlRSoIb4My8,1498
|
|
24
|
+
objectnat-0.2.7.dist-info/METADATA,sha256=FRTcsM3_rR577RnhGAfRTb0g9A9rC1A0-15QwD6JUYY,6112
|
|
25
|
+
objectnat-0.2.7.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
26
|
+
objectnat-0.2.7.dist-info/RECORD,,
|
objectnat/utils/__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
from .utils import get_utm_crs_for_4326_gdf
|
objectnat/utils/utils.py
DELETED
|
@@ -1,19 +0,0 @@
|
|
|
1
|
-
import geopandas as gpd
|
|
2
|
-
from pyproj import CRS
|
|
3
|
-
from pyproj.aoi import AreaOfInterest
|
|
4
|
-
from pyproj.database import query_utm_crs_info
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
def get_utm_crs_for_4326_gdf(gdf: gpd.GeoDataFrame) -> CRS:
|
|
8
|
-
assert gdf.crs == CRS.from_epsg(4326), "provided GeoDataFrame is not in EPSG 4326"
|
|
9
|
-
minx, miny, maxx, maxy = gdf.total_bounds
|
|
10
|
-
utm_crs_list = query_utm_crs_info(
|
|
11
|
-
datum_name="WGS 84",
|
|
12
|
-
area_of_interest=AreaOfInterest(
|
|
13
|
-
west_lon_degree=minx,
|
|
14
|
-
south_lat_degree=miny,
|
|
15
|
-
east_lon_degree=maxx,
|
|
16
|
-
north_lat_degree=maxy,
|
|
17
|
-
),
|
|
18
|
-
)
|
|
19
|
-
return CRS.from_epsg(utm_crs_list[0].code)
|
objectnat-0.2.5.dist-info/RECORD
DELETED
|
@@ -1,21 +0,0 @@
|
|
|
1
|
-
objectnat/__init__.py,sha256=OnDvrLPLEeYIE_9qOVYgMc-PkRzIqShtGxirguEXiRU,260
|
|
2
|
-
objectnat/_api.py,sha256=oiEO2P-tv6AMDdNoT8d0BWMmgeUJa4bhzGDTU2BWTXI,704
|
|
3
|
-
objectnat/_config.py,sha256=sv13J3yMw1cmmkgPMf08zinLwPKYwXHJGfchqmurSg8,2268
|
|
4
|
-
objectnat/_version.py,sha256=sIh4VI6K8WvZPswkYvGqS-J8LeZb01HJ4SVcHLlcPMs,18
|
|
5
|
-
objectnat/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
-
objectnat/methods/balanced_buildings.py,sha256=hLT2QgmGWpROtnL8SJQIujeP6q9ou15yIdHpv66CfMs,2892
|
|
7
|
-
objectnat/methods/cluster_points_in_polygons.py,sha256=ANoPHB89Ih6SYUTs0VoYqW7zi9GVIytSOGySoQ3vby4,5073
|
|
8
|
-
objectnat/methods/coverage_zones.py,sha256=yMeK1DjneMAxxKv9busEKdAsP25xiJMcPCixlJCDI4s,2835
|
|
9
|
-
objectnat/methods/isochrones.py,sha256=CBJprxcyPIYC4RJizqJ1MJL-Zkea4iyr7wHTOOQ7DC8,6146
|
|
10
|
-
objectnat/methods/living_buildings_osm.py,sha256=v0rC8xaqibZq9jZm5HVonmmC9VFXzgZwhqsxHA3sPlc,5904
|
|
11
|
-
objectnat/methods/provision/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
|
-
objectnat/methods/provision/provision.py,sha256=jYPcqX-_TBFlUQq0bWK2uuvH6AWMXv8E5mjTeHjchS8,4612
|
|
13
|
-
objectnat/methods/provision/provision_exceptions.py,sha256=-TK4A-vacUuzlPJGSt2YyawRwKDLCZFlAbuIvIf1FnY,1723
|
|
14
|
-
objectnat/methods/provision/provision_model.py,sha256=IN_4FqquPTT3uxuhJQmwjwY7L20Ye4wwGuiTD-0QwKA,13198
|
|
15
|
-
objectnat/methods/visibility_analysis.py,sha256=__S01m4YcIZbUcr6Umzvr4NpaCsajXxKNcfJm3zquVY,20690
|
|
16
|
-
objectnat/utils/__init__.py,sha256=w8R5V_Ws_GUt4hLwpudMgjXvocG4vCxWSzVw_jTReQ4,44
|
|
17
|
-
objectnat/utils/utils.py,sha256=_vbCW-XTHwZOR3yNlzf_vgNwbYwonhGlduSznGufEgs,638
|
|
18
|
-
objectnat-0.2.5.dist-info/LICENSE.txt,sha256=yPEioMfTd7JAQgAU6J13inS1BSjwd82HFlRSoIb4My8,1498
|
|
19
|
-
objectnat-0.2.5.dist-info/METADATA,sha256=wO8A3G2O7Hw-N89R6O0OyJ8CqFfXIs48BTQBz6hJv10,5837
|
|
20
|
-
objectnat-0.2.5.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
21
|
-
objectnat-0.2.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|