ORForise 1.4.3__py3-none-any.whl → 1.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ORForise/Aggregate_Compare.py +318 -133
- ORForise/Annotation_Compare.py +294 -125
- ORForise/Comparator.py +656 -576
- ORForise/ORForise_Analysis/genome_Metrics.py +51 -33
- ORForise/Tools/Augustus/Augustus.py +30 -23
- ORForise/Tools/Balrog/Balrog.py +31 -23
- ORForise/Tools/EasyGene/EasyGene.py +30 -22
- ORForise/Tools/FGENESB/FGENESB.py +32 -25
- ORForise/Tools/FragGeneScan/FragGeneScan.py +29 -22
- ORForise/Tools/GFF/GFF.py +51 -47
- ORForise/Tools/GLIMMER_3/GLIMMER_3.py +34 -27
- ORForise/Tools/GeneMark/GeneMark.py +46 -40
- ORForise/Tools/GeneMark_HA/GeneMark_HA.py +29 -22
- ORForise/Tools/GeneMark_HMM/GeneMark_HMM.py +29 -22
- ORForise/Tools/GeneMark_S/GeneMark_S.py +29 -22
- ORForise/Tools/GeneMark_S_2/GeneMark_S_2.py +29 -25
- ORForise/Tools/MetaGene/MetaGene.py +29 -22
- ORForise/Tools/MetaGeneAnnotator/MetaGeneAnnotator.py +30 -23
- ORForise/Tools/MetaGeneMark/MetaGeneMark.py +30 -23
- ORForise/Tools/Prodigal/Prodigal.py +30 -26
- ORForise/Tools/Prokka/Prokka.py +30 -25
- ORForise/Tools/StORF_Reporter/StORF_Reporter.py +33 -26
- ORForise/Tools/TransDecoder/TransDecoder.py +29 -22
- ORForise/utils.py +204 -2
- {orforise-1.4.3.dist-info → orforise-1.5.1.dist-info}/METADATA +7 -31
- {orforise-1.4.3.dist-info → orforise-1.5.1.dist-info}/RECORD +30 -30
- {orforise-1.4.3.dist-info → orforise-1.5.1.dist-info}/entry_points.txt +5 -0
- {orforise-1.4.3.dist-info → orforise-1.5.1.dist-info}/WHEEL +0 -0
- {orforise-1.4.3.dist-info → orforise-1.5.1.dist-info}/licenses/LICENSE +0 -0
- {orforise-1.4.3.dist-info → orforise-1.5.1.dist-info}/top_level.txt +0 -0
ORForise/Aggregate_Compare.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
|
1
1
|
from importlib import import_module
|
|
2
2
|
import argparse
|
|
3
|
-
import
|
|
4
|
-
|
|
5
|
-
import sys
|
|
3
|
+
import csv, os, gzip, sys
|
|
4
|
+
|
|
6
5
|
|
|
7
6
|
try:
|
|
8
7
|
from Comparator import tool_comparison
|
|
@@ -14,50 +13,29 @@ except ImportError:
|
|
|
14
13
|
############################################
|
|
15
14
|
|
|
16
15
|
def comparator(options):
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
genome_ID = line.split()[0].replace('>','')
|
|
25
|
-
##############################################
|
|
26
|
-
if not options.reference_tool: # IF using Ensembl for comparison
|
|
27
|
-
ref_genes = collections.OrderedDict() # Order is important
|
|
28
|
-
count = 0
|
|
29
|
-
with open(options.reference_annotation, 'r') as genome_gff:
|
|
30
|
-
for line in genome_gff:
|
|
31
|
-
line = line.split('\t')
|
|
32
|
-
try:
|
|
33
|
-
if "CDS" in line[2] and len(line) == 9:
|
|
34
|
-
start = int(line[3])
|
|
35
|
-
stop = int(line[4])
|
|
36
|
-
strand = line[6]
|
|
37
|
-
gene_details = [start, stop, strand]
|
|
38
|
-
ref_genes.update({count: gene_details})
|
|
39
|
-
count += 1
|
|
40
|
-
except IndexError:
|
|
41
|
-
continue
|
|
42
|
-
else: # IF using a tool as reference
|
|
16
|
+
try:
|
|
17
|
+
try: # Detect whether fasta/gff files are .gz or text and read accordingly
|
|
18
|
+
fasta_in = gzip.open(options.genome_dna, 'rt')
|
|
19
|
+
dna_regions = fasta_load(fasta_in)
|
|
20
|
+
except:
|
|
21
|
+
fasta_in = open(options.genome_dna, 'r', encoding='unicode_escape')
|
|
22
|
+
dna_regions = fasta_load(fasta_in)
|
|
43
23
|
try:
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
except
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
pos = pos.split(',')
|
|
58
|
-
ref_genes.update({i: [pos[0], pos[1], details[0]]})
|
|
24
|
+
gff_in = gzip.open(options.reference_annotation, 'rt')
|
|
25
|
+
dna_regions = gff_load(options, gff_in, dna_regions)
|
|
26
|
+
except:
|
|
27
|
+
gff_in = open(options.reference_annotation, 'r', encoding='unicode_escape')
|
|
28
|
+
dna_regions = gff_load(options, gff_in, dna_regions)
|
|
29
|
+
except AttributeError:
|
|
30
|
+
sys.exit("Attribute Error:\nStORF'ed GFF probably already exists - Must be deleted before running (-overwrite)")
|
|
31
|
+
except FileNotFoundError:
|
|
32
|
+
split_path = options.gff.split(os.sep)
|
|
33
|
+
sys.exit("Directory '" + split_path[-2] + "' missing fna/gff files")
|
|
34
|
+
###############################################
|
|
35
|
+
total_ref_genes = sum(
|
|
36
|
+
len(v[2]) if isinstance(v[2], (list, tuple, set, dict, str)) else 1 for v in dna_regions.values())
|
|
59
37
|
#############################################
|
|
60
|
-
#
|
|
38
|
+
# Collect predictions from tools
|
|
61
39
|
aggregate_Predictions = collections.OrderedDict()
|
|
62
40
|
aggregate_Tools = options.tools.split(',')
|
|
63
41
|
for i, (tool) in enumerate(aggregate_Tools):
|
|
@@ -71,104 +49,306 @@ def comparator(options):
|
|
|
71
49
|
except ModuleNotFoundError:
|
|
72
50
|
sys.exit("Tool not available")
|
|
73
51
|
tool_ = getattr(tool_, tool)
|
|
74
|
-
|
|
75
|
-
|
|
52
|
+
##
|
|
53
|
+
orfs = tool_(tool_prediction, dna_regions)
|
|
54
|
+
for current_contig in orfs:
|
|
55
|
+
if current_contig not in aggregate_Predictions:
|
|
56
|
+
aggregate_Predictions[current_contig] = {}
|
|
57
|
+
current_orfs = orfs[current_contig]
|
|
58
|
+
for key, value in current_orfs.items():
|
|
59
|
+
if key in aggregate_Predictions[current_contig]:
|
|
60
|
+
aggregate_Predictions[current_contig][key][-1] += '|' + tool
|
|
61
|
+
else:
|
|
62
|
+
aggregate_Predictions[current_contig][key] = value
|
|
76
63
|
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
64
|
+
aggregate_ORFs = {k: sortORFs(v) for k, v in aggregate_Predictions.items()}
|
|
65
|
+
results = tool_comparison(aggregate_ORFs, dna_regions, options.verbose)
|
|
66
|
+
############## Printing to std-out and optional csv file
|
|
67
|
+
# Ensure the output directory exists
|
|
68
|
+
os.makedirs(options.outdir, exist_ok=True)
|
|
69
|
+
# Use outname as a directory, basename for files is output-outname
|
|
70
|
+
base_out = os.path.join(options.outdir, f"{os.path.basename(options.outname)}")
|
|
71
|
+
|
|
72
|
+
# Prepare to collect summary stats for all contigs
|
|
73
|
+
contig_summaries = []
|
|
80
74
|
############################################# To get default output filename from input file details
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
with open(options.outname, 'w', newline='\n',
|
|
98
|
-
encoding='utf-8') as out_file: # Clear write out of report
|
|
99
|
-
tool_out = csv.writer(out_file, quoting=csv.QUOTE_NONE, escapechar=" ")
|
|
100
|
-
tool_out.writerow(['Representative_Metrics:'])
|
|
101
|
-
tool_out.writerow(rep_metric_description)
|
|
102
|
-
tool_out.writerow(rep_metrics)
|
|
103
|
-
tool_out.writerow(['All_Metrics:'])
|
|
104
|
-
tool_out.writerow(metric_description)
|
|
105
|
-
tool_out.writerow(metrics)
|
|
106
|
-
tool_out.writerow(['Reference_CDS_Gene_Coverage_of_Genome'])
|
|
107
|
-
tool_out.writerow([gene_coverage_genome])
|
|
108
|
-
tool_out.writerow(['Predicted_CDS_Coverage_of_Genome'])
|
|
109
|
-
tool_out.writerow([orf_Coverage_Genome])
|
|
110
|
-
tool_out.writerow(['Matched_Predicted_CDS_Coverage_of_Genome'])
|
|
111
|
-
tool_out.writerow([matched_ORF_Coverage_Genome])
|
|
112
|
-
tool_out.writerow(['Start_Position_Difference:'])
|
|
113
|
-
tool_out.writerow(start_precision)
|
|
114
|
-
tool_out.writerow(['Stop_Position_Difference:'])
|
|
115
|
-
tool_out.writerow(stop_precision)
|
|
116
|
-
tool_out.writerow(['Alternative_Starts_Predicted:'])
|
|
117
|
-
tool_out.writerow(other_starts)
|
|
118
|
-
tool_out.writerow(['Alternative_Stops_Predicted:'])
|
|
119
|
-
tool_out.writerow(other_stops)
|
|
120
|
-
tool_out.writerow(['Undetected_Gene_Metrics:'])
|
|
121
|
-
tool_out.writerow([
|
|
122
|
-
'ATG_Start,GTG_Start,TTG_Start,ATT_Start,CTG_Start,Alternative_Start_Codon,TGA_Stop,TAA_Stop,TAG_Stop,Alternative_Stop_Codon,Median_Length,ORFs_on_Positive_Strand,ORFs_on_Negative_Strand'])
|
|
123
|
-
tool_out.writerow(undetected_gene_metrics)
|
|
124
|
-
tool_out.writerow(['Perfect_Match_Genes:'])
|
|
125
|
-
for key, value in perfect_Matches.items():
|
|
126
|
-
key = key.split(',')
|
|
127
|
-
id = ('>' + genome_name + '_' + key[0] + '_' + key[1] + '_' + key[2])
|
|
128
|
-
tool_out.writerow([id + '\n' + value + '\n'])
|
|
129
|
-
####
|
|
130
|
-
tool_out.writerow(['Partial_Match_Genes:'])
|
|
131
|
-
for key, seqs in partial_Hits.items():
|
|
132
|
-
key = key.split(';')
|
|
133
|
-
gene_Seq = seqs[0]
|
|
134
|
-
orf_Seq = seqs[1]
|
|
135
|
-
partial = (key[0] + '\n' + gene_Seq + '\n' + key[1] + '\n' + orf_Seq + '\n')
|
|
136
|
-
tool_out.writerow([partial])
|
|
137
|
-
####
|
|
138
|
-
tool_out.writerow(['\nMissed_Genes:'])
|
|
139
|
-
for key, value in missed_genes.items():
|
|
140
|
-
key = key.split(',')
|
|
141
|
-
id = ('>' + genome_name + '_' + key[0] + '_' + key[1] + '_' + key[2])
|
|
142
|
-
tool_out.writerow([id + '\n' + value + '\n'])
|
|
143
|
-
tool_out.writerow(['\nPredicted_CDSs_Without_Corresponding_Gene_In_Reference_Metrics:'])
|
|
144
|
-
tool_out.writerow([
|
|
145
|
-
'ATG_Start,GTG_Start,TTG_Start,ATT_Start,CTG_Start,Alternative_Start_Codon,TGA_Stop,TAA_Stop,TAG_Stop,Alternative_Stop_Codon,Median_Length,ORFs_on_Positive_Strand,ORFs_on_Negative_Strand'])
|
|
146
|
-
tool_out.writerow(unmatched_orf_metrics)
|
|
147
|
-
tool_out.writerow(['Predicted_CDS_Without_Corresponding_Gene_in_Reference:'])
|
|
148
|
-
for key, value in unmatched_orfs.items():
|
|
149
|
-
key = key.split(',')
|
|
150
|
-
id = ('>' + tool + '_' + key[0] + '_' + key[1] + '_' + key[2])
|
|
151
|
-
tool_out.writerow([id + '\n' + value])
|
|
152
|
-
tool_out.writerow(['\nPredicted_CDSs_Which_Detected_more_than_one_Gene:'])
|
|
75
|
+
if options.outdir:
|
|
76
|
+
# Ensure the output directory exists
|
|
77
|
+
os.makedirs(options.outdir, exist_ok=True)
|
|
78
|
+
# Use outname as a directory, basename for files is output-outname
|
|
79
|
+
base_out = os.path.join(options.outdir, f"{os.path.basename(options.outname)}")
|
|
80
|
+
with open(f"{base_out}_summary.txt", 'w', encoding='utf-8') as out_file:
|
|
81
|
+
out_file.write('Genome Used: ' + str(options.genome_dna.split('/')[-1]) + '\n')
|
|
82
|
+
if options.reference_tool:
|
|
83
|
+
out_file.write('Reference Tool Used: ' + str(options.reference_tool) + '\n')
|
|
84
|
+
else:
|
|
85
|
+
out_file.write('Reference Used: ' + str(options.reference_annotation.split('/')[-1]) + '\n')
|
|
86
|
+
out_file.write('Tool Compared: ' + str(options.tools) + '\n')
|
|
87
|
+
out_file.write('Total Number of Reference Genes: ' + str(total_ref_genes) + '\n')
|
|
88
|
+
out_file.write('Number of Contigs: ' + str(len(dna_regions)) + '\n')
|
|
89
|
+
out_file.write(
|
|
90
|
+
'Contig\tGenes\tORFs\tPerfect_Matches\tPartial_Matches\tMissed_Genes\tUnmatched_ORFs\tMulti_Matched_ORFs\n')
|
|
153
91
|
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
92
|
+
for dna_region, result in results.items():
|
|
93
|
+
num_current_genes = len(dna_regions[dna_region][2])
|
|
94
|
+
num_orfs = result['pred_metrics']['Number_of_ORFs']
|
|
95
|
+
num_perfect = result['pred_metrics']['Number_of_Perfect_Matches']
|
|
96
|
+
num_partial = len(result['pred_metrics']['partial_Hits'])
|
|
97
|
+
num_missed = len(result['rep_metrics']['genes_Undetected'])
|
|
98
|
+
num_unmatched = len(result['pred_metrics']['unmatched_ORFs'])
|
|
99
|
+
num_multi = len(result['pred_metrics']['multi_Matched_ORFs'])
|
|
100
|
+
|
|
101
|
+
####
|
|
102
|
+
# Tool-specific stats
|
|
103
|
+
tool_stats = {}
|
|
104
|
+
for tool in options.tools.split(','):
|
|
105
|
+
tool_stats[tool] = {
|
|
106
|
+
'perfect': 0,
|
|
107
|
+
'partial': 0,
|
|
108
|
+
'unmatched': 0,
|
|
109
|
+
'multi': 0
|
|
110
|
+
}
|
|
111
|
+
# Count perfect matches per tool
|
|
112
|
+
for key in result['pred_metrics'].get('perfect_Matches', {}):
|
|
113
|
+
for tool in options.tools.split(','):
|
|
114
|
+
if tool in key:
|
|
115
|
+
tool_stats[tool]['perfect'] += 1
|
|
116
|
+
# Count partial matches per tool
|
|
117
|
+
for key in result['pred_metrics'].get('partial_Hits', {}):
|
|
118
|
+
for tool in options.tools.split(','):
|
|
119
|
+
if tool in key:
|
|
120
|
+
tool_stats[tool]['partial'] += 1
|
|
121
|
+
# Count unmatched ORFs per tool
|
|
122
|
+
for key in result['pred_metrics'].get('unmatched_ORFs', {}):
|
|
123
|
+
for tool in options.tools.split(','):
|
|
124
|
+
if tool in key:
|
|
125
|
+
tool_stats[tool]['unmatched'] += 1
|
|
126
|
+
# Count multi-matched ORFs per tool
|
|
127
|
+
for key in result['pred_metrics'].get('multi_Matched_ORFs', {}):
|
|
128
|
+
for tool in options.tools.split(','):
|
|
129
|
+
if tool in key:
|
|
130
|
+
tool_stats[tool]['multi'] += 1
|
|
131
|
+
####
|
|
132
|
+
|
|
133
|
+
# Collect summary for this contig
|
|
134
|
+
if options.outdir:
|
|
135
|
+
contig_summaries.append([
|
|
136
|
+
dna_region, num_current_genes, num_orfs, num_perfect, num_partial, num_missed, num_unmatched, num_multi
|
|
137
|
+
])
|
|
138
|
+
###
|
|
139
|
+
num_current_genes = len(dna_regions[dna_region][2])
|
|
140
|
+
print("These are the results for: " + dna_region + '\n')
|
|
141
|
+
############################################# To get default output filename from input file details
|
|
142
|
+
genome_name = options.reference_annotation.split('/')[-1].split('.')[0]
|
|
143
|
+
rep_metric_description, rep_metrics = get_rep_metrics(result)
|
|
144
|
+
all_metric_description, all_metrics = get_all_metrics(result)
|
|
145
|
+
|
|
146
|
+
print('Current Contig: ' + str(dna_region))
|
|
147
|
+
print('Number of Genes: ' + str(num_current_genes))
|
|
148
|
+
print('Number of ORFs: ' + str(result['pred_metrics']['Number_of_ORFs']))
|
|
149
|
+
print('Perfect Matches: ' + str(result['pred_metrics']['Number_of_Perfect_Matches']) + ' [' + str(num_current_genes)+ '] - '+ format(100 * result['pred_metrics']['Number_of_Perfect_Matches']/num_current_genes,'.2f')+'%')
|
|
150
|
+
print('Partial Matches: ' + str(len(result['pred_metrics']['partial_Hits'])) + ' [' + str(num_current_genes)+ '] - '+ format(100 * len(result['pred_metrics']['partial_Hits'])/num_current_genes,'.2f')+'%')
|
|
151
|
+
print('Missed Genes: ' + str(len(result['rep_metrics']['genes_Undetected'])) + ' [' + str(num_current_genes)+ '] - '+ format(100 * len(result['rep_metrics']['genes_Undetected'])/num_current_genes,'.2f')+'%')
|
|
152
|
+
print('Unmatched ORFs: ' + str(len(result['pred_metrics']['unmatched_ORFs'])) + ' [' + str(num_current_genes)+ '] - '+ format(100 * len(result['pred_metrics']['unmatched_ORFs'])/num_current_genes,'.2f')+'%')
|
|
153
|
+
print('Multi-matched ORFs: ' + str(len(result['pred_metrics']['multi_Matched_ORFs'])) + ' [' + str(num_current_genes)+ '] - '+ format(100 * len(result['pred_metrics']['multi_Matched_ORFs'])/num_current_genes,'.2f')+'%')
|
|
154
|
+
print('Tool breakdown:')
|
|
155
|
+
for tool, stats in tool_stats.items():
|
|
156
|
+
print(
|
|
157
|
+
f" {tool}: Perfect={stats['perfect']}, Partial={stats['partial']}, Unmatched={stats['unmatched']}, Multi-matched={stats['multi']}")
|
|
158
|
+
|
|
159
|
+
if options.outdir:
|
|
160
|
+
# Prepare output directory and file names for each contig
|
|
161
|
+
contig_save = dna_region.replace('/', '_').replace('\\', '_')
|
|
162
|
+
contig_dir = os.path.join(options.outdir, contig_save)
|
|
163
|
+
os.makedirs(contig_dir, exist_ok=True)
|
|
164
|
+
summary_file = os.path.join(contig_dir, "summary.txt")
|
|
165
|
+
csv_file = os.path.join(contig_dir, "metrics.csv")
|
|
166
|
+
perfect_fasta = os.path.join(contig_dir, "perfect_matches.fasta")
|
|
167
|
+
partial_fasta = os.path.join(contig_dir, "partial_matches.fasta")
|
|
168
|
+
missed_fasta = os.path.join(contig_dir, "missed_genes.fasta")
|
|
169
|
+
unmatched_fasta = os.path.join(contig_dir, "unmatched_orfs.fasta")
|
|
170
|
+
multi_fasta = os.path.join(contig_dir, "multi_matched_orfs.fasta")
|
|
171
|
+
|
|
172
|
+
# Write summary to text file
|
|
173
|
+
with open(summary_file, 'w', encoding='utf-8') as sf:
|
|
174
|
+
sf.write('Current Contig: ' + str(dna_region) + '\n')
|
|
175
|
+
sf.write('Number of Genes: ' + str(num_current_genes) + '\n')
|
|
176
|
+
sf.write('Number of ORFs: ' + str(result['pred_metrics']['Number_of_ORFs']) + '\n')
|
|
177
|
+
sf.write('Perfect Matches: ' + str(result['pred_metrics']['Number_of_Perfect_Matches']) + ' [' + str(
|
|
178
|
+
num_current_genes) + '] - ' + format(
|
|
179
|
+
100 * result['pred_metrics']['Number_of_Perfect_Matches'] / num_current_genes, '.2f') + '%\n')
|
|
180
|
+
sf.write('Partial Matches: ' + str(len(result['pred_metrics']['partial_Hits'])) + ' [' + str(
|
|
181
|
+
num_current_genes) + '] - ' + format(
|
|
182
|
+
100 * len(result['pred_metrics']['partial_Hits']) / num_current_genes, '.2f') + '%\n')
|
|
183
|
+
sf.write('Missed Genes: ' + str(len(result['rep_metrics']['genes_Undetected'])) + ' [' + str(
|
|
184
|
+
num_current_genes) + '] - ' + format(
|
|
185
|
+
100 * len(result['rep_metrics']['genes_Undetected']) / num_current_genes, '.2f') + '%\n')
|
|
186
|
+
sf.write('Unmatched ORFs: ' + str(len(result['pred_metrics']['unmatched_ORFs'])) + ' [' + str(
|
|
187
|
+
num_current_genes) + '] - ' + format(
|
|
188
|
+
100 * len(result['pred_metrics']['unmatched_ORFs']) / num_current_genes, '.2f') + '%\n')
|
|
189
|
+
sf.write('Multi-matched ORFs: ' + str(len(result['pred_metrics']['multi_Matched_ORFs'])) + ' [' + str(
|
|
190
|
+
num_current_genes) + '] - ' + format(
|
|
191
|
+
100 * len(result['pred_metrics']['multi_Matched_ORFs']) / num_current_genes, '.2f') + '%\n')
|
|
192
|
+
sf.write('Tool breakdown:\n')
|
|
193
|
+
for tool, stats in tool_stats.items():
|
|
194
|
+
sf.write(
|
|
195
|
+
f" {tool}: Perfect={stats['perfect']}, Partial={stats['partial']}, Unmatched={stats['unmatched']}, Multi-matched={stats['multi']}\n")
|
|
196
|
+
|
|
197
|
+
# Write metrics to CSV
|
|
198
|
+
with open(csv_file, 'w', newline='\n', encoding='utf-8') as out_file:
|
|
199
|
+
tool_out = csv.writer(out_file, quoting=csv.QUOTE_NONE, escapechar=" ")
|
|
200
|
+
tool_out.writerow(['Representative_Metrics:'])
|
|
201
|
+
tool_out.writerow(rep_metric_description.split(','))
|
|
202
|
+
tool_out.writerow([*rep_metrics])
|
|
203
|
+
tool_out.writerow(['Prediction_Metrics:'])
|
|
204
|
+
tool_out.writerow(all_metric_description.split(','))
|
|
205
|
+
tool_out.writerow([*all_metrics])
|
|
206
|
+
tool_out.writerow(['Reference_CDS_Gene_Coverage_of_Genome'])
|
|
207
|
+
tool_out.writerow([''.join(map(str, result['rep_metrics']['gene_Coverage_Genome']))])
|
|
208
|
+
tool_out.writerow(['Predicted_CDS_Coverage_of_Genome'])
|
|
209
|
+
tool_out.writerow([''.join(map(str, result['pred_metrics']['orf_Coverage_Genome']))])
|
|
210
|
+
tool_out.writerow(['Matched_Predicted_CDS_Coverage_of_Genome'])
|
|
211
|
+
tool_out.writerow([''.join(map(str, result['pred_metrics']['matched_ORF_Coverage_Genome']))])
|
|
212
|
+
# tool_out.writerow(['Start_Position_Difference:'])
|
|
213
|
+
# tool_out.writerow(result.get('start_Difference', []))
|
|
214
|
+
# tool_out.writerow(['Stop_Position_Difference:'])
|
|
215
|
+
# tool_out.writerow(result.get('stop_Difference', []))
|
|
216
|
+
# tool_out.writerow(['Alternative_Starts_Predicted:'])
|
|
217
|
+
# tool_out.writerow(result.get('other_Starts', []))
|
|
218
|
+
# tool_out.writerow(['Alternative_Stops_Predicted:'])
|
|
219
|
+
# tool_out.writerow(result.get('other_Stops', []))
|
|
220
|
+
# tool_out.writerow(['Undetected_Gene_Metrics:'])
|
|
221
|
+
# tool_out.writerow([
|
|
222
|
+
# 'ATG_Start,GTG_Start,TTG_Start,ATT_Start,CTG_Start,Alternative_Start_Codon,TGA_Stop,TAA_Stop,TAG_Stop,Alternative_Stop_Codon,Median_Length,ORFs_on_Positive_Strand,ORFs_on_Negative_Strand'
|
|
223
|
+
# ])
|
|
224
|
+
# tool_out.writerow(result.get('undetected_Gene_Metrics', []))
|
|
225
|
+
# tool_out.writerow(['\nPredicted_CDSs_Without_Corresponding_Gene_In_Reference_Metrics:'])
|
|
226
|
+
# tool_out.writerow([
|
|
227
|
+
# 'ATG_Start,GTG_Start,TTG_Start,ATT_Start,CTG_Start,Alternative_Start_Codon,TGA_Stop,TAA_Stop,TAG_Stop,Alternative_Stop_Codon,Median_Length,ORFs_on_Positive_Strand,ORFs_on_Negative_Strand'
|
|
228
|
+
# ])
|
|
229
|
+
# tool_out.writerow(result.get('unmatched_ORF_Metrics', []))
|
|
230
|
+
|
|
231
|
+
# Write perfect matches to FASTA
|
|
232
|
+
with open(perfect_fasta, 'w', encoding='utf-8') as f:
|
|
233
|
+
for key, value in result['pred_metrics'].get('perfect_Matches', {}).items():
|
|
234
|
+
key_parts = key.split(',')
|
|
235
|
+
id = f">{genome_name}_{key_parts[0]}_{key_parts[1]}_{key_parts[2]}_{key_parts[5]}"
|
|
236
|
+
f.write(f"{id}\n{value}\n")
|
|
237
|
+
|
|
238
|
+
# Write partial matches to FASTA
|
|
239
|
+
with open(partial_fasta, 'w', encoding='utf- 8') as f:
|
|
240
|
+
for key, value in result['pred_metrics'].get('partial_Hits', {}).items():
|
|
241
|
+
key_parts = key.split(';')
|
|
242
|
+
gene_Seq = value[0]
|
|
243
|
+
orf_Seq = value[1]
|
|
244
|
+
f.write(f">{key_parts[0]}_gene\n{gene_Seq}\n>{key_parts[1]}_orf\n{orf_Seq}\n")
|
|
245
|
+
|
|
246
|
+
# Write missed genes to FASTA
|
|
247
|
+
with open(missed_fasta, 'w', encoding='utf-8') as f:
|
|
248
|
+
for key, value in result['rep_metrics'].get('genes_Undetected', {}).items():
|
|
249
|
+
key_parts = key.split(',')
|
|
250
|
+
id = f">{genome_name}_{key_parts[0]}_{key_parts[1]}_{key_parts[2]}"
|
|
251
|
+
f.write(f"{id}\n{value}\n")
|
|
252
|
+
|
|
253
|
+
# Write unmatched ORFs to FASTA
|
|
254
|
+
with open(unmatched_fasta, 'w', encoding='utf-8') as f:
|
|
255
|
+
for key, value in result['pred_metrics'].get('unmatched_ORFs', {}).items():
|
|
256
|
+
key_parts = key.split(',')
|
|
257
|
+
id = f">{options.tools}_{key_parts[0]}_{key_parts[1]}_{key_parts[2]}"
|
|
258
|
+
f.write(f"{id}\n{value}\n")
|
|
259
|
+
|
|
260
|
+
# Write multi-matched ORFs to FASTA
|
|
261
|
+
with open(multi_fasta, 'w', encoding='utf-8') as f:
|
|
262
|
+
for key, value in result['pred_metrics'].get('multi_Matched_ORFs', {}).items():
|
|
263
|
+
key_parts = key.split(',')
|
|
264
|
+
multi = f">Predicted_CDS:{key_parts[0]}-{key_parts[1]}_Genes:{'|'.join(value)}"
|
|
265
|
+
f.write(f"{multi}\n")
|
|
266
|
+
|
|
267
|
+
# After all contigs, append the summary table to the main summary file
|
|
268
|
+
if options.outdir and contig_summaries:
|
|
269
|
+
with open(f"{base_out}_summary.txt", 'a', encoding='utf-8') as out_file:
|
|
270
|
+
for row in contig_summaries:
|
|
271
|
+
out_file.write('\t'.join(map(str, row)) + '\n')
|
|
272
|
+
# Optionally, add overall totals
|
|
273
|
+
total_genes = sum(row[1] for row in contig_summaries)
|
|
274
|
+
total_orfs = sum(row[2] for row in contig_summaries)
|
|
275
|
+
total_perfect = sum(row[3] for row in contig_summaries)
|
|
276
|
+
total_partial = sum(row[4] for row in contig_summaries)
|
|
277
|
+
total_missed = sum(row[5] for row in contig_summaries)
|
|
278
|
+
total_unmatched = sum(row[6] for row in contig_summaries)
|
|
279
|
+
total_multi = sum(row[7] for row in contig_summaries)
|
|
280
|
+
out_file.write('\nOverall Summary:\n')
|
|
281
|
+
out_file.write(f'Number of Genes: {total_genes}\n')
|
|
282
|
+
out_file.write(f'Number of ORFs: {total_orfs}\n')
|
|
283
|
+
out_file.write(
|
|
284
|
+
f'Perfect Matches: {total_perfect} [{total_genes}] - {format(100 * total_perfect / total_genes, ".2f")}%\n')
|
|
285
|
+
out_file.write(
|
|
286
|
+
f'Partial Matches: {total_partial} [{total_genes}] - {format(100 * total_partial / total_genes, ".2f")}%\n')
|
|
287
|
+
out_file.write(
|
|
288
|
+
f'Missed Genes: {total_missed} [{total_genes}] - {format(100 * total_missed / total_genes, ".2f")}%\n')
|
|
289
|
+
out_file.write(
|
|
290
|
+
f'Unmatched ORFs: {total_unmatched} [{total_genes}] - {format(100 * total_unmatched / total_genes, ".2f")}%\n')
|
|
291
|
+
out_file.write(
|
|
292
|
+
f'Multi-matched ORFs: {total_multi} [{total_genes}] - {format(100 * total_multi / total_genes, ".2f")}%\n')
|
|
293
|
+
|
|
294
|
+
# Calculate combined tool stats - could be optimised further
|
|
295
|
+
combined_tool_stats = {tool: {'perfect': 0, 'partial': 0, 'unmatched': 0, 'multi': 0} for tool in
|
|
296
|
+
options.tools.split(',')}
|
|
297
|
+
for dna_region, result in results.items():
|
|
298
|
+
for tool in options.tools.split(','):
|
|
299
|
+
# perfect
|
|
300
|
+
for key in result['pred_metrics'].get('perfect_Matches', {}):
|
|
301
|
+
if tool in key:
|
|
302
|
+
combined_tool_stats[tool]['perfect'] += 1
|
|
303
|
+
# partial
|
|
304
|
+
for key in result['pred_metrics'].get('partial_Hits', {}):
|
|
305
|
+
if tool in key:
|
|
306
|
+
combined_tool_stats[tool]['partial'] += 1
|
|
307
|
+
# unmatched
|
|
308
|
+
for key in result['pred_metrics'].get('unmatched_ORFs', {}):
|
|
309
|
+
if tool in key:
|
|
310
|
+
combined_tool_stats[tool]['unmatched'] += 1
|
|
311
|
+
# multi
|
|
312
|
+
for key in result['pred_metrics'].get('multi_Matched_ORFs', {}):
|
|
313
|
+
if tool in key:
|
|
314
|
+
combined_tool_stats[tool]['multi'] += 1
|
|
315
|
+
for tool, stats in combined_tool_stats.items():
|
|
316
|
+
out_file.write('\n'+
|
|
317
|
+
f" {tool}: Perfect={stats['perfect']}, Partial={stats['partial']}, Unmatched={stats['unmatched']}, Multi-matched={stats['multi']}\n"
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
# Print combined metrics to stdout
|
|
321
|
+
print("\nCombined metrics for all contigs:")
|
|
322
|
+
print(f'Number of Genes: {total_genes}')
|
|
323
|
+
print(f'Number of ORFs: {total_orfs}')
|
|
324
|
+
print(
|
|
325
|
+
f'Perfect Matches: {total_perfect} [{total_genes}] - {format(100 * total_perfect / total_genes, ".2f")}%')
|
|
326
|
+
print(
|
|
327
|
+
f'Partial Matches: {total_partial} [{total_genes}] - {format(100 * total_partial / total_genes, ".2f")}%')
|
|
328
|
+
print(f'Missed Genes: {total_missed} [{total_genes}] - {format(100 * total_missed / total_genes, ".2f")}%')
|
|
329
|
+
print(
|
|
330
|
+
f'Unmatched ORFs: {total_unmatched} [{total_genes}] - {format(100 * total_unmatched / total_genes, ".2f")}%')
|
|
331
|
+
print(
|
|
332
|
+
f'Multi-matched ORFs: {total_multi} [{total_genes}] - {format(100 * total_multi / total_genes, ".2f")}%')
|
|
333
|
+
|
|
334
|
+
print('Tool breakdown (combined):')
|
|
335
|
+
for tool, stats in combined_tool_stats.items():
|
|
336
|
+
print('\n'+
|
|
337
|
+
f" {tool}: Perfect={stats['perfect']}, Partial={stats['partial']}, Unmatched={stats['unmatched']}, Multi-matched={stats['multi']}"
|
|
338
|
+
)
|
|
161
339
|
|
|
162
340
|
|
|
163
341
|
def main():
|
|
164
|
-
print("Thank you for using ORForise\nPlease report any issues to: https://github.com/NickJD/ORForise/issues\n
|
|
342
|
+
print("Thank you for using ORForise\nPlease report any issues to: https://github.com/NickJD/ORForise/issues\n"
|
|
343
|
+
"Please Cite: https://doi.org/10.1093/bioinformatics/btab827\n"
|
|
344
|
+
"#####")
|
|
165
345
|
|
|
166
346
|
parser = argparse.ArgumentParser(description='ORForise ' + ORForise_Version + ': Aggregate-Compare Run Parameters.')
|
|
167
347
|
parser._action_groups.pop()
|
|
168
348
|
|
|
169
349
|
required = parser.add_argument_group('Required Arguments')
|
|
170
350
|
|
|
171
|
-
required.add_argument('-dna', dest='
|
|
351
|
+
required.add_argument('-dna', dest='genome_dna', required=True, help='Genome DNA file (.fa) which both annotations '
|
|
172
352
|
'are based on')
|
|
173
353
|
required.add_argument('-t', dest='tools', required=True, help='Which tools to analyse? (Prodigal,GeneMarkS)')
|
|
174
354
|
required.add_argument('-tp', dest='tool_predictions', required=True, help='Tool genome prediction file (.gff) - Provide'
|
|
@@ -177,13 +357,18 @@ def main():
|
|
|
177
357
|
help='Which reference annotation file to use as reference?')
|
|
178
358
|
|
|
179
359
|
optional = parser.add_argument_group('Optional Arguments')
|
|
360
|
+
optional.add_argument('-gene_ident', action='store', dest='gene_ident', default='CDS',
|
|
361
|
+
help='What features to consider as genes? - Default: CDS - '
|
|
362
|
+
'Provide comma separated list of features to consider as genes (e.g. CDS,exon)')
|
|
180
363
|
optional.add_argument('-rt', dest='reference_tool', required=False,
|
|
181
364
|
help='What type of Annotation to compare to? -- Leave blank for Ensembl reference'
|
|
182
365
|
'- Provide tool name to compare output from two tools')
|
|
183
366
|
|
|
184
367
|
output = parser.add_argument_group('Output')
|
|
185
|
-
output.add_argument('-o', dest='
|
|
186
|
-
help='Define
|
|
368
|
+
output.add_argument('-o', dest='outdir', required=False,
|
|
369
|
+
help='Define directory where detailed output should be places - If not provided, summary will be printed to std-out')
|
|
370
|
+
output.add_argument('-n', dest='outname', required=False,
|
|
371
|
+
help='Define output file name - Mandatory is -o is provided: <outname>_<contig_id>_ORF_Comparison.csv')
|
|
187
372
|
|
|
188
373
|
misc = parser.add_argument_group('Misc')
|
|
189
374
|
misc.add_argument('-v', dest='verbose', default='False', type=eval, choices=[True, False],
|