NeuralNetworks 0.2.4__py3-none-any.whl → 0.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- NeuralNetworks/__init__.py +1 -1
- {neuralnetworks-0.2.4.dist-info → neuralnetworks-0.2.5.dist-info}/METADATA +14 -27
- {neuralnetworks-0.2.4.dist-info → neuralnetworks-0.2.5.dist-info}/RECORD +6 -6
- {neuralnetworks-0.2.4.dist-info → neuralnetworks-0.2.5.dist-info}/WHEEL +0 -0
- {neuralnetworks-0.2.4.dist-info → neuralnetworks-0.2.5.dist-info}/licenses/LICENSE +0 -0
- {neuralnetworks-0.2.4.dist-info → neuralnetworks-0.2.5.dist-info}/top_level.txt +0 -0
NeuralNetworks/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: NeuralNetworks
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.5
|
|
4
4
|
Summary: Multi-Layer Perceptrons with multi-Fourier encoding, variable learning rate, visualization and PyTorch compilation
|
|
5
5
|
Author-email: Alexandre Brun <alexandre51160@gmail.com>
|
|
6
6
|
License: GPL-3.0-or-later
|
|
@@ -46,8 +46,6 @@ Cette classe fournit :
|
|
|
46
46
|
|
|
47
47
|
---
|
|
48
48
|
|
|
49
|
-
#### **Paramètres**
|
|
50
|
-
|
|
51
49
|
| **Paramètres** | **Type** | **Optionnel** | **Description** |
|
|
52
50
|
|----------------------|--------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
|
|
53
51
|
| `input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des données en entrée au réseau. Default: `1` |
|
|
@@ -56,47 +54,36 @@ Cette classe fournit :
|
|
|
56
54
|
| `sigmas` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Oui | Liste de sigma pour encodages RFF. Si None : passthrough. Default: `None` |
|
|
57
55
|
| `fourier_input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | WIP. Default: `2` |
|
|
58
56
|
| `nb_fourier` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Nombre de fréquences utilisées pour les Fourier Features. Default: `8` |
|
|
59
|
-
| `norm` | [`norm`](#norms
|
|
57
|
+
| `norm` | [`norm`](#norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
|
|
60
58
|
| `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Oui | Nom du réseau pour identification ou affichage. Default: `'Net'` |
|
|
61
59
|
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
| **Attributs** | **Type** | **Description** |
|
|
70
|
-
|---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|
|
71
|
-
| `losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
|
|
72
|
-
| `learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
|
|
73
|
-
| `model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
|
|
74
|
-
| `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
|
|
60
|
+
| **Attributs** | **Type** | **Description** |
|
|
61
|
+
|-----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|
|
62
|
+
| `MLP.losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
|
|
63
|
+
| `MLP.learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
|
|
64
|
+
| `MLP.model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
|
|
65
|
+
| `MLP.name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
|
|
75
66
|
|
|
76
67
|
---
|
|
77
68
|
|
|
78
69
|
### **Trainer**
|
|
79
70
|
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
- Méthode pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html)
|
|
83
|
-
|
|
84
|
-
#### **Paramètres**
|
|
71
|
+
Classe pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html).
|
|
85
72
|
|
|
86
73
|
| **Paramètres** | **Type** | **Optionnel** | **Description** |
|
|
87
74
|
|----------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
|
|
88
|
-
| `*nets` | [`MLP`](#mlp
|
|
75
|
+
| `*nets` | [`MLP`](#mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
|
|
89
76
|
| `inputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en entrée au réseau. |
|
|
90
77
|
| `outputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en sortie au réseau. |
|
|
91
78
|
| `test_size` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Proportion des données à utiliser pendant l'entrainement. Si None : utilise toutes les données. Default: `None` |
|
|
92
|
-
| `optim` | [`optim`](#optims
|
|
79
|
+
| `optim` | [`optim`](#optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
|
|
93
80
|
| `init_lr` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taux d’apprentissage initial pour l’optimiseur. Default: `1e-3` |
|
|
94
|
-
| `crit` | [`crit`](#crits
|
|
81
|
+
| `crit` | [`crit`](#crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
|
|
95
82
|
| `batch_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des minibatchs. Default: `1024` |
|
|
96
83
|
|
|
97
84
|
#### **Trainer.train**
|
|
98
85
|
|
|
99
|
-
Lancement d'un entrainement avec le trainer définit
|
|
86
|
+
Lancement d'un entrainement avec le trainer définit.
|
|
100
87
|
|
|
101
88
|
| **Paramètres** | **Type** | **Optionnel** | **Description** |
|
|
102
89
|
|-----------------|------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
|
|
@@ -172,7 +159,7 @@ Affiche les taux d'apprentissage en fonction des époques d'entrainement des ré
|
|
|
172
159
|
|
|
173
160
|
## **device**
|
|
174
161
|
|
|
175
|
-
|
|
162
|
+
Variable principale d'allocation des performances.
|
|
176
163
|
|
|
177
164
|
### **Apple Silicon (macOS)**
|
|
178
165
|
- Si le système d'exploitation est macOS (nommé `darwin` dans `platform.system()`), la fonction vérifie si l'accélérateur **Metal Performance Shaders** (MPS) est disponible sur l'appareil.
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
NeuralNetworks/__init__.py,sha256=
|
|
1
|
+
NeuralNetworks/__init__.py,sha256=DSCQD_dezpOEjqAGUSQsocNYmNq8STPHZaLjIXXLCF8,668
|
|
2
2
|
NeuralNetworks/Dependances/__init__.py,sha256=qEpDbSD8cCq-E5XVisNUVf3kZOYopDnQWToyRefPgKE,1227
|
|
3
3
|
NeuralNetworks/Dependances/matplot.py,sha256=elS8u6DZHYP-8mHEpYNOw3jDzhCAWTld9tm3OAD46zw,957
|
|
4
4
|
NeuralNetworks/Dependances/pytorch.py,sha256=RQlSV3-8uHAoEgK0FBae7O4Mdug7h_MY--sN1fK59qw,3329
|
|
@@ -13,8 +13,8 @@ NeuralNetworks/Trainer/train.py,sha256=NAbHFKg4hl96OXq_i63lcRYwrPHiuKu7ihexakhpg
|
|
|
13
13
|
NeuralNetworks/UI/Learnings.py,sha256=4TBR5pcjyoBeL7eikNKM6xn25jnqL-mWT7hbrt9q-Gw,1418
|
|
14
14
|
NeuralNetworks/UI/Losses.py,sha256=Tu5xuDiutR9a4xcZKpyWN_tzSDu3_fImEf8FbAEehio,1378
|
|
15
15
|
NeuralNetworks/UI/__init__.py,sha256=L96xwQZJ-HoqqOGxaheosiDKHR3mRopuXkif--rO1J4,409
|
|
16
|
-
neuralnetworks-0.2.
|
|
17
|
-
neuralnetworks-0.2.
|
|
18
|
-
neuralnetworks-0.2.
|
|
19
|
-
neuralnetworks-0.2.
|
|
20
|
-
neuralnetworks-0.2.
|
|
16
|
+
neuralnetworks-0.2.5.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
17
|
+
neuralnetworks-0.2.5.dist-info/METADATA,sha256=FjTIFWlGmzIjQmWhFLnTuUI7MfNl0U5jb7EjRQJ7lh8,18349
|
|
18
|
+
neuralnetworks-0.2.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
19
|
+
neuralnetworks-0.2.5.dist-info/top_level.txt,sha256=h18nmC1BX7avyAAwKh0OQWezxgXmOpmVtbFq-8Mcbms,15
|
|
20
|
+
neuralnetworks-0.2.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|