NeuralNetworks 0.1.12__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- NeuralNetworks/Latent.py +51 -0
- NeuralNetworks/MLP.py +171 -161
- NeuralNetworks/__init__.py +6 -7
- NeuralNetworks/tools/AirfRANS.py +36 -0
- NeuralNetworks/tools/MNIST.py +118 -0
- NeuralNetworks/tools/VKI-LS59.py +7 -0
- NeuralNetworks/tools/image.py +249 -0
- {neuralnetworks-0.1.12.dist-info → neuralnetworks-0.2.0.dist-info}/METADATA +5 -2
- neuralnetworks-0.2.0.dist-info/RECORD +13 -0
- NeuralNetworks/Image.py +0 -105
- NeuralNetworks/Plot.py +0 -324
- neuralnetworks-0.1.12.dist-info/RECORD +0 -10
- {neuralnetworks-0.1.12.dist-info → neuralnetworks-0.2.0.dist-info}/WHEEL +0 -0
- {neuralnetworks-0.1.12.dist-info → neuralnetworks-0.2.0.dist-info}/licenses/LICENSE +0 -0
- {neuralnetworks-0.1.12.dist-info → neuralnetworks-0.2.0.dist-info}/top_level.txt +0 -0
NeuralNetworks/Plot.py
DELETED
|
@@ -1,324 +0,0 @@
|
|
|
1
|
-
# NeuralNetworksBeta - Multi-Layer Perceptrons avec encodage Fourier
|
|
2
|
-
# Copyright (C) 2025 Alexandre Brun
|
|
3
|
-
# This program is free software: you can redistribute it and/or modify
|
|
4
|
-
# it under the terms of the GNU General Public License as published by
|
|
5
|
-
# the Free Software Foundation, either version 3 of the License, or
|
|
6
|
-
# (at your option) any later version.
|
|
7
|
-
|
|
8
|
-
from .Dependances import *
|
|
9
|
-
|
|
10
|
-
def compare(img_array, inputs, *nets):
|
|
11
|
-
"""
|
|
12
|
-
Affiche, pour chaque réseau, l’erreur absolue entre l’image originale
|
|
13
|
-
et l’image reconstruite par le réseau.
|
|
14
|
-
|
|
15
|
-
Chaque réseau doit posséder :
|
|
16
|
-
- une méthode `encoding(x)` (si RFF activé),
|
|
17
|
-
- un module `model` retournant un tenseur de shape (N, 3),
|
|
18
|
-
- une reconstruction compatible avec (H, W, 3).
|
|
19
|
-
|
|
20
|
-
Parameters
|
|
21
|
-
----------
|
|
22
|
-
img_array : np.ndarray of shape (H, W, 3)
|
|
23
|
-
Image originale servant de référence.
|
|
24
|
-
inputs : tensor-like of shape (H*W, 2)
|
|
25
|
-
Coordonnées normalisées des pixels correspondant à chaque point de l'image.
|
|
26
|
-
nets : MLP
|
|
27
|
-
Un ou plusieurs réseaux possédant les méthodes `.encoding()` et `.model()`,
|
|
28
|
-
et l’attribut `.losses`.
|
|
29
|
-
|
|
30
|
-
Notes
|
|
31
|
-
-----
|
|
32
|
-
- L’affichage montre la différence absolue entre l’image originale et la prédiction du réseau.
|
|
33
|
-
- Les pertes cumulées sont également tracées pour chaque réseau.
|
|
34
|
-
- Utilise matplotlib en mode interactif.
|
|
35
|
-
"""
|
|
36
|
-
|
|
37
|
-
# --- Conversion des inputs en tensor et récupération du nombre d'échantillons ---
|
|
38
|
-
inputs, n_samples = tensorise(inputs), inputs.size(0)
|
|
39
|
-
h, w = img_array.shape[:2]
|
|
40
|
-
|
|
41
|
-
# --- Configuration de la grille de figure ---
|
|
42
|
-
grid_length = 2 if len(nets) == 1 else len(nets)
|
|
43
|
-
fig = plt.figure(figsize=(5*grid_length, 10))
|
|
44
|
-
gs = GridSpec(2, grid_length, figure=fig)
|
|
45
|
-
|
|
46
|
-
# --- Affichage de l'image originale ---
|
|
47
|
-
ax_orig = fig.add_subplot(gs[0, 0])
|
|
48
|
-
ax_orig.axis('off')
|
|
49
|
-
ax_orig.set_title("Original Image")
|
|
50
|
-
ax_orig.imshow(img_array)
|
|
51
|
-
|
|
52
|
-
# --- Préparation du subplot pour les courbes de pertes ---
|
|
53
|
-
ax_loss = fig.add_subplot(gs[0, 1])
|
|
54
|
-
all_losses = [[loss.item() for loss in net.losses] for net in nets]
|
|
55
|
-
if max(len(lst) for lst in all_losses) == 1:
|
|
56
|
-
lenlosses = 2
|
|
57
|
-
else:
|
|
58
|
-
lenlosses = max(len(lst) for lst in all_losses)
|
|
59
|
-
ax_loss.set_xlim(1, lenlosses)
|
|
60
|
-
ax_loss.set_ylim(0, max(max(lst) for lst in all_losses))
|
|
61
|
-
|
|
62
|
-
# --- Boucle sur chaque réseau pour afficher l'erreur et les pertes ---
|
|
63
|
-
for k, net in enumerate(nets):
|
|
64
|
-
# Subplot pour l'erreur absolue
|
|
65
|
-
ax = fig.add_subplot(gs[1, k])
|
|
66
|
-
ax.axis('off')
|
|
67
|
-
ax.set_title(net.name)
|
|
68
|
-
|
|
69
|
-
# Prédiction et reconstruction de l'image
|
|
70
|
-
pred = net.model(net.encoding(inputs))
|
|
71
|
-
pred_img = pred.reshape(h, w, 3).cpu().detach().numpy()
|
|
72
|
-
|
|
73
|
-
# Tracé des pertes cumulées
|
|
74
|
-
ax_loss.plot(np.arange(1, len(all_losses[k])+1), all_losses[k])
|
|
75
|
-
|
|
76
|
-
# Affichage de l'erreur absolue
|
|
77
|
-
ax.imshow(np.abs(img_array - pred_img))
|
|
78
|
-
|
|
79
|
-
# --- Affichage final ---
|
|
80
|
-
fig.canvas.draw_idle()
|
|
81
|
-
plt.tight_layout()
|
|
82
|
-
plt.ion()
|
|
83
|
-
plt.show()
|
|
84
|
-
compare.help = fPrintDoc(compare)
|
|
85
|
-
|
|
86
|
-
def plot(img_array, inputs, *nets):
|
|
87
|
-
"""
|
|
88
|
-
Affiche, pour chaque réseau, l’image reconstruite à partir de ses prédictions.
|
|
89
|
-
|
|
90
|
-
Parameters
|
|
91
|
-
----------
|
|
92
|
-
img_array : np.ndarray of shape (H, W, 3)
|
|
93
|
-
Image originale, utilisée pour connaître les dimensions de reconstruction.
|
|
94
|
-
inputs : tensor-like of shape (H*W, 2)
|
|
95
|
-
Coordonnées normalisées des pixels correspondant à chaque point de l'image.
|
|
96
|
-
nets : MLP
|
|
97
|
-
Un ou plusieurs réseaux possédant les méthodes `.encoding()` et `.model()`,
|
|
98
|
-
et l’attribut `.losses`.
|
|
99
|
-
|
|
100
|
-
Notes
|
|
101
|
-
-----
|
|
102
|
-
- Cette fonction affiche la prédiction brute.
|
|
103
|
-
- Les pertes cumulées sont également tracées pour chaque réseau.
|
|
104
|
-
- Utilise matplotlib en mode interactif.
|
|
105
|
-
"""
|
|
106
|
-
|
|
107
|
-
# --- Conversion des inputs en tensor et récupération du nombre d'échantillons ---
|
|
108
|
-
inputs, n_samples = tensorise(inputs), inputs.size(0)
|
|
109
|
-
h, w = img_array.shape[:2]
|
|
110
|
-
|
|
111
|
-
# --- Configuration de la grille de figure ---
|
|
112
|
-
grid_length = 2 if len(nets) == 1 else len(nets)
|
|
113
|
-
fig = plt.figure(figsize=(5*grid_length, 10))
|
|
114
|
-
gs = GridSpec(2, grid_length, figure=fig)
|
|
115
|
-
|
|
116
|
-
# --- Affichage de l'image originale ---
|
|
117
|
-
ax_orig = fig.add_subplot(gs[0, 0])
|
|
118
|
-
ax_orig.axis('off')
|
|
119
|
-
ax_orig.set_title("Original Image")
|
|
120
|
-
ax_orig.imshow(img_array)
|
|
121
|
-
|
|
122
|
-
# --- Préparation du subplot pour les courbes de pertes ---
|
|
123
|
-
ax_loss = fig.add_subplot(gs[0, 1])
|
|
124
|
-
all_losses = [[loss.item() for loss in net.losses] for net in nets]
|
|
125
|
-
if max(len(lst) for lst in all_losses) == 1:
|
|
126
|
-
lenlosses = 2
|
|
127
|
-
else:
|
|
128
|
-
lenlosses = max(len(lst) for lst in all_losses)
|
|
129
|
-
ax_loss.set_xlim(1, lenlosses)
|
|
130
|
-
ax_loss.set_ylim(0, max(max(lst) for lst in all_losses))
|
|
131
|
-
|
|
132
|
-
# --- Boucle sur chaque réseau pour afficher les prédictions et pertes ---
|
|
133
|
-
for k, net in enumerate(nets):
|
|
134
|
-
# Subplot pour l'image reconstruite
|
|
135
|
-
ax = fig.add_subplot(gs[1, k])
|
|
136
|
-
ax.axis('off')
|
|
137
|
-
ax.set_title(net.name)
|
|
138
|
-
|
|
139
|
-
# Prédiction et reconstruction de l'image
|
|
140
|
-
pred = net.model(net.encoding(inputs))
|
|
141
|
-
pred_img = pred.reshape(h, w, 3).cpu().detach().numpy()
|
|
142
|
-
|
|
143
|
-
# Tracé des pertes cumulées
|
|
144
|
-
ax_loss.plot(np.arange(1, len(all_losses[k])+1), all_losses[k],label = net.name)
|
|
145
|
-
ax_loss.legend()
|
|
146
|
-
|
|
147
|
-
# Affichage de l'image prédite
|
|
148
|
-
ax.imshow(pred_img)
|
|
149
|
-
|
|
150
|
-
# --- Affichage final ---
|
|
151
|
-
fig.canvas.draw_idle()
|
|
152
|
-
plt.tight_layout()
|
|
153
|
-
plt.ion()
|
|
154
|
-
plt.show()
|
|
155
|
-
plot.help = fPrintDoc(plot)
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
def losses(*nets):
|
|
159
|
-
"""
|
|
160
|
-
Affiche les courbes de pertes (training loss) de plusieurs réseaux MLP.
|
|
161
|
-
|
|
162
|
-
Parameters
|
|
163
|
-
----------
|
|
164
|
-
nets : MLP
|
|
165
|
-
Un ou plusieurs réseaux possédant un attribut `.losses`
|
|
166
|
-
contenant l'historique des pertes (liste de float).
|
|
167
|
-
|
|
168
|
-
Notes
|
|
169
|
-
-----
|
|
170
|
-
- L’axe X correspond aux itérations (epochs ou steps).
|
|
171
|
-
- L’axe Y correspond à la valeur de la perte.
|
|
172
|
-
- La fonction utilise matplotlib en mode interactif pour affichage dynamique.
|
|
173
|
-
"""
|
|
174
|
-
|
|
175
|
-
# --- Initialisation de la figure ---
|
|
176
|
-
fig = plt.figure(figsize=(5, 5))
|
|
177
|
-
|
|
178
|
-
# --- Définition des limites des axes ---
|
|
179
|
-
all_losses = [[loss.item() for loss in net.losses] for net in nets]
|
|
180
|
-
if max(len(lst) for lst in all_losses) == 1:
|
|
181
|
-
lenlosses = 2
|
|
182
|
-
else:
|
|
183
|
-
lenlosses = max(len(lst) for lst in all_losses)
|
|
184
|
-
plt.xlim(1, lenlosses)
|
|
185
|
-
plt.ylim(0, max(max(lst) for lst in all_losses))
|
|
186
|
-
|
|
187
|
-
# --- Tracé des courbes de pertes pour chaque réseau ---
|
|
188
|
-
for k, net in enumerate(nets):
|
|
189
|
-
steps = np.linspace(1, len(net.losses), len(net.losses)) # epochs
|
|
190
|
-
plt.plot(np.arange(1, len(all_losses[k])+1), all_losses[k],label = net.name)
|
|
191
|
-
|
|
192
|
-
# --- Affichage ---
|
|
193
|
-
plt.legend()
|
|
194
|
-
fig.canvas.draw_idle()
|
|
195
|
-
plt.tight_layout()
|
|
196
|
-
plt.ion() # mode interactif
|
|
197
|
-
plt.show()
|
|
198
|
-
losses.help = fPrintDoc(losses)
|
|
199
|
-
|
|
200
|
-
def train(inputs, outputs, num_epochs=1500, batch_size=1024, *nets, img_array=None):
|
|
201
|
-
"""
|
|
202
|
-
Entraîne un ou plusieurs MLP sur des paires (inputs, outputs) avec gestion optionnelle de l'affichage interactif.
|
|
203
|
-
|
|
204
|
-
Affiche dynamiquement si img_array est fourni :
|
|
205
|
-
- L'image originale (référence)
|
|
206
|
-
- Les prédictions des MLP
|
|
207
|
-
- L'évolution des pertes au fil des époques
|
|
208
|
-
|
|
209
|
-
Parameters
|
|
210
|
-
----------
|
|
211
|
-
inputs : array-like
|
|
212
|
-
Entrées du ou des MLP (shape: [n_samples, n_features]).
|
|
213
|
-
outputs : array-like
|
|
214
|
-
Sorties cibles correspondantes (shape: [n_samples, output_dim]).
|
|
215
|
-
num_epochs : int, optional
|
|
216
|
-
Nombre d’époques pour l’entraînement (default=1500).
|
|
217
|
-
batch_size : int, optional
|
|
218
|
-
Taille des mini-batchs pour la descente de gradient (default=1024).
|
|
219
|
-
*nets : MLP
|
|
220
|
-
Un ou plusieurs objets MLP à entraîner.
|
|
221
|
-
img_array : np.ndarray of shape (H, W, 3), optional
|
|
222
|
-
Image de référence pour visualisation des prédictions (default=None).
|
|
223
|
-
|
|
224
|
-
Notes
|
|
225
|
-
-----
|
|
226
|
-
- Les MLP sont entraînés indépendamment mais avec le même ordre aléatoire d'échantillons.
|
|
227
|
-
- Utilise torch.amp.GradScaler pour l'entraînement en FP16.
|
|
228
|
-
- La visualisation interactive utilise clear_output() et plt.ion().
|
|
229
|
-
"""
|
|
230
|
-
|
|
231
|
-
# --- Conversion des données en tensors et récupération du nombre d'échantillons ---
|
|
232
|
-
inputs, outputs, n_samples = tensorise(inputs).to(device), tensorise(outputs).to(device), inputs.size(0)
|
|
233
|
-
for net in nets:
|
|
234
|
-
net.model = net.model.to(device)
|
|
235
|
-
dev = str(device)
|
|
236
|
-
scaler = GradScaler(dev)
|
|
237
|
-
visual = False
|
|
238
|
-
|
|
239
|
-
# --- Initialisation de l'affichage interactif si une image de référence est fournie ---
|
|
240
|
-
if img_array is not None:
|
|
241
|
-
visual = True
|
|
242
|
-
h, w = img_array.shape[:2]
|
|
243
|
-
grid_length = 2 if len(nets) == 1 else len(nets)
|
|
244
|
-
fig = plt.figure(figsize=(5*grid_length, 10))
|
|
245
|
-
gs = GridSpec(2, grid_length, figure=fig)
|
|
246
|
-
|
|
247
|
-
# Image originale
|
|
248
|
-
ax_orig = fig.add_subplot(gs[0, 0])
|
|
249
|
-
ax_orig.axis('off')
|
|
250
|
-
ax_orig.set_title("Original Image")
|
|
251
|
-
im_orig = ax_orig.imshow(img_array)
|
|
252
|
-
|
|
253
|
-
# Images des prédictions initiales des MLP
|
|
254
|
-
ims_preds, axs_preds = [], []
|
|
255
|
-
for k, net in enumerate(nets):
|
|
256
|
-
ax = fig.add_subplot(gs[1, k])
|
|
257
|
-
ax.axis('off')
|
|
258
|
-
ax.set_title(f"Net {k+1}")
|
|
259
|
-
im = ax.imshow(net.model(net.encoding(inputs)).reshape(h, w, 3).cpu().detach().numpy())
|
|
260
|
-
ims_preds.append(im)
|
|
261
|
-
axs_preds.append(ax)
|
|
262
|
-
|
|
263
|
-
# Graphiques des pertes
|
|
264
|
-
ax_loss = fig.add_subplot(gs[0, 1])
|
|
265
|
-
lines = []
|
|
266
|
-
for k in range(len(nets)):
|
|
267
|
-
line, = ax_loss.plot([], [], label=f"Network {k+1}")
|
|
268
|
-
lines.append(line)
|
|
269
|
-
ax_loss.set_xlim(1)
|
|
270
|
-
ax_loss.set_ylim(0, 1)
|
|
271
|
-
ax_loss.set_xlabel("Epoch")
|
|
272
|
-
ax_loss.set_ylabel("Loss")
|
|
273
|
-
ax_loss.set_title("Loss per Epoch")
|
|
274
|
-
ax_loss.legend()
|
|
275
|
-
ax_loss.set_box_aspect(1)
|
|
276
|
-
|
|
277
|
-
fig.canvas.draw_idle()
|
|
278
|
-
plt.tight_layout()
|
|
279
|
-
plt.ion()
|
|
280
|
-
plt.show()
|
|
281
|
-
|
|
282
|
-
# --- Boucle principale d’entraînement ---
|
|
283
|
-
for epoch in tqdm(range(num_epochs), desc="train iter"):
|
|
284
|
-
perm = torch.randperm(n_samples, device=device) # permutation aléatoire des indices
|
|
285
|
-
epoch_loss = [0.0 for _ in nets] # stockage des pertes par MLP pour l'époque
|
|
286
|
-
|
|
287
|
-
# --- Mini-batchs ---
|
|
288
|
-
for k, net in enumerate(nets):
|
|
289
|
-
for i in range(0, n_samples, batch_size):
|
|
290
|
-
idx = perm[i:i+batch_size]
|
|
291
|
-
|
|
292
|
-
def closure():
|
|
293
|
-
"""Calcul de la loss et backpropagation pour un mini-batch."""
|
|
294
|
-
net.optim.zero_grad(set_to_none=True)
|
|
295
|
-
with autocast(dev):
|
|
296
|
-
loss = net.crit(net.model(net.encoding(inputs[idx])), outputs[idx])
|
|
297
|
-
scaler.scale(loss).backward()
|
|
298
|
-
return loss
|
|
299
|
-
|
|
300
|
-
loss = closure()
|
|
301
|
-
scaler.step(net.optim)
|
|
302
|
-
scaler.update()
|
|
303
|
-
epoch_loss[k] += loss
|
|
304
|
-
|
|
305
|
-
# --- Stockage des pertes de l'époque ---
|
|
306
|
-
net.losses.append(epoch_loss[k])
|
|
307
|
-
|
|
308
|
-
# --- Mise à jour visuelle si mode interactif ---
|
|
309
|
-
if visual:
|
|
310
|
-
with torch.no_grad():
|
|
311
|
-
# Mise à jour des images prédictions
|
|
312
|
-
[im.set_data(nets[k](inputs).reshape(h, w, 3)) for k, im in enumerate(ims_preds)]
|
|
313
|
-
# Mise à jour des courbes de pertes
|
|
314
|
-
all_losses = [[loss.item() for loss in net.losses] for net in nets]
|
|
315
|
-
[line.set_data(np.arange(1, len(all_losses[k])+1), all_losses[k]) for k, line in enumerate(lines)]
|
|
316
|
-
ax_loss.set_xlim(1, max(len(lst) for lst in all_losses))
|
|
317
|
-
ax_loss.set_ylim(0, max(max(lst) for lst in all_losses))
|
|
318
|
-
clear_output(wait=True)
|
|
319
|
-
display(fig)
|
|
320
|
-
|
|
321
|
-
# --- Fin du mode interactif ---
|
|
322
|
-
if visual:
|
|
323
|
-
plt.ioff()
|
|
324
|
-
train.help = fPrintDoc(train)
|
|
@@ -1,10 +0,0 @@
|
|
|
1
|
-
NeuralNetworks/Dependances.py,sha256=gtuEuktxDL9fHwPET58k2vGSqWJd7AAZCHW4DPHyc18,8508
|
|
2
|
-
NeuralNetworks/Image.py,sha256=qhTYBTCOO8_8_vYH9Su9luH9iq96ovDfZw9mTKifKVY,4013
|
|
3
|
-
NeuralNetworks/MLP.py,sha256=A86dJTxizUbJleKi-Cvp1W5sySUXZmn8FFvMzkwXR7E,22438
|
|
4
|
-
NeuralNetworks/Plot.py,sha256=yQc1JaQftvkzzT6sLfW9N41v-7lmVq463IZYiKDEzfs,12017
|
|
5
|
-
NeuralNetworks/__init__.py,sha256=d6Fww0fIZKZtc7N4i3UZFQhhLRAwXskXwzBC8MOFcrA,4742
|
|
6
|
-
neuralnetworks-0.1.12.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
7
|
-
neuralnetworks-0.1.12.dist-info/METADATA,sha256=kDpS5DM8Hdc02MWff8ars_zyEqSF6s1y1EDC5jGArOU,11974
|
|
8
|
-
neuralnetworks-0.1.12.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
9
|
-
neuralnetworks-0.1.12.dist-info/top_level.txt,sha256=h18nmC1BX7avyAAwKh0OQWezxgXmOpmVtbFq-8Mcbms,15
|
|
10
|
-
neuralnetworks-0.1.12.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|