NeuralNetworks 0.1.11__py3-none-any.whl → 0.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- NeuralNetworks/Dependances.py +2 -14
- NeuralNetworks/__init__.py +2 -2
- neuralnetworks-0.1.12.dist-info/METADATA +187 -0
- neuralnetworks-0.1.12.dist-info/RECORD +10 -0
- neuralnetworks-0.1.11.dist-info/METADATA +0 -146
- neuralnetworks-0.1.11.dist-info/RECORD +0 -10
- {neuralnetworks-0.1.11.dist-info → neuralnetworks-0.1.12.dist-info}/WHEEL +0 -0
- {neuralnetworks-0.1.11.dist-info → neuralnetworks-0.1.12.dist-info}/licenses/LICENSE +0 -0
- {neuralnetworks-0.1.11.dist-info → neuralnetworks-0.1.12.dist-info}/top_level.txt +0 -0
NeuralNetworks/Dependances.py
CHANGED
|
@@ -83,7 +83,7 @@ def get_best_device():
|
|
|
83
83
|
if os_name == "darwin":
|
|
84
84
|
if torch.backends.mps.is_available():
|
|
85
85
|
return torch.device("mps")
|
|
86
|
-
|
|
86
|
+
|
|
87
87
|
# =========== WINDOWS ===========
|
|
88
88
|
if os_name == "windows":
|
|
89
89
|
# 1) CUDA
|
|
@@ -236,19 +236,7 @@ def optim_list(self, learning_rate):
|
|
|
236
236
|
"Rprop": optim.Rprop(self.model.parameters(), lr=learning_rate),
|
|
237
237
|
"SGD": optim.SGD(self.model.parameters(), lr=learning_rate)
|
|
238
238
|
}
|
|
239
|
-
|
|
240
|
-
"Adadelta",
|
|
241
|
-
"Adafactor",
|
|
242
|
-
"Adam",
|
|
243
|
-
"AdamW",
|
|
244
|
-
"Adamax",
|
|
245
|
-
"ASGD",
|
|
246
|
-
"NAdam",
|
|
247
|
-
"RAdam",
|
|
248
|
-
"RMSprop",
|
|
249
|
-
"Rprop",
|
|
250
|
-
"SGD"
|
|
251
|
-
]
|
|
239
|
+
|
|
252
240
|
optims = lambda: print("""
|
|
253
241
|
"Adadelta"
|
|
254
242
|
"Adafactor"
|
NeuralNetworks/__init__.py
CHANGED
|
@@ -114,7 +114,7 @@ Notes générales
|
|
|
114
114
|
"""
|
|
115
115
|
|
|
116
116
|
# Import des dépendances et utilitaires globaux (device, settings, tensorise, etc.)
|
|
117
|
-
from .Dependances import norms, crits, optims, rglen, device, pi, e, tensorise
|
|
117
|
+
from .Dependances import norms, crits, optims, rglen, device, pi, e, tensorise
|
|
118
118
|
|
|
119
119
|
# Fonctions de chargement/preprocessing des images
|
|
120
120
|
from .Image import image_from_url
|
|
@@ -125,4 +125,4 @@ from .Plot import compare, plot, losses, train
|
|
|
125
125
|
# Modèle MLP principal + fonction d'entraînement associée
|
|
126
126
|
from .MLP import MLP
|
|
127
127
|
|
|
128
|
-
__version__ = "0.1.
|
|
128
|
+
__version__ = "0.1.12"
|
|
@@ -0,0 +1,187 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: NeuralNetworks
|
|
3
|
+
Version: 0.1.12
|
|
4
|
+
Summary: Multi-Layer Perceptrons with Fourier encoding, visualization and PyTorch compilation
|
|
5
|
+
Author-email: Alexandre Brun <alexandre51160@gmail.com>
|
|
6
|
+
License: GPL-3.0-or-later
|
|
7
|
+
Project-URL: Documentation, https://xxxfetraxxx.github.io/NeuralNetworks/
|
|
8
|
+
Project-URL: Source, https://github.com/xXxFetraxXx/NeuralNetworks
|
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
|
10
|
+
Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
|
|
11
|
+
Classifier: Operating System :: OS Independent
|
|
12
|
+
Requires-Python: >=3.9
|
|
13
|
+
Description-Content-Type: text/markdown
|
|
14
|
+
License-File: LICENSE
|
|
15
|
+
Requires-Dist: numpy>=1.25
|
|
16
|
+
Requires-Dist: matplotlib>=3.10
|
|
17
|
+
Requires-Dist: tqdm>=4.66
|
|
18
|
+
Requires-Dist: torch<3.0,>=2.9.1
|
|
19
|
+
Requires-Dist: torchvision<1.0,>=0.24
|
|
20
|
+
Requires-Dist: torchaudio<3.0,>=2.9
|
|
21
|
+
Requires-Dist: torchmetrics>=1.8
|
|
22
|
+
Requires-Dist: visualtorch>=0.2
|
|
23
|
+
Requires-Dist: random-fourier-features-pytorch>=1.0
|
|
24
|
+
Requires-Dist: IPython>=8.16
|
|
25
|
+
Requires-Dist: requests
|
|
26
|
+
Dynamic: license-file
|
|
27
|
+
|
|
28
|
+
# NeuralNetworks Module
|
|
29
|
+
|
|
30
|
+
Module complet pour la création, l'entraînement et la visualisation de Multi-Layer Perceptrons (MLP)
|
|
31
|
+
avec encodage optionnel Fourier, gestion automatique des pertes, compilation Torch et outils
|
|
32
|
+
de traitement d'images pour l'apprentissage sur des images RGB.
|
|
33
|
+
|
|
34
|
+
---
|
|
35
|
+
|
|
36
|
+
## Contenu principal
|
|
37
|
+
|
|
38
|
+
### Classes
|
|
39
|
+
|
|
40
|
+
#### MLP
|
|
41
|
+
|
|
42
|
+
Multi-Layer Perceptron (MLP) avec options avancées :
|
|
43
|
+
|
|
44
|
+
- Encodage Fourier gaussien (RFF) optionnel
|
|
45
|
+
- Stockage automatique des pertes
|
|
46
|
+
- Compilation Torch optionnelle pour accélérer l’inférence
|
|
47
|
+
- Gestion flexible de l’optimiseur, de la fonction de perte et de la normalisation
|
|
48
|
+
|
|
49
|
+
**Méthodes principales :**
|
|
50
|
+
|
|
51
|
+
- `MLP(layers, learning_rate, Fourier, optim, crit, norm, name, Iscompiled)`
|
|
52
|
+
Initialise le réseau avec toutes les options.
|
|
53
|
+
|
|
54
|
+
Les valeurs possibles de `optim` sont disponibles avec `optims()`
|
|
55
|
+
Les valeurs possibles de `crit` sont disponibles avec `crits()`
|
|
56
|
+
Les valeurs possibles de `norm` sont disponibles avec `norms()`
|
|
57
|
+
|
|
58
|
+
- `train(inputs, outputs, num_epochs, batch_size)`
|
|
59
|
+
Entraîne le MLP sur des données (`inputs → outputs`) en utilisant AMP et mini-batchs.
|
|
60
|
+
|
|
61
|
+
- `plot(inputs, img_array)`
|
|
62
|
+
Affiche l'image originale, la prédiction du MLP et la courbe des pertes.
|
|
63
|
+
|
|
64
|
+
- `params()`
|
|
65
|
+
Retourne tous les poids du MLP (ligne par ligne) sous forme de liste de `numpy.ndarray`.
|
|
66
|
+
|
|
67
|
+
- `nb_params()`
|
|
68
|
+
Calcule le nombre total de poids dans le MLP.
|
|
69
|
+
|
|
70
|
+
- `neurons()`
|
|
71
|
+
Retourne la liste des biais (neurones) de toutes les couches linéaires.
|
|
72
|
+
|
|
73
|
+
---
|
|
74
|
+
|
|
75
|
+
### Fonctions utilitaires
|
|
76
|
+
|
|
77
|
+
- `tensorise(obj)`
|
|
78
|
+
Convertit un objet array-like ou tensor en `torch.Tensor` float32 sur le device actif.
|
|
79
|
+
|
|
80
|
+
- `rglen(list)`
|
|
81
|
+
Renvoie un range correspondant aux indices d'une liste.
|
|
82
|
+
|
|
83
|
+
- `image_from_url(url, img_size)`
|
|
84
|
+
Télécharge une image depuis une URL, la redimensionne et génère :
|
|
85
|
+
- `img_array` : `np.ndarray (H, W, 3)` pour affichage.
|
|
86
|
+
- `inputs` : tenseur `(H*W, 2)` coordonnées normalisées.
|
|
87
|
+
- `outputs` : tenseur `(H*W, 3)` valeurs RGB cibles.
|
|
88
|
+
|
|
89
|
+
---
|
|
90
|
+
|
|
91
|
+
### Visualisation et comparaison
|
|
92
|
+
|
|
93
|
+
- `plot(img_array, inputs, *nets)`
|
|
94
|
+
Affiche pour chaque réseau l'image reconstruite à partir des entrées.
|
|
95
|
+
|
|
96
|
+
- `compare(img_array, inputs, *nets)`
|
|
97
|
+
Affiche pour chaque réseau l'erreur absolue entre l'image originale et la prédiction,
|
|
98
|
+
et trace également les pertes cumulées. Chaque réseau doit posséder :
|
|
99
|
+
|
|
100
|
+
---
|
|
101
|
+
|
|
102
|
+
### Objets et dictionnaires
|
|
103
|
+
|
|
104
|
+
#### **norms()**
|
|
105
|
+
|
|
106
|
+
| **Valeurs** | **Module PyTorch** | **Description** |
|
|
107
|
+
|---------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|
|
|
108
|
+
| **"Relu"** | `nn.ReLU()` | Fonction d'activation ReLU classique (Rectified Linear Unit). |
|
|
109
|
+
| **"LeakyRelu"** | `nn.LeakyReLU()` | ReLU avec un petit coefficient pour les valeurs négatives (paramètre `negative_slope`). |
|
|
110
|
+
| **"ELU"** | `nn.ELU()` | Fonction d'activation ELU (Exponential Linear Unit), qui a une meilleure gestion des valeurs négatives. |
|
|
111
|
+
| **"SELU"** | `nn.SELU()` | SELU (Scaled Exponential Linear Unit), une version améliorée de l'ELU pour des réseaux auto-normalisants. |
|
|
112
|
+
| **"GELU"** | `nn.GELU()` | GELU (Gaussian Error Linear Unit), une activation probabiliste basée sur une fonction gaussienne. |
|
|
113
|
+
| **"Sigmoid"** | `nn.Sigmoid()` | Fonction d'activation Sigmoid, qui produit une sortie entre 0 et 1. |
|
|
114
|
+
| **"Tanh"** | `nn.Tanh()` | Fonction d'activation Tanh, avec une sortie dans l'intervalle [-1, 1]. |
|
|
115
|
+
| **"Hardtanh"** | `nn.Hardtanh()` | Variante de Tanh, avec des sorties limitées entre une plage spécifiée. |
|
|
116
|
+
| **"Softplus"** | `nn.Softplus()` | Fonction d'activation qui approxime ReLU mais de manière lissée. |
|
|
117
|
+
| **"Softsign"** | `nn.Softsign()` | Fonction d'activation similaire à Tanh mais plus souple, avec des valeurs dans [-1, 1]. |
|
|
118
|
+
|
|
119
|
+
---
|
|
120
|
+
|
|
121
|
+
#### **crits()**
|
|
122
|
+
|
|
123
|
+
| **Valeurs** | **Module PyTorch** | **Description** |
|
|
124
|
+
|--------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|
|
125
|
+
| **"MSE"** | `nn.MSELoss()` | Mean Squared Error Loss, utilisée pour les régressions. |
|
|
126
|
+
| **"L1"** | `nn.L1Loss()` | L1 Loss (erreur absolue), souvent utilisée pour la régularisation. |
|
|
127
|
+
| **"SmoothL1"** | `nn.SmoothL1Loss()` | Smooth L1 Loss, une combinaison de L1 et de MSE, moins sensible aux outliers. |
|
|
128
|
+
| **"Huber"** | `nn.HuberLoss()` | Fonction de perte Huber, une version lissée de L1 et MSE, moins affectée par les grands écarts. |
|
|
129
|
+
| **"CrossEntropy"** | `nn.CrossEntropyLoss()` | Perte de Cross-Entropy, utilisée pour les problèmes de classification multi-classes. |
|
|
130
|
+
| **"KLDiv"** | `nn.KLDivLoss()` | Perte de divergence de Kullback-Leibler, souvent utilisée pour des modèles probabilistes. |
|
|
131
|
+
| **"PoissonNLL"** | `nn.PoissonNLLLoss()` | Perte de log-vraisemblance pour une distribution de Poisson, utilisée pour la modélisation de comptages. |
|
|
132
|
+
| **"MultiLabelSoftMargin"** | `nn.MultiLabelSoftMarginLoss()` | Perte utilisée pour les problèmes de classification multi-étiquettes. |
|
|
133
|
+
|
|
134
|
+
---
|
|
135
|
+
|
|
136
|
+
#### **optims()**
|
|
137
|
+
|
|
138
|
+
| **Valeurs** | **Module PyTorch** | **Description** |
|
|
139
|
+
|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|
|
140
|
+
| **"Adadelta"** | `optim.Adadelta()` | Optimiseur Adadelta, basé sur les gradients adaptatifs, sans nécessité de réglage du taux d'apprentissage. |
|
|
141
|
+
| **"Adafactor"** | `optim.Adafactor()` | Optimiseur Adafactor, variant d'Adam avec une mise à jour plus efficace de la mémoire pour de grands modèles. |
|
|
142
|
+
| **"Adam"** | `optim.Adam()` | Optimiseur Adam, utilisant un gradient stochastique adaptatif avec des moyennes mobiles des gradients et des carrés des gradients. |
|
|
143
|
+
| **"AdamW"** | `optim.AdamW()` | Optimiseur Adam avec une régularisation L2 (weight decay) distincte, plus efficace que `Adam` avec `weight_decay`. |
|
|
144
|
+
| **"Adamax"** | `optim.Adamax()` | Version d'Adam utilisant une norme infinie pour les gradients, plus stable pour certaines configurations. |
|
|
145
|
+
| **"ASGD"** | `optim.ASGD()` | Optimiseur ASGD (Averaged Stochastic Gradient Descent), utilisé pour de grandes données avec une moyenne des gradients. |
|
|
146
|
+
| **"NAdam"** | `optim.NAdam()` | Optimiseur NAdam, une version améliorée d'Adam avec une adaptation des moments de second ordre. |
|
|
147
|
+
| **"RAdam"** | `optim.RAdam()` | Optimiseur RAdam, une version robuste de l'Adam qui ajuste dynamiquement les moments pour stabiliser l'entraînement. |
|
|
148
|
+
| **"RMSprop"** | `optim.RMSprop()` | Optimiseur RMSprop, utilisant une moyenne mobile des carrés des gradients pour réduire les oscillations. |
|
|
149
|
+
| **"Rprop"** | `optim.Rprop()` | Optimiseur Rprop, basé sur les mises à jour des poids indépendantes des gradients. |
|
|
150
|
+
| **"SGD"** | `optim.SGD()` | Descente de gradient stochastique classique, souvent utilisée avec un taux d'apprentissage constant ou ajusté. |
|
|
151
|
+
|
|
152
|
+
---
|
|
153
|
+
|
|
154
|
+
### Device et configuration
|
|
155
|
+
|
|
156
|
+
#### **Apple Silicon (macOS)**
|
|
157
|
+
- Si le système d'exploitation est macOS (nommé `darwin` dans `platform.system()`), la fonction vérifie si l'accélérateur **Metal Performance Shaders** (MPS) est disponible sur l'appareil.
|
|
158
|
+
- Si MPS est disponible (`torch.backends.mps.is_available()`), l'appareil cible sera défini sur **MPS** (c'est un équivalent de CUDA pour les appareils Apple Silicon).
|
|
159
|
+
|
|
160
|
+
#### **Windows**
|
|
161
|
+
- Si le système d'exploitation est Windows, la fonction vérifie d'abord si **CUDA** (NVIDIA) est disponible avec `torch.cuda.is_available()`. Si c'est le cas, le périphérique sera défini sur **CUDA**.
|
|
162
|
+
|
|
163
|
+
#### **Linux**
|
|
164
|
+
- Si le système d'exploitation est Linux, plusieurs vérifications sont effectuées :
|
|
165
|
+
1. **CUDA** (NVIDIA) : Si `torch.cuda.is_available()` renvoie `True`, le périphérique sera défini sur **CUDA**.
|
|
166
|
+
2. **ROCm** (AMD) : Si le système supporte **ROCm** via `torch.backends.hip.is_available()`, l'appareil sera défini sur **CUDA** (ROCm est utilisé pour les cartes AMD dans le cadre de l'API CUDA).
|
|
167
|
+
3. **Intel oneAPI / XPU** : Si le système prend en charge **Intel oneAPI** ou **XPU** via `torch.xpu.is_available()`, le périphérique sera défini sur **XPU**.
|
|
168
|
+
|
|
169
|
+
#### **Système non reconnu**
|
|
170
|
+
- Si aucune des conditions ci-dessus n'est remplie, la fonction retourne **CPU** comme périphérique par défaut.
|
|
171
|
+
|
|
172
|
+
---
|
|
173
|
+
|
|
174
|
+
### Paramètres matplotlib et PyTorch
|
|
175
|
+
|
|
176
|
+
- Style global pour fond transparent et texte gris
|
|
177
|
+
- Optimisations CUDA activées pour TF32, matmul et convolutions
|
|
178
|
+
- Autograd configuré pour privilégier les performances
|
|
179
|
+
|
|
180
|
+
---
|
|
181
|
+
|
|
182
|
+
### Notes générales
|
|
183
|
+
|
|
184
|
+
- Toutes les méthodes de MLP utilisent les tenseurs sur le device global (CPU ou GPU)
|
|
185
|
+
- Les images doivent être normalisées entre 0 et 1
|
|
186
|
+
- Les fonctions interactives (`plot`, `compare`) utilisent matplotlib en mode interactif
|
|
187
|
+
- Le module est conçu pour fonctionner dans Jupyter et scripts Python classiques
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
NeuralNetworks/Dependances.py,sha256=gtuEuktxDL9fHwPET58k2vGSqWJd7AAZCHW4DPHyc18,8508
|
|
2
|
+
NeuralNetworks/Image.py,sha256=qhTYBTCOO8_8_vYH9Su9luH9iq96ovDfZw9mTKifKVY,4013
|
|
3
|
+
NeuralNetworks/MLP.py,sha256=A86dJTxizUbJleKi-Cvp1W5sySUXZmn8FFvMzkwXR7E,22438
|
|
4
|
+
NeuralNetworks/Plot.py,sha256=yQc1JaQftvkzzT6sLfW9N41v-7lmVq463IZYiKDEzfs,12017
|
|
5
|
+
NeuralNetworks/__init__.py,sha256=d6Fww0fIZKZtc7N4i3UZFQhhLRAwXskXwzBC8MOFcrA,4742
|
|
6
|
+
neuralnetworks-0.1.12.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
7
|
+
neuralnetworks-0.1.12.dist-info/METADATA,sha256=kDpS5DM8Hdc02MWff8ars_zyEqSF6s1y1EDC5jGArOU,11974
|
|
8
|
+
neuralnetworks-0.1.12.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
9
|
+
neuralnetworks-0.1.12.dist-info/top_level.txt,sha256=h18nmC1BX7avyAAwKh0OQWezxgXmOpmVtbFq-8Mcbms,15
|
|
10
|
+
neuralnetworks-0.1.12.dist-info/RECORD,,
|
|
@@ -1,146 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: NeuralNetworks
|
|
3
|
-
Version: 0.1.11
|
|
4
|
-
Summary: Multi-Layer Perceptrons with Fourier encoding, visualization and PyTorch compilation
|
|
5
|
-
Author-email: Alexandre Brun <alexandre51160@gmail.com>
|
|
6
|
-
License: GPL-3.0-or-later
|
|
7
|
-
Project-URL: Documentation, https://xxxfetraxxx.github.io/NeuralNetworks/
|
|
8
|
-
Project-URL: Source, https://github.com/xXxFetraxXx/NeuralNetworks
|
|
9
|
-
Classifier: Programming Language :: Python :: 3
|
|
10
|
-
Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
|
|
11
|
-
Classifier: Operating System :: OS Independent
|
|
12
|
-
Requires-Python: >=3.9
|
|
13
|
-
Description-Content-Type: text/markdown
|
|
14
|
-
License-File: LICENSE
|
|
15
|
-
Requires-Dist: numpy>=1.25
|
|
16
|
-
Requires-Dist: matplotlib>=3.10
|
|
17
|
-
Requires-Dist: tqdm>=4.66
|
|
18
|
-
Requires-Dist: torch<3.0,>=2.9.1
|
|
19
|
-
Requires-Dist: torchvision<1.0,>=0.24
|
|
20
|
-
Requires-Dist: torchaudio<3.0,>=2.9
|
|
21
|
-
Requires-Dist: torchmetrics>=1.8
|
|
22
|
-
Requires-Dist: visualtorch>=0.2
|
|
23
|
-
Requires-Dist: random-fourier-features-pytorch>=1.0
|
|
24
|
-
Requires-Dist: IPython>=8.16
|
|
25
|
-
Requires-Dist: requests
|
|
26
|
-
Dynamic: license-file
|
|
27
|
-
|
|
28
|
-
# NeuralNetworks Module
|
|
29
|
-
|
|
30
|
-
Module complet pour la création, l'entraînement et la visualisation de Multi-Layer Perceptrons (MLP)
|
|
31
|
-
avec encodage optionnel Fourier, gestion automatique des pertes, compilation Torch et outils
|
|
32
|
-
de traitement d'images pour l'apprentissage sur des images RGB.
|
|
33
|
-
|
|
34
|
-
---
|
|
35
|
-
|
|
36
|
-
## Contenu principal
|
|
37
|
-
|
|
38
|
-
### Classes
|
|
39
|
-
|
|
40
|
-
#### MLP
|
|
41
|
-
|
|
42
|
-
Multi-Layer Perceptron (MLP) avec options avancées :
|
|
43
|
-
|
|
44
|
-
- Encodage Fourier gaussien (RFF) optionnel
|
|
45
|
-
- Stockage automatique des pertes
|
|
46
|
-
- Compilation Torch optionnelle pour accélérer l’inférence
|
|
47
|
-
- Gestion flexible de l’optimiseur, de la fonction de perte et de la normalisation
|
|
48
|
-
|
|
49
|
-
**Méthodes principales :**
|
|
50
|
-
|
|
51
|
-
- `__init__(layers, learning_rate, Fourier, optimizer, criterion, normalizer, name, Iscompiled)`
|
|
52
|
-
Initialise le réseau avec toutes les options.
|
|
53
|
-
|
|
54
|
-
- `train(inputs, outputs, num_epochs, batch_size)`
|
|
55
|
-
Entraîne le MLP sur des données (`inputs → outputs`) en utilisant AMP et mini-batchs.
|
|
56
|
-
|
|
57
|
-
- `plot(inputs, img_array)`
|
|
58
|
-
Affiche l'image originale, la prédiction du MLP et la courbe des pertes.
|
|
59
|
-
|
|
60
|
-
- `__call__(x)`
|
|
61
|
-
Applique l’encodage puis le MLP pour produire une prédiction.
|
|
62
|
-
|
|
63
|
-
- `Create_MLP(layers)`
|
|
64
|
-
Construit le MLP avec normalisation/activation et Sigmoid finale.
|
|
65
|
-
|
|
66
|
-
- `params()`
|
|
67
|
-
Retourne tous les poids du MLP (ligne par ligne) sous forme de liste de `numpy.ndarray`.
|
|
68
|
-
|
|
69
|
-
- `nb_params()`
|
|
70
|
-
Calcule le nombre total de poids dans le MLP.
|
|
71
|
-
|
|
72
|
-
- `neurons()`
|
|
73
|
-
Retourne la liste des biais (neurones) de toutes les couches linéaires.
|
|
74
|
-
|
|
75
|
-
- `__repr__()`
|
|
76
|
-
Affiche un schéma visuel du MLP via visualtorch et print des dimensions.
|
|
77
|
-
|
|
78
|
-
---
|
|
79
|
-
|
|
80
|
-
### Fonctions utilitaires
|
|
81
|
-
|
|
82
|
-
- `tensorise(obj)`
|
|
83
|
-
Convertit un objet array-like ou tensor en `torch.Tensor` float32 sur le device actif.
|
|
84
|
-
|
|
85
|
-
- `rglen(list)`
|
|
86
|
-
Renvoie un range correspondant aux indices d'une liste.
|
|
87
|
-
|
|
88
|
-
- `fPrintDoc(obj)`
|
|
89
|
-
Crée une fonction lambda qui affiche le docstring d'un objet.
|
|
90
|
-
|
|
91
|
-
- `image_from_url(url, img_size)`
|
|
92
|
-
Télécharge une image depuis une URL, la redimensionne et génère :
|
|
93
|
-
- `img_array` : `np.ndarray (H, W, 3)` pour affichage.
|
|
94
|
-
- `inputs` : tenseur `(H*W, 2)` coordonnées normalisées.
|
|
95
|
-
- `outputs` : tenseur `(H*W, 3)` valeurs RGB cibles.
|
|
96
|
-
|
|
97
|
-
---
|
|
98
|
-
|
|
99
|
-
### Visualisation et comparaison
|
|
100
|
-
|
|
101
|
-
- `plot(img_array, inputs, *nets)`
|
|
102
|
-
Affiche pour chaque réseau l'image reconstruite à partir des entrées.
|
|
103
|
-
|
|
104
|
-
- `compare(img_array, inputs, *nets)`
|
|
105
|
-
Affiche pour chaque réseau l'erreur absolue entre l'image originale et la prédiction,
|
|
106
|
-
et trace également les pertes cumulées. Chaque réseau doit posséder :
|
|
107
|
-
- `encoding(x)` si RFF activé
|
|
108
|
-
- `model()` retournant un tenseur `(N, 3)`
|
|
109
|
-
- attribut `losses`
|
|
110
|
-
|
|
111
|
-
---
|
|
112
|
-
|
|
113
|
-
### Objets et dictionnaires
|
|
114
|
-
|
|
115
|
-
- `Norm_list : dict`
|
|
116
|
-
Contient les modules PyTorch correspondant aux fonctions de normalisation/activation disponibles (ReLU, GELU, Sigmoid, Tanh, etc.)
|
|
117
|
-
|
|
118
|
-
- `Criterion_list : dict`
|
|
119
|
-
Contient les fonctions de perte PyTorch disponibles (MSE, L1, SmoothL1, BCE, CrossEntropy, etc.)
|
|
120
|
-
|
|
121
|
-
- `Optim_list(self, learning_rate)`
|
|
122
|
-
Retourne un dictionnaire d’optimiseurs PyTorch initialisés avec `self.model.parameters()`.
|
|
123
|
-
|
|
124
|
-
---
|
|
125
|
-
|
|
126
|
-
### Device et configuration
|
|
127
|
-
|
|
128
|
-
- `device`
|
|
129
|
-
Device par défaut (GPU si disponible, sinon CPU).
|
|
130
|
-
|
|
131
|
-
---
|
|
132
|
-
|
|
133
|
-
### Paramètres matplotlib et PyTorch
|
|
134
|
-
|
|
135
|
-
- Style global pour fond transparent et texte gris
|
|
136
|
-
- Optimisations CUDA activées pour TF32, matmul et convolutions
|
|
137
|
-
- Autograd configuré pour privilégier les performances
|
|
138
|
-
|
|
139
|
-
---
|
|
140
|
-
|
|
141
|
-
### Notes générales
|
|
142
|
-
|
|
143
|
-
- Toutes les méthodes de MLP utilisent les tenseurs sur le device global (CPU ou GPU)
|
|
144
|
-
- Les images doivent être normalisées entre 0 et 1
|
|
145
|
-
- Les fonctions interactives (`plot`, `compare`) utilisent matplotlib en mode interactif
|
|
146
|
-
- Le module est conçu pour fonctionner dans Jupyter et scripts Python classiques
|
|
@@ -1,10 +0,0 @@
|
|
|
1
|
-
NeuralNetworks/Dependances.py,sha256=3_C3cwUPgHmy1WHdNFKrUHmwtaE56ELJ4WnvpTdppSw,8674
|
|
2
|
-
NeuralNetworks/Image.py,sha256=qhTYBTCOO8_8_vYH9Su9luH9iq96ovDfZw9mTKifKVY,4013
|
|
3
|
-
NeuralNetworks/MLP.py,sha256=A86dJTxizUbJleKi-Cvp1W5sySUXZmn8FFvMzkwXR7E,22438
|
|
4
|
-
NeuralNetworks/Plot.py,sha256=yQc1JaQftvkzzT6sLfW9N41v-7lmVq463IZYiKDEzfs,12017
|
|
5
|
-
NeuralNetworks/__init__.py,sha256=cu1B_f8btqzZntZHL3uFQgeVlOoDwgLVDKmlrSSCCec,4777
|
|
6
|
-
neuralnetworks-0.1.11.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
7
|
-
neuralnetworks-0.1.11.dist-info/METADATA,sha256=5c89cKQDvcUzrAGyBYZuMBehYvU3_DaznFAIay6RbHs,4812
|
|
8
|
-
neuralnetworks-0.1.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
9
|
-
neuralnetworks-0.1.11.dist-info/top_level.txt,sha256=h18nmC1BX7avyAAwKh0OQWezxgXmOpmVtbFq-8Mcbms,15
|
|
10
|
-
neuralnetworks-0.1.11.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|