NREL-erad 0.0.0a0__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. erad/__init__.py +1 -0
  2. erad/constants.py +20 -20
  3. erad/cypher_queries/load_data_v1.cypher +211 -211
  4. erad/data/World_Earthquakes_1960_2016.csv +23410 -23410
  5. erad/db/assets/critical_infras.py +170 -170
  6. erad/db/assets/distribution_lines.py +101 -101
  7. erad/db/credential_model.py +20 -20
  8. erad/db/disaster_input_model.py +23 -23
  9. erad/db/inject_earthquake.py +52 -52
  10. erad/db/inject_flooding.py +53 -53
  11. erad/db/neo4j_.py +162 -162
  12. erad/db/utils.py +13 -13
  13. erad/exceptions.py +68 -68
  14. erad/metrics/check_microgrid.py +208 -208
  15. erad/metrics/metric.py +178 -178
  16. erad/programs/backup.py +61 -61
  17. erad/programs/microgrid.py +44 -44
  18. erad/scenarios/abstract_scenario.py +102 -102
  19. erad/scenarios/common.py +92 -92
  20. erad/scenarios/earthquake_scenario.py +161 -161
  21. erad/scenarios/fire_scenario.py +160 -160
  22. erad/scenarios/flood_scenario.py +493 -493
  23. erad/scenarios/flows.csv +671 -0
  24. erad/scenarios/utilities.py +75 -75
  25. erad/scenarios/wind_scenario.py +89 -89
  26. erad/utils/ditto_utils.py +252 -252
  27. erad/utils/hifld_utils.py +147 -147
  28. erad/utils/opendss_utils.py +357 -357
  29. erad/utils/overpass.py +76 -76
  30. erad/utils/util.py +178 -178
  31. erad/visualization/plot_graph.py +218 -218
  32. {NREL_erad-0.0.0a0.dist-info → nrel_erad-1.0.0.dist-info}/METADATA +65 -61
  33. nrel_erad-1.0.0.dist-info/RECORD +42 -0
  34. {NREL_erad-0.0.0a0.dist-info → nrel_erad-1.0.0.dist-info}/WHEEL +1 -2
  35. {NREL_erad-0.0.0a0.dist-info → nrel_erad-1.0.0.dist-info/licenses}/LICENSE.txt +28 -28
  36. NREL_erad-0.0.0a0.dist-info/RECORD +0 -42
  37. NREL_erad-0.0.0a0.dist-info/top_level.txt +0 -1
@@ -1,218 +1,218 @@
1
- """ Module for handling graph plots. """
2
-
3
- # standard imports
4
- import os
5
- import abc
6
- from typing import List, Dict
7
-
8
- # third-party libraries
9
- import networkx as nx
10
- import plotly.graph_objects as go
11
- from dotenv import load_dotenv
12
-
13
- # internal libraries
14
- from erad.utils.util import path_validation
15
-
16
- load_dotenv()
17
-
18
-
19
- class AbstractGraphPlot(abc.ABC):
20
- """Abstract interface for developing subclass to plot network graph."""
21
-
22
- @abc.abstractmethod
23
- def add_network_data(self, *args, **kwargs):
24
- """Abstract method for adding network data."""
25
-
26
- @abc.abstractmethod
27
- def prepare_plot(self, *args, **kwargs):
28
- """Abstract method for preparing and showing teh plot"""
29
-
30
-
31
- class PloltyGraph(AbstractGraphPlot):
32
- """Class for managing graph plot using Plotly.
33
-
34
- Attributes:
35
- access_token (str): MapBox API token
36
- style (str): MapBox style
37
- zoom_level (int): Zoom level for the plot
38
- data (List): Stores the data to be fed to plotly for plotting
39
- scatter_data (Dict): Stores longitudes and latitudes of nodes
40
- from network
41
- fig (go.Figure): Plotly graph objects figure instance
42
- """
43
-
44
- def __init__(
45
- self,
46
- access_token: str = None,
47
- style: str = "carto-darkmatter",
48
- zoom_level: int = 13,
49
- ) -> None:
50
- """Constructor for `PlotlyGraph` Subclass.
51
-
52
- Args:
53
- access_token (str): MapBox API token
54
- style (str): MapBox style
55
- zoom_level (int): Zoom level for the plot
56
- """
57
-
58
- if access_token:
59
- self.access_token = access_token
60
- else:
61
- self.access_token = os.getenv("MAPBOX_API_KEY")
62
- self.style = style
63
- self.zoom_level = zoom_level
64
-
65
- self.data = []
66
-
67
- def _get_map_centre(self, longitudes: List[float], latitudes: List[float]):
68
- """Returns map center."""
69
- return {
70
- "lon": sum(longitudes) / len(longitudes),
71
- "lat": sum(latitudes) / len(latitudes),
72
- }
73
-
74
- def add_network_data(
75
- self,
76
- network: nx.Graph,
77
- latitude_property: str = "lat",
78
- longitude_property: str = "long",
79
- node_color: str = "blue",
80
- line_color: str = "red",
81
- ) -> None:
82
- """Method to add network data to plot data.
83
-
84
- Args:
85
- network (nx.Graph): Networkx graph instance
86
- latitude_property (str): Property name to be
87
- used as latitude
88
- longitude_property (str): Property name to be
89
- used as longitude
90
- node_color (str): Color name to be used to plot
91
- nodes
92
- line_color (str): Color name to be used to plot
93
- line segments
94
- """
95
-
96
- # Add nodes
97
- self.scatter_data = {"latitudes": [], "longitudes": []}
98
-
99
- for node in network.nodes.data():
100
-
101
- # Storing the lat lons in scatter data
102
- # container
103
- self.scatter_data["latitudes"].append(node[1][latitude_property])
104
- self.scatter_data["longitudes"].append(node[1][longitude_property])
105
-
106
- # Stroing the edge data in container
107
- line_data = {"latitudes": [], "longitudes": []}
108
- node_data = {node[0]: node[1] for node in network.nodes.data()}
109
-
110
- for edge in network.edges():
111
- line_data["latitudes"].extend(
112
- [
113
- node_data[edge[0]][latitude_property],
114
- node_data[edge[1]][latitude_property],
115
- None,
116
- ]
117
- )
118
-
119
- line_data["longitudes"].extend(
120
- [
121
- node_data[edge[0]][longitude_property],
122
- node_data[edge[1]][longitude_property],
123
- None,
124
- ]
125
- )
126
-
127
- # Adding plots to plotly graph object
128
- self.data.append(
129
- go.Scattermapbox(
130
- mode="markers",
131
- lon=self.scatter_data["longitudes"],
132
- lat=self.scatter_data["latitudes"],
133
- marker={"size": 5, "color": node_color},
134
- )
135
- )
136
-
137
- self.data.append(
138
- go.Scattermapbox(
139
- mode="markers+lines",
140
- lon=line_data["longitudes"],
141
- lat=line_data["latitudes"],
142
- marker={"size": 0},
143
- line={"color": line_color},
144
- )
145
- )
146
-
147
- def add_scatter_points(
148
- self,
149
- latitudes: List[float],
150
- longitudes: List[float],
151
- color: str = "yellow",
152
- size: int = 5,
153
- ) -> None:
154
- """Method for scatter points to plot data.
155
-
156
- Args:
157
- latitudes (List[float]): List of latitude points
158
- longitudes (List[float]): List of longitude points
159
- color (str): Color to be used for scatter points
160
- size (int): Size of scatter points
161
- """
162
-
163
- self.data.append(
164
- go.Scattermapbox(
165
- mode="markers",
166
- lon=longitudes,
167
- lat=latitudes,
168
- marker={"size": size, "color": color},
169
- )
170
- )
171
-
172
- def add_polygon(
173
- self,
174
- latitudes: List[float],
175
- longitudes: List[float],
176
- fill: str = "toself",
177
- ) -> None:
178
- """Method for adding polygon to the plot.
179
-
180
- Args:
181
- latitudes (List[float]): List of latitude points
182
- longitudes (List[float]): List of longitude points
183
- fill (str): Accepted fill value by plotly
184
- """
185
- self.data.append(
186
- go.Scattermapbox(
187
- lon=longitudes, lat=latitudes, fill=fill, mode="lines"
188
- )
189
- )
190
-
191
- def prepare_plot(self, show: bool = True):
192
- """Method to prepare and show the plot.
193
-
194
- Args:
195
- show (bool): True if want to see the plot.
196
- """
197
- self.fig = go.Figure(data=self.data)
198
- self.fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
199
- self.fig.update_mapboxes(
200
- {
201
- "accesstoken": self.access_token,
202
- "style": self.style,
203
- "center": self._get_map_centre(
204
- self.scatter_data["longitudes"],
205
- self.scatter_data["latitudes"],
206
- ),
207
- "zoom": self.zoom_level,
208
- }
209
- )
210
-
211
- if show:
212
- self.fig.show()
213
-
214
- def html_export(self, html_file_path: str):
215
- """Method for exporting plot as HTML file."""
216
- path_validation(html_file_path)
217
- self.fig.write_html(html_file_path)
218
-
1
+ """ Module for handling graph plots. """
2
+
3
+ # standard imports
4
+ import os
5
+ import abc
6
+ from typing import List, Dict
7
+
8
+ # third-party libraries
9
+ import networkx as nx
10
+ import plotly.graph_objects as go
11
+ from dotenv import load_dotenv
12
+
13
+ # internal libraries
14
+ from erad.utils.util import path_validation
15
+
16
+ load_dotenv()
17
+
18
+
19
+ class AbstractGraphPlot(abc.ABC):
20
+ """Abstract interface for developing subclass to plot network graph."""
21
+
22
+ @abc.abstractmethod
23
+ def add_network_data(self, *args, **kwargs):
24
+ """Abstract method for adding network data."""
25
+
26
+ @abc.abstractmethod
27
+ def prepare_plot(self, *args, **kwargs):
28
+ """Abstract method for preparing and showing teh plot"""
29
+
30
+
31
+ class PloltyGraph(AbstractGraphPlot):
32
+ """Class for managing graph plot using Plotly.
33
+
34
+ Attributes:
35
+ access_token (str): MapBox API token
36
+ style (str): MapBox style
37
+ zoom_level (int): Zoom level for the plot
38
+ data (List): Stores the data to be fed to plotly for plotting
39
+ scatter_data (Dict): Stores longitudes and latitudes of nodes
40
+ from network
41
+ fig (go.Figure): Plotly graph objects figure instance
42
+ """
43
+
44
+ def __init__(
45
+ self,
46
+ access_token: str = None,
47
+ style: str = "carto-darkmatter",
48
+ zoom_level: int = 13,
49
+ ) -> None:
50
+ """Constructor for `PlotlyGraph` Subclass.
51
+
52
+ Args:
53
+ access_token (str): MapBox API token
54
+ style (str): MapBox style
55
+ zoom_level (int): Zoom level for the plot
56
+ """
57
+
58
+ if access_token:
59
+ self.access_token = access_token
60
+ else:
61
+ self.access_token = os.getenv("MAPBOX_API_KEY")
62
+ self.style = style
63
+ self.zoom_level = zoom_level
64
+
65
+ self.data = []
66
+
67
+ def _get_map_centre(self, longitudes: List[float], latitudes: List[float]):
68
+ """Returns map center."""
69
+ return {
70
+ "lon": sum(longitudes) / len(longitudes),
71
+ "lat": sum(latitudes) / len(latitudes),
72
+ }
73
+
74
+ def add_network_data(
75
+ self,
76
+ network: nx.Graph,
77
+ latitude_property: str = "lat",
78
+ longitude_property: str = "long",
79
+ node_color: str = "blue",
80
+ line_color: str = "red",
81
+ ) -> None:
82
+ """Method to add network data to plot data.
83
+
84
+ Args:
85
+ network (nx.Graph): Networkx graph instance
86
+ latitude_property (str): Property name to be
87
+ used as latitude
88
+ longitude_property (str): Property name to be
89
+ used as longitude
90
+ node_color (str): Color name to be used to plot
91
+ nodes
92
+ line_color (str): Color name to be used to plot
93
+ line segments
94
+ """
95
+
96
+ # Add nodes
97
+ self.scatter_data = {"latitudes": [], "longitudes": []}
98
+
99
+ for node in network.nodes.data():
100
+
101
+ # Storing the lat lons in scatter data
102
+ # container
103
+ self.scatter_data["latitudes"].append(node[1][latitude_property])
104
+ self.scatter_data["longitudes"].append(node[1][longitude_property])
105
+
106
+ # Stroing the edge data in container
107
+ line_data = {"latitudes": [], "longitudes": []}
108
+ node_data = {node[0]: node[1] for node in network.nodes.data()}
109
+
110
+ for edge in network.edges():
111
+ line_data["latitudes"].extend(
112
+ [
113
+ node_data[edge[0]][latitude_property],
114
+ node_data[edge[1]][latitude_property],
115
+ None,
116
+ ]
117
+ )
118
+
119
+ line_data["longitudes"].extend(
120
+ [
121
+ node_data[edge[0]][longitude_property],
122
+ node_data[edge[1]][longitude_property],
123
+ None,
124
+ ]
125
+ )
126
+
127
+ # Adding plots to plotly graph object
128
+ self.data.append(
129
+ go.Scattermapbox(
130
+ mode="markers",
131
+ lon=self.scatter_data["longitudes"],
132
+ lat=self.scatter_data["latitudes"],
133
+ marker={"size": 5, "color": node_color},
134
+ )
135
+ )
136
+
137
+ self.data.append(
138
+ go.Scattermapbox(
139
+ mode="markers+lines",
140
+ lon=line_data["longitudes"],
141
+ lat=line_data["latitudes"],
142
+ marker={"size": 0},
143
+ line={"color": line_color},
144
+ )
145
+ )
146
+
147
+ def add_scatter_points(
148
+ self,
149
+ latitudes: List[float],
150
+ longitudes: List[float],
151
+ color: str = "yellow",
152
+ size: int = 5,
153
+ ) -> None:
154
+ """Method for scatter points to plot data.
155
+
156
+ Args:
157
+ latitudes (List[float]): List of latitude points
158
+ longitudes (List[float]): List of longitude points
159
+ color (str): Color to be used for scatter points
160
+ size (int): Size of scatter points
161
+ """
162
+
163
+ self.data.append(
164
+ go.Scattermapbox(
165
+ mode="markers",
166
+ lon=longitudes,
167
+ lat=latitudes,
168
+ marker={"size": size, "color": color},
169
+ )
170
+ )
171
+
172
+ def add_polygon(
173
+ self,
174
+ latitudes: List[float],
175
+ longitudes: List[float],
176
+ fill: str = "toself",
177
+ ) -> None:
178
+ """Method for adding polygon to the plot.
179
+
180
+ Args:
181
+ latitudes (List[float]): List of latitude points
182
+ longitudes (List[float]): List of longitude points
183
+ fill (str): Accepted fill value by plotly
184
+ """
185
+ self.data.append(
186
+ go.Scattermapbox(
187
+ lon=longitudes, lat=latitudes, fill=fill, mode="lines"
188
+ )
189
+ )
190
+
191
+ def prepare_plot(self, show: bool = True):
192
+ """Method to prepare and show the plot.
193
+
194
+ Args:
195
+ show (bool): True if want to see the plot.
196
+ """
197
+ self.fig = go.Figure(data=self.data)
198
+ self.fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
199
+ self.fig.update_mapboxes(
200
+ {
201
+ "accesstoken": self.access_token,
202
+ "style": self.style,
203
+ "center": self._get_map_centre(
204
+ self.scatter_data["longitudes"],
205
+ self.scatter_data["latitudes"],
206
+ ),
207
+ "zoom": self.zoom_level,
208
+ }
209
+ )
210
+
211
+ if show:
212
+ self.fig.show()
213
+
214
+ def html_export(self, html_file_path: str):
215
+ """Method for exporting plot as HTML file."""
216
+ path_validation(html_file_path)
217
+ self.fig.write_html(html_file_path)
218
+
@@ -1,61 +1,65 @@
1
- Metadata-Version: 2.1
2
- Name: NREL-erad
3
- Version: 0.0.0a0
4
- Summary: Graph based scalable tool for computing equitable resilience metrics for distribution systems.
5
- Home-page: https://github.com/nrel/erad
6
- Author: Kapil Duwadi, Aadil Latif, Kwami Sedzro, Sherin Ann Abraham, Bryan Palmintier
7
- Author-email: kapil.duwadi@nrel.gov, aadil.altif@nrel.gov, sherinann.abraham@nrel.gov, kwami.sedzro@nrel.gov, bryan.palmintier@nrel.gov
8
- Keywords: Resilience,Equity,Python,Power Distribution Systems,Earthquake,Flooding,Fire
9
- Classifier: License :: OSI Approved :: BSD License
10
- Classifier: Programming Language :: Python :: 3.8
11
- Classifier: Operating System :: OS Independent
12
- Requires-Python: >=3.8
13
- Description-Content-Type: text/markdown
14
- License-File: LICENSE.txt
15
- Requires-Dist: pytest
16
- Requires-Dist: networkx
17
- Requires-Dist: pyyaml
18
- Requires-Dist: geojson
19
- Requires-Dist: neo4j-driver
20
- Requires-Dist: python-dotenv
21
- Requires-Dist: ditto.py
22
- Requires-Dist: boto3
23
- Requires-Dist: botocore
24
- Requires-Dist: OpenDSSDirect.py
25
- Requires-Dist: pandas
26
- Requires-Dist: matplotlib
27
- Requires-Dist: plotly
28
- Requires-Dist: shapely
29
- Requires-Dist: jupyter
30
- Requires-Dist: geopandas
31
- Requires-Dist: stateplane
32
- Requires-Dist: graphdatascience
33
- Requires-Dist: scipy
34
- Requires-Dist: geopy
35
- Requires-Dist: rasterio
36
- Requires-Dist: xmltodict
37
- Requires-Dist: pydantic
38
- Requires-Dist: requests
39
- Provides-Extra: dev
40
- Requires-Dist: mkdocs ; extra == 'dev'
41
- Requires-Dist: mkdocstrings[python] ; extra == 'dev'
42
- Requires-Dist: mkdocs-material ; extra == 'dev'
43
- Requires-Dist: mkdocs-jupyter ; extra == 'dev'
44
- Requires-Dist: pylint ; extra == 'dev'
45
- Requires-Dist: black ; extra == 'dev'
46
-
47
- # ERAD (Equitable Resilience Analysis For Power Distribution System)
48
- <p align="center">
49
- <img src="logo.svg" width="250" style="display:flex;justify-content:center;">
50
- <p align="center">Graph based python tool for computing equitable resilience. </p>
51
- </p>
52
-
53
-
54
-
55
- [Visit full documentation here.](https://nrel.github.io/erad/)
56
-
57
- Understanding the impact of disaster events on people's ability to access critical service is key to designing appropriate programs to minimize the overall impact. Flooded roads, downed power lines, flooded power substation etc. could impact access to critical servies like electricity, food, health and more. The field of disaster modeling is still evolving and so is our understanding of how these events would impact our critical infrastrctures such power grid, hospitals, groceries, banks etc.
58
-
59
- ERAD is a free, open-source Python toolkit for computing equity and resilience measures in the face of hazards like earthquakes and flooding. It uses graph database to store data and perform computation at the household level for a variety of critical services that are connected by power distribution network. It uses asset fragility curves, which are functions that relate hazard severity to survival probability for power system assets including cables, transformers, substations, roof-mounted solar panels, etc. recommended in top literature. Programs like undergrounding, microgrid, and electricity backup units for critical infrastructures may all be evaluated using metrics and compared across different neighborhoods to assess their effects on equity and resilience.
60
-
61
- ERAD is designed to be used by researchers, students, community stakeholders, distribution utilities to understand and possibly evaluate effectiveness of different post disaster programs to improve resilience and equity. It was funded by National Renewable Energy Laboratory (NREL) and made publicy available with open license.
1
+ Metadata-Version: 2.3
2
+ Name: NREL-erad
3
+ Version: 1.0.0
4
+ Summary: Graph based scalable tool for computing equitable resilience metrics for distribution systems.
5
+ Project-URL: Homepage, https://github.com/nrel/erad
6
+ Author-email: Kapil Duwadi <kapil.duwadi@nrel.gov>, Aadil Latif <aadil.altif@nrel.gov>, Kwami Sedzro <sherinann.abraham@nrel.gov>, Sherin Ann Abraham <kwami.sedzro@nrel.gov>, Bryan Palmintier <bryan.palmintier@nrel.gov>
7
+ License-File: LICENSE.txt
8
+ Keywords: Distribution,Earthquake,Equity,Fire,Flooding,Power,Python,Resilience,Systems
9
+ Classifier: License :: OSI Approved :: BSD License
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Programming Language :: Python :: 3.8
12
+ Requires-Python: >=3.8
13
+ Requires-Dist: boto3
14
+ Requires-Dist: botocore
15
+ Requires-Dist: ditto-py
16
+ Requires-Dist: geojson
17
+ Requires-Dist: geopandas
18
+ Requires-Dist: geopy
19
+ Requires-Dist: graphdatascience
20
+ Requires-Dist: jupyter
21
+ Requires-Dist: matplotlib
22
+ Requires-Dist: neo4j-driver
23
+ Requires-Dist: networkx
24
+ Requires-Dist: opendssdirect-py
25
+ Requires-Dist: pandas
26
+ Requires-Dist: plotly
27
+ Requires-Dist: pydantic~=1.10.14
28
+ Requires-Dist: pytest
29
+ Requires-Dist: python-dotenv
30
+ Requires-Dist: pyyaml
31
+ Requires-Dist: rasterio
32
+ Requires-Dist: requests
33
+ Requires-Dist: scipy
34
+ Requires-Dist: shapely
35
+ Requires-Dist: stateplane
36
+ Requires-Dist: xmltodict
37
+ Provides-Extra: dev
38
+ Requires-Dist: black; extra == 'dev'
39
+ Requires-Dist: mkdocs; extra == 'dev'
40
+ Requires-Dist: mkdocs-jupyter; extra == 'dev'
41
+ Requires-Dist: mkdocs-material; extra == 'dev'
42
+ Requires-Dist: mkdocstrings[python]; extra == 'dev'
43
+ Requires-Dist: pylint; extra == 'dev'
44
+ Description-Content-Type: text/markdown
45
+
46
+ # ERAD (<u>E</u>quity and <u>R</u>esilience <u>A</u>nalysis for electric <u>D</u>istribution systems)
47
+ <p align="center">
48
+ <img src="docs/images/logo.svg" width="250" style="display:flex;justify-content:center;">
49
+ <p align="center">Graph based python tool for computing equitable resilience. </p>
50
+ </p>
51
+
52
+ ![GitHub all releases](https://img.shields.io/github/downloads/NREL/erad/total?logo=Github&logoColor=%2300ff00&style=flat-square)
53
+ ![GitHub repo size](https://img.shields.io/github/repo-size/nrel/erad?style=flat-square)
54
+ [![CodeFactor](https://www.codefactor.io/repository/github/nrel/erad/badge)](https://www.codefactor.io/repository/github/nrel/erad)
55
+ [![GitHub license](https://img.shields.io/github/license/NREL/erad?style=flat-square)](https://github.com/NREL/erad/blob/main/LICENSE.txt)
56
+ [![GitHub issues](https://img.shields.io/github/issues/NREL/erad?style=flat-square)](https://github.com/NREL/erad/issues)
57
+ ![GitHub top language](https://img.shields.io/github/languages/top/nrel/erad?style=flat-square)
58
+
59
+ [Visit full documentation here.](https://nrel.github.io/erad/)
60
+
61
+ Understanding the impact of disaster events on people's ability to access critical service is key to designing appropriate programs to minimize the overall impact. Flooded roads, downed power lines, flooded power substation etc. could impact access to critical services like electricity, food, health and more. The field of disaster modeling is still evolving and so is our understanding of how these events would impact our critical infrastructures such power grid, hospitals, groceries, banks etc.
62
+
63
+ ERAD is a free, open-source Python toolkit for computing equity and resilience measures in the face of hazards like earthquakes and flooding. It uses graph database to store data and perform computation at the household level for a variety of critical services that are connected by power distribution network. It uses asset fragility curves, which are functions that relate hazard severity to survival probability for power system assets including cables, transformers, substations, roof-mounted solar panels, etc. recommended in top literature. Programs like undergrounding, microgrid, and electricity backup units for critical infrastructures may all be evaluated using metrics and compared across different neighborhoods to assess their effects on equity and resilience.
64
+
65
+ ERAD is designed to be used by researchers, students, community stakeholders, distribution utilities to understand and possibly evaluate effectiveness of different post disaster programs to improve resilience and equity. It was funded by National Renewable Energy Laboratory (NREL) and made publicly available with open license.
@@ -0,0 +1,42 @@
1
+ erad/__init__.py,sha256=Aj77VL1d5Mdku7sgCgKQmPuYavPpAHuZuJcy6bygQZE,21
2
+ erad/constants.py,sha256=HZKN6wM_zXqZje8SsUIj_msokFhPcWsoRNeHY8yI_WA,699
3
+ erad/exceptions.py,sha256=DNpMurLC-KJwAWQCbH6LmZURUV9W0zmdEsFFLk05Y7Q,2141
4
+ erad/cypher_queries/load_data_v1.cypher,sha256=t52glQxFjvdGzpGhMvCgXYyEiEf9C26gfCKvs3fCoZE,7920
5
+ erad/data/World_Earthquakes_1960_2016.csv,sha256=Z5nNXwqqe0VNatZFRSkXtbS73zJWI_MbreIyEfJCoGE,2362711
6
+ erad/db/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ erad/db/credential_model.py,sha256=9baQ3fHpsJgd205S-hf4dULR9J38TVszBZWcNb9pP6Q,571
8
+ erad/db/disaster_input_model.py,sha256=4CVkgce-oTJbfg3p6VcFDa_L9ftNfakx5IrFeQra9Ws,614
9
+ erad/db/inject_earthquake.py,sha256=duZmNzT5R4pEtgSSKTQJvzMK_XiGvF9mro4uq7DDdBc,1648
10
+ erad/db/inject_flooding.py,sha256=OARZE4YVx-AYrG7mzRBRy1IJv4LZ4fhrJzP8u2iO2DU,1716
11
+ erad/db/neo4j_.py,sha256=cHNMYMIq0KwBeam2yWzMKTDw7R_G6hzQc0ZArk3k8ko,5061
12
+ erad/db/utils.py,sha256=-YcbExU7gG8M50ak_fLagzafnLAd92rZxAzHbTu3Yik,442
13
+ erad/db/assets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ erad/db/assets/critical_infras.py,sha256=2DiEKoyeplXeUrjFczrxzs-bfcSRW3Cf41YnVEMtEYo,5902
15
+ erad/db/assets/distribution_lines.py,sha256=v-jkmzwmzN9DXka-9BIhx5du0kKi525qfHGNqfYNmQQ,3446
16
+ erad/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
+ erad/metrics/check_microgrid.py,sha256=ct0AQsIAQmZ_-Z6_yJky4gE9P4U2uFNMUui8B7jgEEs,7480
18
+ erad/metrics/metric.py,sha256=haZwrtd9UYkpHXh3Cd80y0mb6H2fvk6uHBP_lHtuTFA,5969
19
+ erad/programs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ erad/programs/backup.py,sha256=I5KAxa4SZcouUfe_DQQoL89exKpTI5Rgd-BlvQKifQQ,1910
21
+ erad/programs/microgrid.py,sha256=W9WiQeQ64ncfrerUqC0Eu7tk9MmgIZffN7qL5qZs8EU,1626
22
+ erad/scenarios/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ erad/scenarios/abstract_scenario.py,sha256=ua035wPNWTYKKirOcdNEGGHrRnilUfn9daCijkDcgG4,4165
24
+ erad/scenarios/common.py,sha256=MwAJtZF8xya4qw_vMsnaD3WOTZV-1HsCKZqfTh8LAIw,2930
25
+ erad/scenarios/earthquake_scenario.py,sha256=sz_8O0py4prDjlqtiHssvAgDI6o6bl25qcnhVa_82RY,8556
26
+ erad/scenarios/fire_scenario.py,sha256=nfZGbr-pfOvfOgZCIzTr62wBXM7VAA4gjfcupmmH81M,7084
27
+ erad/scenarios/flood_scenario.py,sha256=RVMlVUruvtgG0pktO_M0FnqA4EkN8LlCV5e3y3Xcl4o,19843
28
+ erad/scenarios/flows.csv,sha256=BqF7KCjAsuO9qnIK8ioslDdm7FmmvwVDnxQyhLwVn24,42941
29
+ erad/scenarios/utilities.py,sha256=G0cqpFUfkfU15IyIw7dnJnPaWK__AleRvfyQFiN_ssc,2678
30
+ erad/scenarios/wind_scenario.py,sha256=2GXmLRmcNO6-Vm0knL1hd-MfV4QRJ9nRL87rid2B6O4,3855
31
+ erad/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
+ erad/utils/ditto_utils.py,sha256=akWWBunbWGdogYde1xaMTFPe753T3NyOG4GNtm0x8K4,7886
33
+ erad/utils/hifld_utils.py,sha256=hkIItgSzpqBjQAPHNHwjirGEDYX5dUXiPbiLMZWB3DI,4836
34
+ erad/utils/opendss_utils.py,sha256=i2yZjxHA4p8dkU0Rz8NPtzBPaIjbHUer74K-x0ohoJM,10555
35
+ erad/utils/overpass.py,sha256=sakprZEdzCmeFO-RiVdSG3YMaPsADGzSeZNxDa2wem8,2030
36
+ erad/utils/util.py,sha256=x0SzVu68W7JrSXzoCG3bq9_XJ1EIrWoOVB3UjLnAFTk,4975
37
+ erad/visualization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
+ erad/visualization/plot_graph.py,sha256=1wJm5LHxQgyxhax-jnOdaL4ssVtXV7q0m-Ga-_fphjI,6559
39
+ nrel_erad-1.0.0.dist-info/METADATA,sha256=AniNz2dTFaCTOHeMY6xDpHFQley6-3SKQz__oo0N5ug,4307
40
+ nrel_erad-1.0.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
41
+ nrel_erad-1.0.0.dist-info/licenses/LICENSE.txt,sha256=tE45GOKNRzfHwPByr46JpZw9R9dlukkKli5qFr0DbeM,1543
42
+ nrel_erad-1.0.0.dist-info/RECORD,,
@@ -1,5 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.38.4)
2
+ Generator: hatchling 1.25.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
-