Myosotis-Researches 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. myosotis_researches/CcGAN/train/__init__.py +4 -0
  2. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_ccgan.py +4 -4
  3. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_cgan.py +1 -3
  4. myosotis_researches/CcGAN/{train_128_output_10 → train}/train_cgan_concat.py +1 -3
  5. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.10.dist-info}/METADATA +1 -1
  6. myosotis_researches-0.1.10.dist-info/RECORD +40 -0
  7. myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py +0 -76
  8. myosotis_researches/CcGAN/train_128/__init__.py +0 -0
  9. myosotis_researches/CcGAN/train_128/eval_metrics.py +0 -205
  10. myosotis_researches/CcGAN/train_128/opts.py +0 -87
  11. myosotis_researches/CcGAN/train_128/pretrain_AE.py +0 -268
  12. myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py +0 -251
  13. myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py +0 -255
  14. myosotis_researches/CcGAN/train_128/train_ccgan.py +0 -303
  15. myosotis_researches/CcGAN/train_128/train_cgan.py +0 -254
  16. myosotis_researches/CcGAN/train_128/train_cgan_concat.py +0 -242
  17. myosotis_researches/CcGAN/train_128/utils.py +0 -120
  18. myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py +0 -76
  19. myosotis_researches/CcGAN/train_128_output_10/__init__.py +0 -0
  20. myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py +0 -205
  21. myosotis_researches/CcGAN/train_128_output_10/opts.py +0 -87
  22. myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py +0 -268
  23. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py +0 -251
  24. myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py +0 -255
  25. myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py +0 -181
  26. myosotis_researches/CcGAN/train_128_output_10/utils.py +0 -120
  27. myosotis_researches-0.1.8.dist-info/RECORD +0 -59
  28. /myosotis_researches/CcGAN/{train_128 → train}/train_net_for_label_embed.py +0 -0
  29. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.10.dist-info}/WHEEL +0 -0
  30. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.10.dist-info}/licenses/LICENSE +0 -0
  31. {myosotis_researches-0.1.8.dist-info → myosotis_researches-0.1.10.dist-info}/top_level.txt +0 -0
@@ -1,120 +0,0 @@
1
- """
2
- Some helpful functions
3
-
4
- """
5
- import numpy as np
6
- import torch
7
- import torch.nn as nn
8
- import torchvision
9
- import matplotlib.pyplot as plt
10
- import matplotlib as mpl
11
- from torch.nn import functional as F
12
- import sys
13
- import PIL
14
- from PIL import Image
15
-
16
-
17
-
18
- # ################################################################################
19
- # Progress Bar
20
- class SimpleProgressBar():
21
- def __init__(self, width=50):
22
- self.last_x = -1
23
- self.width = width
24
-
25
- def update(self, x):
26
- assert 0 <= x <= 100 # `x`: progress in percent ( between 0 and 100)
27
- if self.last_x == int(x): return
28
- self.last_x = int(x)
29
- pointer = int(self.width * (x / 100.0))
30
- sys.stdout.write( '\r%d%% [%s]' % (int(x), '#' * pointer + '.' * (self.width - pointer)))
31
- sys.stdout.flush()
32
- if x == 100:
33
- print('')
34
-
35
-
36
-
37
- ################################################################################
38
- # torch dataset from numpy array
39
- class IMGs_dataset(torch.utils.data.Dataset):
40
- def __init__(self, images, labels=None, normalize=False):
41
- super(IMGs_dataset, self).__init__()
42
-
43
- self.images = images
44
- self.n_images = len(self.images)
45
- self.labels = labels
46
- if labels is not None:
47
- if len(self.images) != len(self.labels):
48
- raise Exception('images (' + str(len(self.images)) +') and labels ('+str(len(self.labels))+') do not have the same length!!!')
49
- self.normalize = normalize
50
-
51
-
52
- def __getitem__(self, index):
53
-
54
- image = self.images[index]
55
-
56
- if self.normalize:
57
- image = image/255.0
58
- image = (image-0.5)/0.5
59
-
60
- if self.labels is not None:
61
- label = self.labels[index]
62
- return (image, label)
63
- else:
64
- return image
65
-
66
- def __len__(self):
67
- return self.n_images
68
-
69
-
70
- def PlotLoss(loss, filename):
71
- x_axis = np.arange(start = 1, stop = len(loss)+1)
72
- plt.switch_backend('agg')
73
- mpl.style.use('seaborn')
74
- fig = plt.figure()
75
- ax = plt.subplot(111)
76
- ax.plot(x_axis, np.array(loss))
77
- plt.xlabel("epoch")
78
- plt.ylabel("training loss")
79
- plt.legend()
80
- #ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), shadow=True, ncol=3)
81
- #plt.title('Training Loss')
82
- plt.savefig(filename)
83
-
84
-
85
- # compute entropy of class labels; labels is a numpy array
86
- def compute_entropy(labels, base=None):
87
- value,counts = np.unique(labels, return_counts=True)
88
- norm_counts = counts / counts.sum()
89
- base = np.e if base is None else base
90
- return -(norm_counts * np.log(norm_counts)/np.log(base)).sum()
91
-
92
- def predict_class_labels(net, images, batch_size=500, verbose=False, num_workers=0):
93
- net = net.cuda()
94
- net.eval()
95
-
96
- n = len(images)
97
- if batch_size>n:
98
- batch_size=n
99
- dataset_pred = IMGs_dataset(images, normalize=False)
100
- dataloader_pred = torch.utils.data.DataLoader(dataset_pred, batch_size=batch_size, shuffle=False, num_workers=num_workers)
101
-
102
- class_labels_pred = np.zeros(n+batch_size)
103
- with torch.no_grad():
104
- nimgs_got = 0
105
- if verbose:
106
- pb = SimpleProgressBar()
107
- for batch_idx, batch_images in enumerate(dataloader_pred):
108
- batch_images = batch_images.type(torch.float).cuda()
109
- batch_size_curr = len(batch_images)
110
-
111
- outputs,_ = net(batch_images)
112
- _, batch_class_labels_pred = torch.max(outputs.data, 1)
113
- class_labels_pred[nimgs_got:(nimgs_got+batch_size_curr)] = batch_class_labels_pred.detach().cpu().numpy().reshape(-1)
114
-
115
- nimgs_got += batch_size_curr
116
- if verbose:
117
- pb.update((float(nimgs_got)/n)*100)
118
- #end for batch_idx
119
- class_labels_pred = class_labels_pred[0:n]
120
- return class_labels_pred
@@ -1,59 +0,0 @@
1
- myosotis_researches/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- myosotis_researches/CcGAN/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- myosotis_researches/CcGAN/internal/__init__.py,sha256=b-63yANNRQXgLF9k9yGdrm7mlULqGic1HTQTzg9wIME,209
4
- myosotis_researches/CcGAN/internal/install_datasets.py,sha256=jJwLOZrDnHMrJSUhXxSIFobdeWK5N6eitPmjeBW9FyA,1144
5
- myosotis_researches/CcGAN/internal/show_datasets.py,sha256=BWtQ6vdiEUOTrOs8aMBv6utuUN0IiaLKcK5iXq9y2qI,363
6
- myosotis_researches/CcGAN/internal/uninstall_datasets.py,sha256=7pxPZcSe9RHncF0I_4rf8ZdI7eQwv-sFVfxzSVZfYHQ,297
7
- myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py,sha256=uYDngtHoB7frPg2Vs7YCFXeUh7Y7MjaAXbRWHXO_xvw,10629
8
- myosotis_researches/CcGAN/models_128/ResNet_class_eval.py,sha256=wa5CPkYzrS0X6kZ6pGHM-GxcGNkSpBdTTqgy5dKVKkU,5131
9
- myosotis_researches/CcGAN/models_128/ResNet_embed.py,sha256=HKSY-5WWa9jGniOgRoR1WOTfWhR1Dcj6cq2sgznZEbE,6344
10
- myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py,sha256=VJYJiiwrjf9DvfZrlwOMJJAPu3PlwgFgIddDaRlGsac,6190
11
- myosotis_researches/CcGAN/models_128/__init__.py,sha256=PJQP7ozE9vY23k01he5qvEuGndPZKqxiWWxvgbLDhqg,449
12
- myosotis_researches/CcGAN/models_128/autoencoder.py,sha256=ugOwBNoSNP4-WiATVkhC4-igRjj6yEY91qU0egpX744,3827
13
- myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py,sha256=JDr0Ss5osf9m-u34bVN_PvMsvMXkmi2jwPOAnls6EOA,11240
14
- myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py,sha256=GHAmrNjORXKu-8UqAdP-A5WG-_3BdQUmWsrWD1NX5-w,9634
15
- myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py,sha256=ju1dBYhqxl722_eeUGc2mKwf1AV_qsv1PlBL3tyOu48,10861
16
- myosotis_researches/CcGAN/models_256/ResNet_class_eval.py,sha256=tS5YxIpiFS9tDCNe2IDv1hTZNn40_JBD_nn97MfQJNI,5178
17
- myosotis_researches/CcGAN/models_256/ResNet_embed.py,sha256=9OcMQ-8nuWEbEbWc9tGaWQtfV1hdnkl0PrTphoGX77c,6295
18
- myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py,sha256=tHAbRNM9XodyfPsu00ac5KMjcgRH8qdx8AtCN9QGXKc,6269
19
- myosotis_researches/CcGAN/models_256/__init__.py,sha256=PJQP7ozE9vY23k01he5qvEuGndPZKqxiWWxvgbLDhqg,449
20
- myosotis_researches/CcGAN/models_256/autoencoder.py,sha256=Nv3eSWJVrWaOufoVGe04sZ_KiXFLtu3Y0asZcAdyyj0,4382
21
- myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py,sha256=wTHVkUcAp07n3lgweKFo6cqd91E_rEqgJrBDbBe6qrg,11510
22
- myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py,sha256=ZmGEpprDDlFR3dG32LT3NH5yiA1WR8Hg26rcbz42aCQ,9807
23
- myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py,sha256=HxMZdMpE4KvwY3AsNgci8VNEFV3cNALg3obTyELlCaY,3025
24
- myosotis_researches/CcGAN/train_128/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
- myosotis_researches/CcGAN/train_128/eval_metrics.py,sha256=nqDh0xhumSmpMSk2HElCR6LiUtydaFLRy6rGdt39sSg,7169
26
- myosotis_researches/CcGAN/train_128/opts.py,sha256=oIScD7A6GdcWI_ptB-k3Df5WWoWglf8bp32v3pNlerY,5374
27
- myosotis_researches/CcGAN/train_128/pretrain_AE.py,sha256=VAbe5kSfvTl2k0aV6eV3XnMMV28KrIzB2EglahXEXiU,10746
28
- myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py,sha256=tnGH5rKeJyWY29esBXlFJx9Qr30uB6W5cMw1Wge-Leg,9247
29
- myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py,sha256=RSmHQ5Z3Jbq2TKU2D2p-HJriXxKDw4YG-B8gstwefcI,8953
30
- myosotis_researches/CcGAN/train_128/train_ccgan.py,sha256=5kXAE7XSMm7Ock_oytE_gQTlaeNvy9tOXPe2MyPLch8,13424
31
- myosotis_researches/CcGAN/train_128/train_cgan.py,sha256=bYJbBskTpESfCG2uj52RW9zLh3Zod4e8Uop7rim3dmE,9698
32
- myosotis_researches/CcGAN/train_128/train_cgan_concat.py,sha256=PYctY3IZiHGh4TshXx3mUZBf9su_8NuV_D8InkxKQZ4,8940
33
- myosotis_researches/CcGAN/train_128/train_net_for_label_embed.py,sha256=4j6r4_o4rXgAN4MdUQL-TXqZJpbhH7d9gWQR8YzBlXw,6976
34
- myosotis_researches/CcGAN/train_128/utils.py,sha256=B-V6ct4WDisVVCOLO0W7VIBL8StPVNJJTZZ2b2NkMFU,3766
35
- myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py,sha256=HxMZdMpE4KvwY3AsNgci8VNEFV3cNALg3obTyELlCaY,3025
36
- myosotis_researches/CcGAN/train_128_output_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py,sha256=nqDh0xhumSmpMSk2HElCR6LiUtydaFLRy6rGdt39sSg,7169
38
- myosotis_researches/CcGAN/train_128_output_10/opts.py,sha256=oIScD7A6GdcWI_ptB-k3Df5WWoWglf8bp32v3pNlerY,5374
39
- myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py,sha256=VAbe5kSfvTl2k0aV6eV3XnMMV28KrIzB2EglahXEXiU,10746
40
- myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py,sha256=tnGH5rKeJyWY29esBXlFJx9Qr30uB6W5cMw1Wge-Leg,9247
41
- myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py,sha256=RSmHQ5Z3Jbq2TKU2D2p-HJriXxKDw4YG-B8gstwefcI,8953
42
- myosotis_researches/CcGAN/train_128_output_10/train_ccgan.py,sha256=rS69zzfMgQElSr42vF6nK0sH9vfYS7lLCJzSbAm_rGI,13317
43
- myosotis_researches/CcGAN/train_128_output_10/train_cgan.py,sha256=bYJbBskTpESfCG2uj52RW9zLh3Zod4e8Uop7rim3dmE,9698
44
- myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py,sha256=PYctY3IZiHGh4TshXx3mUZBf9su_8NuV_D8InkxKQZ4,8940
45
- myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py,sha256=4j6r4_o4rXgAN4MdUQL-TXqZJpbhH7d9gWQR8YzBlXw,6976
46
- myosotis_researches/CcGAN/train_128_output_10/utils.py,sha256=B-V6ct4WDisVVCOLO0W7VIBL8StPVNJJTZZ2b2NkMFU,3766
47
- myosotis_researches/CcGAN/utils/IMGs_dataset.py,sha256=i45PBNSCeAEB5uUG0SluYRTuHWZwH_5ldz2wm6afkYs,927
48
- myosotis_researches/CcGAN/utils/SimpleProgressBar.py,sha256=S4eD_m6ysHRMHAmRtkTXVRNfXTR8kuHv-d3lUN0BVn4,546
49
- myosotis_researches/CcGAN/utils/__init__.py,sha256=em3aB0C-V230NQtT64hyuHGo4CjV6p2DwIdtNM0dk4k,516
50
- myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
51
- myosotis_researches/CcGAN/utils/make_h5.py,sha256=VtFYjr_i-JktsEW_BvofpilcDmChRmyLykv0VvlMuY0,963
52
- myosotis_researches/CcGAN/utils/opts.py,sha256=pd7-wknNPBO5hWRpO3YAPmmAsPKgZUUpKc4gWMs6Wto,5397
53
- myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
54
- myosotis_researches/CcGAN/utils/train.py,sha256=5ZXgkGesuInqUooJRpLej_KHqYQtlSDq90_5wig5elQ,5152
55
- myosotis_researches-0.1.8.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
56
- myosotis_researches-0.1.8.dist-info/METADATA,sha256=BWkcdFq2IMeEH_rmMoeEWxwA4H79nPc1DypDZ0DW_cM,2663
57
- myosotis_researches-0.1.8.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
58
- myosotis_researches-0.1.8.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
59
- myosotis_researches-0.1.8.dist-info/RECORD,,