Myosotis-Researches 0.1.6__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- myosotis_researches/CcGAN/utils/__init__.py +2 -0
- myosotis_researches/CcGAN/utils/opts.py +89 -0
- {myosotis_researches-0.1.6.dist-info → myosotis_researches-0.1.7.dist-info}/METADATA +1 -1
- {myosotis_researches-0.1.6.dist-info → myosotis_researches-0.1.7.dist-info}/RECORD +7 -6
- {myosotis_researches-0.1.6.dist-info → myosotis_researches-0.1.7.dist-info}/WHEEL +0 -0
- {myosotis_researches-0.1.6.dist-info → myosotis_researches-0.1.7.dist-info}/licenses/LICENSE +0 -0
- {myosotis_researches-0.1.6.dist-info → myosotis_researches-0.1.7.dist-info}/top_level.txt +0 -0
@@ -4,6 +4,7 @@ from .make_h5 import make_h5
|
|
4
4
|
from .SimpleProgressBar import SimpleProgressBar
|
5
5
|
from .IMGs_dataset import IMGs_dataset
|
6
6
|
from .train import PlotLoss, compute_entropy, predict_class_labels
|
7
|
+
from .opts import parse_opts
|
7
8
|
|
8
9
|
__all__ = [
|
9
10
|
"print_hdf5",
|
@@ -14,4 +15,5 @@ __all__ = [
|
|
14
15
|
"PlotLoss",
|
15
16
|
"compute_entropy",
|
16
17
|
"predict_class_labels",
|
18
|
+
"parse_opts"
|
17
19
|
]
|
@@ -0,0 +1,89 @@
|
|
1
|
+
import argparse
|
2
|
+
|
3
|
+
def parse_opts():
|
4
|
+
parser = argparse.ArgumentParser()
|
5
|
+
|
6
|
+
''' Overall Settings '''
|
7
|
+
parser.add_argument('--data_path', type=str, default='')
|
8
|
+
parser.add_argument('--output_dir', type=str, default='')
|
9
|
+
parser.add_argument('--eval_ckpt_path', type=str, default='')
|
10
|
+
parser.add_argument('--seed', type=int, default=2021, metavar='S', help='random seed (default: 2020)')
|
11
|
+
parser.add_argument('--num_workers', type=int, default=0)
|
12
|
+
|
13
|
+
|
14
|
+
''' Dataset '''
|
15
|
+
## Data split: Ra is split into a train set (the last decimal of the degree is odd) and a test set (the last decimal of the degree is even); the unique labels in two sets do not overlap.
|
16
|
+
parser.add_argument('--data_split', type=str, default='train',
|
17
|
+
choices=['all', 'train'])
|
18
|
+
parser.add_argument('--min_label', type=float, default=0.0)
|
19
|
+
parser.add_argument('--max_label', type=float, default=90.0)
|
20
|
+
parser.add_argument('--num_channels', type=int, default=3, metavar='N')
|
21
|
+
parser.add_argument('--img_size', type=int, default=128, metavar='N')
|
22
|
+
parser.add_argument('--max_num_img_per_label', type=int, default=50, metavar='N')
|
23
|
+
parser.add_argument('--max_num_img_per_label_after_replica', type=int, default=0, metavar='N')
|
24
|
+
parser.add_argument('--show_real_imgs', action='store_true', default=False)
|
25
|
+
parser.add_argument('--visualize_fake_images', action='store_true', default=False)
|
26
|
+
|
27
|
+
|
28
|
+
''' GAN settings '''
|
29
|
+
parser.add_argument('--GAN', type=str, default='CcGAN', choices=['cGAN', 'cGAN-concat', 'CcGAN'])
|
30
|
+
parser.add_argument('--GAN_arch', type=str, default='SAGAN', choices=['SAGAN'])
|
31
|
+
|
32
|
+
# label embedding setting
|
33
|
+
parser.add_argument('--net_embed', type=str, default='ResNet34_embed') #ResNetXX_emebed
|
34
|
+
parser.add_argument('--epoch_cnn_embed', type=int, default=200) #epoch of cnn training for label embedding
|
35
|
+
parser.add_argument('--resumeepoch_cnn_embed', type=int, default=0) #epoch of cnn training for label embedding
|
36
|
+
parser.add_argument('--epoch_net_y2h', type=int, default=500)
|
37
|
+
parser.add_argument('--dim_embed', type=int, default=128) #dimension of the embedding space
|
38
|
+
parser.add_argument('--batch_size_embed', type=int, default=256, metavar='N')
|
39
|
+
|
40
|
+
parser.add_argument('--loss_type_gan', type=str, default='hinge')
|
41
|
+
parser.add_argument('--niters_gan', type=int, default=10000, help='number of iterations')
|
42
|
+
parser.add_argument('--resume_niters_gan', type=int, default=0)
|
43
|
+
parser.add_argument('--save_niters_freq', type=int, default=2000, help='frequency of saving checkpoints')
|
44
|
+
parser.add_argument('--lr_g_gan', type=float, default=1e-4, help='learning rate for generator')
|
45
|
+
parser.add_argument('--lr_d_gan', type=float, default=1e-4, help='learning rate for discriminator')
|
46
|
+
parser.add_argument('--dim_gan', type=int, default=128, help='Latent dimension of GAN')
|
47
|
+
parser.add_argument('--batch_size_disc', type=int, default=64)
|
48
|
+
parser.add_argument('--batch_size_gene', type=int, default=64)
|
49
|
+
parser.add_argument('--num_D_steps', type=int, default=4, help='number of Ds updates in one iteration')
|
50
|
+
parser.add_argument('--cGAN_num_classes', type=int, default=20, metavar='N') #bin label into cGAN_num_classes
|
51
|
+
parser.add_argument('--visualize_freq', type=int, default=2000, help='frequency of visualization')
|
52
|
+
|
53
|
+
parser.add_argument('--kernel_sigma', type=float, default=-1.0,
|
54
|
+
help='If kernel_sigma<0, then use rule-of-thumb formula to compute the sigma.')
|
55
|
+
parser.add_argument('--threshold_type', type=str, default='hard', choices=['soft', 'hard'])
|
56
|
+
parser.add_argument('--kappa', type=float, default=-1)
|
57
|
+
parser.add_argument('--nonzero_soft_weight_threshold', type=float, default=1e-3,
|
58
|
+
help='threshold for determining nonzero weights for SVDL; we neglect images with too small weights')
|
59
|
+
|
60
|
+
# DiffAugment setting
|
61
|
+
parser.add_argument('--gan_DiffAugment', action='store_true', default=False)
|
62
|
+
parser.add_argument('--gan_DiffAugment_policy', type=str, default='color,translation,cutout')
|
63
|
+
|
64
|
+
|
65
|
+
# evaluation setting
|
66
|
+
'''
|
67
|
+
Four evaluation modes:
|
68
|
+
Mode 1: eval on unique labels used for GAN training;
|
69
|
+
Mode 2. eval on all unique labels in the dataset and when computing FID use all real images in the dataset;
|
70
|
+
Mode 3. eval on all unique labels in the dataset and when computing FID only use real images for GAN training in the dataset (to test SFID's effectiveness on unseen labels);
|
71
|
+
Mode 4. eval on a interval [min_label, max_label] with num_eval_labels labels.
|
72
|
+
'''
|
73
|
+
parser.add_argument('--eval_mode', type=int, default=2)
|
74
|
+
parser.add_argument('--num_eval_labels', type=int, default=-1)
|
75
|
+
parser.add_argument('--samp_batch_size', type=int, default=200)
|
76
|
+
parser.add_argument('--nfake_per_label', type=int, default=200)
|
77
|
+
parser.add_argument('--nreal_per_label', type=int, default=-1)
|
78
|
+
parser.add_argument('--comp_FID', action='store_true', default=False)
|
79
|
+
parser.add_argument('--epoch_FID_CNN', type=int, default=200)
|
80
|
+
parser.add_argument('--FID_radius', type=float, default=0)
|
81
|
+
parser.add_argument('--FID_num_centers', type=int, default=-1)
|
82
|
+
parser.add_argument('--dump_fake_for_NIQE', action='store_true', default=False,
|
83
|
+
help='Dump fake images for computing NIQE')
|
84
|
+
|
85
|
+
args = parser.parse_args()
|
86
|
+
|
87
|
+
return args
|
88
|
+
|
89
|
+
__all__ = ["parse_opts"]
|
@@ -46,13 +46,14 @@ myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py,sha25
|
|
46
46
|
myosotis_researches/CcGAN/train_128_output_10/utils.py,sha256=B-V6ct4WDisVVCOLO0W7VIBL8StPVNJJTZZ2b2NkMFU,3766
|
47
47
|
myosotis_researches/CcGAN/utils/IMGs_dataset.py,sha256=i45PBNSCeAEB5uUG0SluYRTuHWZwH_5ldz2wm6afkYs,927
|
48
48
|
myosotis_researches/CcGAN/utils/SimpleProgressBar.py,sha256=S4eD_m6ysHRMHAmRtkTXVRNfXTR8kuHv-d3lUN0BVn4,546
|
49
|
-
myosotis_researches/CcGAN/utils/__init__.py,sha256=
|
49
|
+
myosotis_researches/CcGAN/utils/__init__.py,sha256=6eJdO4qgHefW606C_ATXg8xhjixeTQHkOdNxBOKACwQ,484
|
50
50
|
myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
|
51
51
|
myosotis_researches/CcGAN/utils/make_h5.py,sha256=VtFYjr_i-JktsEW_BvofpilcDmChRmyLykv0VvlMuY0,963
|
52
|
+
myosotis_researches/CcGAN/utils/opts.py,sha256=pd7-wknNPBO5hWRpO3YAPmmAsPKgZUUpKc4gWMs6Wto,5397
|
52
53
|
myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
|
53
54
|
myosotis_researches/CcGAN/utils/train.py,sha256=NhUee86SkFT7Cq5RG8Fhy0f6WbZNJ5jmomDlhq9FY5I,2140
|
54
|
-
myosotis_researches-0.1.
|
55
|
-
myosotis_researches-0.1.
|
56
|
-
myosotis_researches-0.1.
|
57
|
-
myosotis_researches-0.1.
|
58
|
-
myosotis_researches-0.1.
|
55
|
+
myosotis_researches-0.1.7.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
56
|
+
myosotis_researches-0.1.7.dist-info/METADATA,sha256=Gde6bmI1QC4CsNsEWxgMZ1Eip-dETkF20Z4y1BZTqTw,2663
|
57
|
+
myosotis_researches-0.1.7.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
|
58
|
+
myosotis_researches-0.1.7.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
|
59
|
+
myosotis_researches-0.1.7.dist-info/RECORD,,
|
File without changes
|
{myosotis_researches-0.1.6.dist-info → myosotis_researches-0.1.7.dist-info}/licenses/LICENSE
RENAMED
File without changes
|
File without changes
|