Myosotis-Researches 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,12 +4,4 @@ from .cGAN_concat_SAGAN import cGAN_concat_SAGAN_Generator, cGAN_concat_SAGAN_Di
4
4
  from .CcGAN_SAGAN import CcGAN_SAGAN_Generator, CcGAN_SAGAN_Discriminator
5
5
  from .ResNet_embed import ResNet18_embed, ResNet34_embed, ResNet50_embed, model_y2h
6
6
  from .ResNet_regre_eval import ResNet34_regre_eval
7
- from .ResNet_class_eval import ResNet34_class_eval
8
-
9
- __all__ = [
10
- "cGAN_SAGAN_Generator", "cGAN_SAGAN_Discriminator",
11
- "cGAN_concat_SAGAN_Generator", "cGAN_concat_SAGAN_Discriminator",
12
- "CcGAN_SAGAN_Generator", "CcGAN_SAGAN_Discriminator",
13
- "ResNet18_embed", "ResNet34_embed", "ResNet50_embed", "model_y2h",
14
- "ResNet34_regre_eval", "ResNet34_class_eval"
15
- ]
7
+ from .ResNet_class_eval import ResNet34_class_eval
@@ -4,12 +4,4 @@ from .cGAN_concat_SAGAN import cGAN_concat_SAGAN_Generator, cGAN_concat_SAGAN_Di
4
4
  from .CcGAN_SAGAN import CcGAN_SAGAN_Generator, CcGAN_SAGAN_Discriminator
5
5
  from .ResNet_embed import ResNet18_embed, ResNet34_embed, ResNet50_embed, model_y2h
6
6
  from .ResNet_regre_eval import ResNet34_regre_eval
7
- from .ResNet_class_eval import ResNet34_class_eval
8
-
9
- __all__ = [
10
- "cGAN_SAGAN_Generator", "cGAN_SAGAN_Discriminator",
11
- "cGAN_concat_SAGAN_Generator", "cGAN_concat_SAGAN_Discriminator",
12
- "CcGAN_SAGAN_Generator", "CcGAN_SAGAN_Discriminator",
13
- "ResNet18_embed", "ResNet34_embed", "ResNet50_embed", "model_y2h",
14
- "ResNet34_regre_eval", "ResNet34_class_eval"
15
- ]
7
+ from .ResNet_class_eval import ResNet34_class_eval
@@ -4,6 +4,7 @@ from .make_h5 import make_h5
4
4
  from .SimpleProgressBar import SimpleProgressBar
5
5
  from .IMGs_dataset import IMGs_dataset
6
6
  from .train import PlotLoss, compute_entropy, predict_class_labels
7
+ from .opts import parse_opts
7
8
 
8
9
  __all__ = [
9
10
  "print_hdf5",
@@ -14,4 +15,5 @@ __all__ = [
14
15
  "PlotLoss",
15
16
  "compute_entropy",
16
17
  "predict_class_labels",
18
+ "parse_opts"
17
19
  ]
@@ -0,0 +1,89 @@
1
+ import argparse
2
+
3
+ def parse_opts():
4
+ parser = argparse.ArgumentParser()
5
+
6
+ ''' Overall Settings '''
7
+ parser.add_argument('--data_path', type=str, default='')
8
+ parser.add_argument('--output_dir', type=str, default='')
9
+ parser.add_argument('--eval_ckpt_path', type=str, default='')
10
+ parser.add_argument('--seed', type=int, default=2021, metavar='S', help='random seed (default: 2020)')
11
+ parser.add_argument('--num_workers', type=int, default=0)
12
+
13
+
14
+ ''' Dataset '''
15
+ ## Data split: Ra is split into a train set (the last decimal of the degree is odd) and a test set (the last decimal of the degree is even); the unique labels in two sets do not overlap.
16
+ parser.add_argument('--data_split', type=str, default='train',
17
+ choices=['all', 'train'])
18
+ parser.add_argument('--min_label', type=float, default=0.0)
19
+ parser.add_argument('--max_label', type=float, default=90.0)
20
+ parser.add_argument('--num_channels', type=int, default=3, metavar='N')
21
+ parser.add_argument('--img_size', type=int, default=128, metavar='N')
22
+ parser.add_argument('--max_num_img_per_label', type=int, default=50, metavar='N')
23
+ parser.add_argument('--max_num_img_per_label_after_replica', type=int, default=0, metavar='N')
24
+ parser.add_argument('--show_real_imgs', action='store_true', default=False)
25
+ parser.add_argument('--visualize_fake_images', action='store_true', default=False)
26
+
27
+
28
+ ''' GAN settings '''
29
+ parser.add_argument('--GAN', type=str, default='CcGAN', choices=['cGAN', 'cGAN-concat', 'CcGAN'])
30
+ parser.add_argument('--GAN_arch', type=str, default='SAGAN', choices=['SAGAN'])
31
+
32
+ # label embedding setting
33
+ parser.add_argument('--net_embed', type=str, default='ResNet34_embed') #ResNetXX_emebed
34
+ parser.add_argument('--epoch_cnn_embed', type=int, default=200) #epoch of cnn training for label embedding
35
+ parser.add_argument('--resumeepoch_cnn_embed', type=int, default=0) #epoch of cnn training for label embedding
36
+ parser.add_argument('--epoch_net_y2h', type=int, default=500)
37
+ parser.add_argument('--dim_embed', type=int, default=128) #dimension of the embedding space
38
+ parser.add_argument('--batch_size_embed', type=int, default=256, metavar='N')
39
+
40
+ parser.add_argument('--loss_type_gan', type=str, default='hinge')
41
+ parser.add_argument('--niters_gan', type=int, default=10000, help='number of iterations')
42
+ parser.add_argument('--resume_niters_gan', type=int, default=0)
43
+ parser.add_argument('--save_niters_freq', type=int, default=2000, help='frequency of saving checkpoints')
44
+ parser.add_argument('--lr_g_gan', type=float, default=1e-4, help='learning rate for generator')
45
+ parser.add_argument('--lr_d_gan', type=float, default=1e-4, help='learning rate for discriminator')
46
+ parser.add_argument('--dim_gan', type=int, default=128, help='Latent dimension of GAN')
47
+ parser.add_argument('--batch_size_disc', type=int, default=64)
48
+ parser.add_argument('--batch_size_gene', type=int, default=64)
49
+ parser.add_argument('--num_D_steps', type=int, default=4, help='number of Ds updates in one iteration')
50
+ parser.add_argument('--cGAN_num_classes', type=int, default=20, metavar='N') #bin label into cGAN_num_classes
51
+ parser.add_argument('--visualize_freq', type=int, default=2000, help='frequency of visualization')
52
+
53
+ parser.add_argument('--kernel_sigma', type=float, default=-1.0,
54
+ help='If kernel_sigma<0, then use rule-of-thumb formula to compute the sigma.')
55
+ parser.add_argument('--threshold_type', type=str, default='hard', choices=['soft', 'hard'])
56
+ parser.add_argument('--kappa', type=float, default=-1)
57
+ parser.add_argument('--nonzero_soft_weight_threshold', type=float, default=1e-3,
58
+ help='threshold for determining nonzero weights for SVDL; we neglect images with too small weights')
59
+
60
+ # DiffAugment setting
61
+ parser.add_argument('--gan_DiffAugment', action='store_true', default=False)
62
+ parser.add_argument('--gan_DiffAugment_policy', type=str, default='color,translation,cutout')
63
+
64
+
65
+ # evaluation setting
66
+ '''
67
+ Four evaluation modes:
68
+ Mode 1: eval on unique labels used for GAN training;
69
+ Mode 2. eval on all unique labels in the dataset and when computing FID use all real images in the dataset;
70
+ Mode 3. eval on all unique labels in the dataset and when computing FID only use real images for GAN training in the dataset (to test SFID's effectiveness on unseen labels);
71
+ Mode 4. eval on a interval [min_label, max_label] with num_eval_labels labels.
72
+ '''
73
+ parser.add_argument('--eval_mode', type=int, default=2)
74
+ parser.add_argument('--num_eval_labels', type=int, default=-1)
75
+ parser.add_argument('--samp_batch_size', type=int, default=200)
76
+ parser.add_argument('--nfake_per_label', type=int, default=200)
77
+ parser.add_argument('--nreal_per_label', type=int, default=-1)
78
+ parser.add_argument('--comp_FID', action='store_true', default=False)
79
+ parser.add_argument('--epoch_FID_CNN', type=int, default=200)
80
+ parser.add_argument('--FID_radius', type=float, default=0)
81
+ parser.add_argument('--FID_num_centers', type=int, default=-1)
82
+ parser.add_argument('--dump_fake_for_NIQE', action='store_true', default=False,
83
+ help='Dump fake images for computing NIQE')
84
+
85
+ args = parser.parse_args()
86
+
87
+ return args
88
+
89
+ __all__ = ["parse_opts"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.5
3
+ Version: 0.1.7
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -8,7 +8,7 @@ myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py,sha256=uYDngtHoB7frPg2Vs7YCF
8
8
  myosotis_researches/CcGAN/models_128/ResNet_class_eval.py,sha256=wa5CPkYzrS0X6kZ6pGHM-GxcGNkSpBdTTqgy5dKVKkU,5131
9
9
  myosotis_researches/CcGAN/models_128/ResNet_embed.py,sha256=HKSY-5WWa9jGniOgRoR1WOTfWhR1Dcj6cq2sgznZEbE,6344
10
10
  myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py,sha256=VJYJiiwrjf9DvfZrlwOMJJAPu3PlwgFgIddDaRlGsac,6190
11
- myosotis_researches/CcGAN/models_128/__init__.py,sha256=2knKAbmau6oUkzBPQgyOhhsOzFchnMcXlLP3VS3L07A,768
11
+ myosotis_researches/CcGAN/models_128/__init__.py,sha256=PJQP7ozE9vY23k01he5qvEuGndPZKqxiWWxvgbLDhqg,449
12
12
  myosotis_researches/CcGAN/models_128/autoencoder.py,sha256=ugOwBNoSNP4-WiATVkhC4-igRjj6yEY91qU0egpX744,3827
13
13
  myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py,sha256=JDr0Ss5osf9m-u34bVN_PvMsvMXkmi2jwPOAnls6EOA,11240
14
14
  myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py,sha256=GHAmrNjORXKu-8UqAdP-A5WG-_3BdQUmWsrWD1NX5-w,9634
@@ -16,7 +16,7 @@ myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py,sha256=ju1dBYhqxl722_eeUGc2m
16
16
  myosotis_researches/CcGAN/models_256/ResNet_class_eval.py,sha256=tS5YxIpiFS9tDCNe2IDv1hTZNn40_JBD_nn97MfQJNI,5178
17
17
  myosotis_researches/CcGAN/models_256/ResNet_embed.py,sha256=9OcMQ-8nuWEbEbWc9tGaWQtfV1hdnkl0PrTphoGX77c,6295
18
18
  myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py,sha256=tHAbRNM9XodyfPsu00ac5KMjcgRH8qdx8AtCN9QGXKc,6269
19
- myosotis_researches/CcGAN/models_256/__init__.py,sha256=2knKAbmau6oUkzBPQgyOhhsOzFchnMcXlLP3VS3L07A,768
19
+ myosotis_researches/CcGAN/models_256/__init__.py,sha256=PJQP7ozE9vY23k01he5qvEuGndPZKqxiWWxvgbLDhqg,449
20
20
  myosotis_researches/CcGAN/models_256/autoencoder.py,sha256=Nv3eSWJVrWaOufoVGe04sZ_KiXFLtu3Y0asZcAdyyj0,4382
21
21
  myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py,sha256=wTHVkUcAp07n3lgweKFo6cqd91E_rEqgJrBDbBe6qrg,11510
22
22
  myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py,sha256=ZmGEpprDDlFR3dG32LT3NH5yiA1WR8Hg26rcbz42aCQ,9807
@@ -46,13 +46,14 @@ myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py,sha25
46
46
  myosotis_researches/CcGAN/train_128_output_10/utils.py,sha256=B-V6ct4WDisVVCOLO0W7VIBL8StPVNJJTZZ2b2NkMFU,3766
47
47
  myosotis_researches/CcGAN/utils/IMGs_dataset.py,sha256=i45PBNSCeAEB5uUG0SluYRTuHWZwH_5ldz2wm6afkYs,927
48
48
  myosotis_researches/CcGAN/utils/SimpleProgressBar.py,sha256=S4eD_m6ysHRMHAmRtkTXVRNfXTR8kuHv-d3lUN0BVn4,546
49
- myosotis_researches/CcGAN/utils/__init__.py,sha256=shSmo-zunolt8zSZ-Cjgv__N2kyflBfrR8UfxvKJqGg,438
49
+ myosotis_researches/CcGAN/utils/__init__.py,sha256=6eJdO4qgHefW606C_ATXg8xhjixeTQHkOdNxBOKACwQ,484
50
50
  myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
51
51
  myosotis_researches/CcGAN/utils/make_h5.py,sha256=VtFYjr_i-JktsEW_BvofpilcDmChRmyLykv0VvlMuY0,963
52
+ myosotis_researches/CcGAN/utils/opts.py,sha256=pd7-wknNPBO5hWRpO3YAPmmAsPKgZUUpKc4gWMs6Wto,5397
52
53
  myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
53
54
  myosotis_researches/CcGAN/utils/train.py,sha256=NhUee86SkFT7Cq5RG8Fhy0f6WbZNJ5jmomDlhq9FY5I,2140
54
- myosotis_researches-0.1.5.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
55
- myosotis_researches-0.1.5.dist-info/METADATA,sha256=G8_S3LwrCNALwaZEvMoCWFIIwJRRz1mOoJcmEkN9JUc,2663
56
- myosotis_researches-0.1.5.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
57
- myosotis_researches-0.1.5.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
58
- myosotis_researches-0.1.5.dist-info/RECORD,,
55
+ myosotis_researches-0.1.7.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
56
+ myosotis_researches-0.1.7.dist-info/METADATA,sha256=Gde6bmI1QC4CsNsEWxgMZ1Eip-dETkF20Z4y1BZTqTw,2663
57
+ myosotis_researches-0.1.7.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
58
+ myosotis_researches-0.1.7.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
59
+ myosotis_researches-0.1.7.dist-info/RECORD,,