Myosotis-Researches 0.1.40__py3-none-any.whl → 0.1.41__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -92,12 +92,14 @@ def cross_correlation(images):
92
92
  def _rgb_histogram(image, bins=32):
93
93
  """
94
94
  image: numpy array of shape (H, W, 3), RGB format
95
- returns: concatenated histogram for R, G, B channels
95
+ returns: concatenated and normalized histogram for R, G, B channels
96
96
  """
97
- hist_r, _ = np.histogram(image[:, :, 0], bins=bins, range=(0, 255))
98
- hist_g, _ = np.histogram(image[:, :, 1], bins=bins, range=(0, 255))
99
- hist_b, _ = np.histogram(image[:, :, 2], bins=bins, range=(0, 255))
100
- hist = np.concatenate([hist_r, hist_g, hist_b])
97
+ image = np.asarray(image)
98
+ hist_r, _ = np.histogram(image[:, :, 0], bins=bins, range=(0, 256))
99
+ hist_g, _ = np.histogram(image[:, :, 1], bins=bins, range=(0, 256))
100
+ hist_b, _ = np.histogram(image[:, :, 2], bins=bins, range=(0, 256))
101
+ hist = np.concatenate([hist_r, hist_g, hist_b]).astype(np.float64)
102
+ hist /= np.sum(hist) # Normalize to make it a probability distribution
101
103
  return hist
102
104
 
103
105
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.40
3
+ Version: 0.1.41
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -29,13 +29,13 @@ myosotis_researches/CcGAN/train/train_net_for_label_embed.py,sha256=4j6r4_o4rXgA
29
29
  myosotis_researches/CcGAN/utils/__init__.py,sha256=yH4I2QzSoBsjcdjvOH0YKLTeEji_oWrzBGm5EkVZpoI,146
30
30
  myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
31
31
  myosotis_researches/CcGAN/utils/dataset.py,sha256=TXJSLMpwI1h0xb6lXpq5iUjjurheKPZnPbR2KIU-Py4,4216
32
- myosotis_researches/CcGAN/utils/similarity.py,sha256=q9Z1G7nxDViAGQWRVy3hAncPOVTdC2aEKq3UByQcJAE,3496
32
+ myosotis_researches/CcGAN/utils/similarity.py,sha256=5u2SaldIpwd3S7OEreyEPeJqLLK9z3hXiTDCdjZiSpU,3636
33
33
  myosotis_researches/CcGAN/utils/src/style.css,sha256=bNp3_nlpg0W5qA7Rx8MM5ayeprEbYH3_6AIDRTN8UhM,566
34
34
  myosotis_researches/CcGAN/utils/src/style.css.map,sha256=GTGPet_xXnKQnsz-E2CMUWtrgu3D5t0g4J_A_amFdvw,246
35
35
  myosotis_researches/CcGAN/utils/src/style.scss,sha256=_Wa7VPmFzCkEHtrzdG35tj89QNwPd-fpiT-YL4ohcMs,526
36
36
  myosotis_researches/CcGAN/utils/src/template.html,sha256=S35ak_uJ0Zd3_PhX-YoCRBP2TMKxdFPMMaBdpARdKcU,3890
37
- myosotis_researches-0.1.40.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
38
- myosotis_researches-0.1.40.dist-info/METADATA,sha256=e6btj8xrHJ7RFkvM8Ar148cCj7etp0_EmAXG79yA4qk,3484
39
- myosotis_researches-0.1.40.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
40
- myosotis_researches-0.1.40.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
41
- myosotis_researches-0.1.40.dist-info/RECORD,,
37
+ myosotis_researches-0.1.41.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
38
+ myosotis_researches-0.1.41.dist-info/METADATA,sha256=3YOe9BHjDZKlVSX2VIKxSp8g0zFTY1IEI_ESAXo349c,3484
39
+ myosotis_researches-0.1.41.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
40
+ myosotis_researches-0.1.41.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
41
+ myosotis_researches-0.1.41.dist-info/RECORD,,