Myosotis-Researches 0.1.34__py3-none-any.whl → 0.1.35__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -59,9 +59,30 @@ def PSNR(images):
59
59
  PSNR_sum += _PSNR(images[i], images[j])
60
60
  return PSNR_sum / (n * (n - 1) / 2)
61
61
 
62
+ # Cross-correlation
63
+
64
+ def _cross_correlation(image_1, image_2):
65
+ array_1 = np.array(image_1)
66
+ array_2 = np.array(image_2)
67
+ channels_1 = cv2.split(array_1)
68
+ channels_2 = cv2.split(array_2)
69
+ scores = []
70
+ for c1, c2 in zip(channels_1, channels_2):
71
+ result = cv2.matchTemplate(c1, c2, method=cv2.TM_CCOEFF_NORMED)
72
+ _, max_val, _, _ = cv2.minMaxLoc(result)
73
+ scores.append(max_val)
74
+ return sum(scores) / len(scores)
75
+
76
+ def cross_correlation(images):
77
+ cross_correlation_sum = 0
78
+ n = len(images)
79
+ for i in range(n):
80
+ for j in range(i + 1, n):
81
+ cross_correlation_sum += _cross_correlation(images[i], images[j])
82
+ return cross_correlation_sum / (n * (n - 1) / 2)
62
83
 
63
84
  # Similarity
64
- _method_dict = {"MSE": MSE, "SSIM": SSIM, "PSNR": PSNR}
85
+ _method_dict = {"MSE": MSE, "SSIM": SSIM, "PSNR": PSNR, "cross-correlation": cross_correlation}
65
86
 
66
87
 
67
88
  def similarity(images, method):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.34
3
+ Version: 0.1.35
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -29,13 +29,13 @@ myosotis_researches/CcGAN/train/train_net_for_label_embed.py,sha256=4j6r4_o4rXgA
29
29
  myosotis_researches/CcGAN/utils/__init__.py,sha256=yH4I2QzSoBsjcdjvOH0YKLTeEji_oWrzBGm5EkVZpoI,146
30
30
  myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
31
31
  myosotis_researches/CcGAN/utils/dataset.py,sha256=TXJSLMpwI1h0xb6lXpq5iUjjurheKPZnPbR2KIU-Py4,4216
32
- myosotis_researches/CcGAN/utils/similarity.py,sha256=iZkafWjlBp6d1lp0ukwJVWn0gbtYMFc9lGmqAHmp84o,1472
32
+ myosotis_researches/CcGAN/utils/similarity.py,sha256=N_ziWpwkaAxkfiMiCoWjhsH9PwXBHeKIYS-1egPhmD4,2233
33
33
  myosotis_researches/CcGAN/utils/src/style.css,sha256=bNp3_nlpg0W5qA7Rx8MM5ayeprEbYH3_6AIDRTN8UhM,566
34
34
  myosotis_researches/CcGAN/utils/src/style.css.map,sha256=GTGPet_xXnKQnsz-E2CMUWtrgu3D5t0g4J_A_amFdvw,246
35
35
  myosotis_researches/CcGAN/utils/src/style.scss,sha256=_Wa7VPmFzCkEHtrzdG35tj89QNwPd-fpiT-YL4ohcMs,526
36
36
  myosotis_researches/CcGAN/utils/src/template.html,sha256=S35ak_uJ0Zd3_PhX-YoCRBP2TMKxdFPMMaBdpARdKcU,3890
37
- myosotis_researches-0.1.34.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
38
- myosotis_researches-0.1.34.dist-info/METADATA,sha256=wyTa_RGFwYHdC8v5cCkOd6qbUtWf8qzy10mWcejKeow,3484
39
- myosotis_researches-0.1.34.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
40
- myosotis_researches-0.1.34.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
41
- myosotis_researches-0.1.34.dist-info/RECORD,,
37
+ myosotis_researches-0.1.35.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
38
+ myosotis_researches-0.1.35.dist-info/METADATA,sha256=H_vkKcQPKbAGIFtTJWwEbmS1BU6ovRpPjSTgU1OsTHY,3484
39
+ myosotis_researches-0.1.35.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
40
+ myosotis_researches-0.1.35.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
41
+ myosotis_researches-0.1.35.dist-info/RECORD,,