Myosotis-Researches 0.1.31__py3-none-any.whl → 0.1.33__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,2 +1,3 @@
1
1
  from .concat_image import concat_image
2
2
  from .dataset import view_dataset, visualize_dataset, download_datasets
3
+ from .similarity import similarity
@@ -0,0 +1,52 @@
1
+ import cv2
2
+ import numpy as np
3
+ from PIL import Image
4
+ from skimage.metrics import structural_similarity as ssim
5
+
6
+
7
+ # MSE
8
+ def _MSE(image_1, image_2):
9
+ array_1 = np.array(image_1) / 255
10
+ array_2 = np.array(image_2) / 255
11
+ n, m, _ = array_1.shape
12
+ return np.sum((array_1 - array_2) ** 2) / (n * m * 3)
13
+
14
+
15
+ def MSE(images):
16
+ MSE_sum = 0
17
+ n = len(images)
18
+ for i in range(n):
19
+ for j in range(i + 1, n):
20
+ MSE_sum += _MSE(images[i], images[j])
21
+ return MSE_sum / (n * (n - 1) / 2)
22
+
23
+
24
+ # SSIM
25
+
26
+
27
+ def _SSIM(image_1, image_2):
28
+
29
+ array_1 = np.array(image_1)
30
+ array_2 = np.array(image_2)
31
+ score, _ = ssim(array_1, array_2, channel_axis=-1, full=True)
32
+ return score
33
+
34
+
35
+ def SSIM(images):
36
+ SSIM_sum = 0
37
+ n = len(images)
38
+ for i in range(n):
39
+ for j in range(i + 1, n):
40
+ SSIM_sum += _SSIM(images[i], images[j])
41
+ return SSIM_sum / (n * (n - 1) / 2)
42
+
43
+
44
+ # Similarity
45
+ _method_dict = {"MSE": MSE, "SSIM": SSIM}
46
+
47
+
48
+ def similarity(images, method):
49
+ return _method_dict[method](images)
50
+
51
+
52
+ __all__ = ["similarity"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.31
3
+ Version: 0.1.33
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -26,15 +26,16 @@ myosotis_researches/CcGAN/train/train_ccgan.py,sha256=oCslxSPzycUT5W7DWfcS0lBr-L
26
26
  myosotis_researches/CcGAN/train/train_cgan.py,sha256=6lfeWMXzIGScs2s1zI06HqAAl80HJVhvcnyblH7_DvM,9617
27
27
  myosotis_researches/CcGAN/train/train_cgan_concat.py,sha256=xSL6Femdvt1hFncgPlHEApeELjOlZNl8APqHFA-tyHQ,8859
28
28
  myosotis_researches/CcGAN/train/train_net_for_label_embed.py,sha256=4j6r4_o4rXgAN4MdUQL-TXqZJpbhH7d9gWQR8YzBlXw,6976
29
- myosotis_researches/CcGAN/utils/__init__.py,sha256=ggtg8y4tNLiPQyGHvANu2uEicqA891LSGJ-xDHM8DFA,111
29
+ myosotis_researches/CcGAN/utils/__init__.py,sha256=yH4I2QzSoBsjcdjvOH0YKLTeEji_oWrzBGm5EkVZpoI,146
30
30
  myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
31
31
  myosotis_researches/CcGAN/utils/dataset.py,sha256=TXJSLMpwI1h0xb6lXpq5iUjjurheKPZnPbR2KIU-Py4,4216
32
+ myosotis_researches/CcGAN/utils/similarity.py,sha256=piSlF7bNw2Yt8AO-KAd0vLxmAt0X_1KSmfY-rSbP_9k,1061
32
33
  myosotis_researches/CcGAN/utils/src/style.css,sha256=bNp3_nlpg0W5qA7Rx8MM5ayeprEbYH3_6AIDRTN8UhM,566
33
34
  myosotis_researches/CcGAN/utils/src/style.css.map,sha256=GTGPet_xXnKQnsz-E2CMUWtrgu3D5t0g4J_A_amFdvw,246
34
35
  myosotis_researches/CcGAN/utils/src/style.scss,sha256=_Wa7VPmFzCkEHtrzdG35tj89QNwPd-fpiT-YL4ohcMs,526
35
36
  myosotis_researches/CcGAN/utils/src/template.html,sha256=S35ak_uJ0Zd3_PhX-YoCRBP2TMKxdFPMMaBdpARdKcU,3890
36
- myosotis_researches-0.1.31.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
37
- myosotis_researches-0.1.31.dist-info/METADATA,sha256=hYoRiDpIGWUFH2ce7lZSqptQjxX2OwyJJVMjvrzIZI0,3484
38
- myosotis_researches-0.1.31.dist-info/WHEEL,sha256=ooBFpIzZCPdw3uqIQsOo4qqbA4ZRPxHnOH7peeONza0,91
39
- myosotis_researches-0.1.31.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
40
- myosotis_researches-0.1.31.dist-info/RECORD,,
37
+ myosotis_researches-0.1.33.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
38
+ myosotis_researches-0.1.33.dist-info/METADATA,sha256=zwWCoiP9p8m7aoFn0DDbU-wiHUeTcjzqRb59Sa0A1EQ,3484
39
+ myosotis_researches-0.1.33.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
40
+ myosotis_researches-0.1.33.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
41
+ myosotis_researches-0.1.33.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.0.1)
2
+ Generator: setuptools (80.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5