Myosotis-Researches 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -62,9 +62,9 @@ def _concat_image_vertical(img_list: list[Image], gap=2) -> Image:
62
62
  def concat_image(img_list: list[Image], gap=2, direction="vertical"):
63
63
 
64
64
  if direction == "vertical":
65
- _concat_image_vertical(img_list, gap=gap)
65
+ return _concat_image_vertical(img_list, gap=gap)
66
66
  elif direction == "horizontal":
67
- _concat_image_horizontal(img_list, gap=gap)
67
+ return _concat_image_horizontal(img_list, gap=gap)
68
68
  else:
69
69
  raise ValueError("Direction should be 'vertical' or 'horizontal'.")
70
70
 
@@ -1,43 +1,34 @@
1
1
  import h5py
2
- import numpy as np
2
+ from importlib import resources
3
3
  import os
4
- from PIL import Image
5
- from .print_hdf5 import print_hdf5
6
-
7
- # Make all images to a HDF5 file
8
- def make_h5(image_dir, h5_path, image_names = [], indx_train = None, indx_valid = None, image_labels = None, image_types = None):
9
-
10
- N = len(image_names)
11
-
12
- # Process none
13
- if indx_train is None:
14
- indx_train = np.array(range(1, N, 2), dtype=np.int32)
15
- if indx_valid is None:
16
- indx_valid = np.array(range(0, N, 2), dtype=np.int32)
17
- if image_labels is None:
18
- image_labels = np.zeros(N)
19
- if image_types is None:
20
- image_types = np.zeros(N)
21
-
22
- # Get image data
23
- image_datas = []
24
- for i in range(N):
25
- image_name = image_names[i]
26
- image_path = os.path.join(image_dir, image_name)
27
- image = Image.open(image_path).convert("RGB")
28
- rgb_array = np.array(image).transpose((2, 0, 1))
29
- image_datas.append(rgb_array)
30
- image_datas = np.array(image_datas, dtype=np.uint8)
31
-
32
- # Create a new HDF5 file
33
- with h5py.File(h5_path, "w") as f:
34
- f.create_dataset("images", data=image_datas)
35
- f.create_dataset("indx_train", data=indx_train)
36
- f.create_dataset("indx_valid", data=indx_valid)
37
- f.create_dataset("labels", data=image_labels)
38
- f.create_dataset("types", data=image_types)
39
-
40
- # Visualize
41
- f.visititems(print_hdf5)
42
-
43
- __all__ = ["make_h5"]
4
+
5
+ datasets_dir = resources.files("myosotis_researches").joinpath("CcGAN", "datasets")
6
+
7
+
8
+ def make_h5(
9
+ old_datasets_name,
10
+ size,
11
+ new_datasets_path,
12
+ image_indexes,
13
+ train_indexes,
14
+ val_indexes,
15
+ ):
16
+
17
+ old_datasets_path = os.path.join(
18
+ datasets_dir, old_datasets_name, f"{old_datasets_name}_{size}x{size}.h5"
19
+ )
20
+
21
+ with h5py.File(old_datasets_path, "r") as f:
22
+ image_datas = f["images"]
23
+ image_labels = f["labels"]
24
+ image_types = f["types"]
25
+
26
+ with h5py.File(new_datasets_path, "w") as f:
27
+ f.create_dataset("images", data=image_datas[image_indexes])
28
+ f.create_dataset("indx_train", data=train_indexes)
29
+ f.create_dataset("indx_valid", data=val_indexes)
30
+ f.create_dataset("labels", data=image_labels[image_indexes])
31
+ f.create_dataset("types", data=image_types[image_indexes])
32
+
33
+
34
+ __all__ = ["make_h5"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Myosotis-Researches
3
- Version: 0.1.0
3
+ Version: 0.1.2
4
4
  Summary: A repository for storing my progress of researches.
5
5
  Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
6
  Author: Zeyu Xie
@@ -59,10 +59,11 @@ Import with code
59
59
  from myosotis_researches.utils import *
60
60
  ```
61
61
 
62
- | Function | Description |
63
- | ----------------------------------------------------- | ----------------------------------------- |
64
- | `concat_image(img_list, gap=2, direction="vertical")` | Concat images vertically or horizontally. |
65
- | `print_hdf5(name, obj)` | Print a basic structure of an HDF5 file. |
62
+ | Function | Description |
63
+ | ------------------------------------------------------------ | ----------------------------------------- |
64
+ | `concat_image(img_list, gap=2, direction="vertical")` | Concat images vertically or horizontally. |
65
+ | `make_h5(old_datasets_name, size, new_datasets_path, image_indexes, train_indexes, val_indexes)` | Get piece of original HDF5 datasets. |
66
+ | `print_hdf5(name, obj)` | Print a basic structure of an HDF5 file. |
66
67
 
67
68
  **Note**:
68
69
 
@@ -45,11 +45,11 @@ myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py,sha256=PYctY3
45
45
  myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py,sha256=4j6r4_o4rXgAN4MdUQL-TXqZJpbhH7d9gWQR8YzBlXw,6976
46
46
  myosotis_researches/CcGAN/train_128_output_10/utils.py,sha256=B-V6ct4WDisVVCOLO0W7VIBL8StPVNJJTZZ2b2NkMFU,3766
47
47
  myosotis_researches/CcGAN/utils/__init__.py,sha256=azZ2ZSSmWREoptI_5oQ180HojMoCqv2oleveRswq40w,155
48
- myosotis_researches/CcGAN/utils/concat_image.py,sha256=zSVFkIgj18m9wKTNWxBmZIdqMgVKF2IB2m1C65l_qyo,2151
49
- myosotis_researches/CcGAN/utils/make_h5.py,sha256=Jzsr9q7lneHyvi5HX1m4WBNarUYU1jUsXJuHnyQlAGc,1392
48
+ myosotis_researches/CcGAN/utils/concat_image.py,sha256=BIGKz52Inn9S7M5fBFKye2V9bLJ0DqEQILoOVWAXUiE,2165
49
+ myosotis_researches/CcGAN/utils/make_h5.py,sha256=HS0wzFVMh_Hh2xxoOpc47SUfhU6S2wR0wtveDJUkpOg,940
50
50
  myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
51
- myosotis_researches-0.1.0.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
52
- myosotis_researches-0.1.0.dist-info/METADATA,sha256=B2lXNQkCL9ds_JlE0M2kbjMSQZlSNT7tFUxO4_zEcoU,2490
53
- myosotis_researches-0.1.0.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
54
- myosotis_researches-0.1.0.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
55
- myosotis_researches-0.1.0.dist-info/RECORD,,
51
+ myosotis_researches-0.1.2.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
52
+ myosotis_researches-0.1.2.dist-info/METADATA,sha256=uDjW4mHEPM12GtiuomEAPnk_GJbBD9Pwxwo3_lBZ4G8,2663
53
+ myosotis_researches-0.1.2.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
54
+ myosotis_researches-0.1.2.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
55
+ myosotis_researches-0.1.2.dist-info/RECORD,,