Myosotis-Researches 0.0.32__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,43 +1,34 @@
1
1
  import h5py
2
- import numpy as np
2
+ from importlib import resources
3
3
  import os
4
- from PIL import Image
5
- from .print_hdf5 import print_hdf5
6
-
7
- # Make all images to a HDF5 file
8
- def make_h5(image_dir, h5_path, image_names = [], indx_train = None, indx_valid = None, image_labels = None, image_types = None):
9
-
10
- N = len(image_names)
11
-
12
- # Process none
13
- if indx_train is None:
14
- indx_train = np.array(range(1, N, 2), dtype=np.int32)
15
- if indx_valid is None:
16
- indx_valid = np.array(range(0, N, 2), dtype=np.int32)
17
- if image_labels is None:
18
- image_labels = np.zeros(N)
19
- if image_types is None:
20
- image_types = np.zeros(N)
21
-
22
- # Get image data
23
- image_datas = []
24
- for i in range(N):
25
- image_name = image_names[i]
26
- image_path = os.path.join(image_dir, image_name)
27
- image = Image.open(image_path).convert("RGB")
28
- rgb_array = np.array(image).transpose((2, 0, 1))
29
- image_datas.append(rgb_array)
30
- image_datas = np.array(image_datas, dtype=np.uint8)
31
-
32
- # Create a new HDF5 file
33
- with h5py.File(h5_path, "w") as f:
34
- f.create_dataset("images", data=image_datas)
35
- f.create_dataset("indx_train", data=indx_train)
36
- f.create_dataset("indx_valid", data=indx_valid)
37
- f.create_dataset("labels", data=image_labels)
38
- f.create_dataset("types", data=image_types)
39
-
40
- # Visualize
41
- f.visititems(print_hdf5)
42
-
43
- __all__ = ["make_h5"]
4
+
5
+ datasets_dir = resources.files("myosotis_researches").joinpath("CcGAN", "datasets")
6
+
7
+
8
+ def make_h5(
9
+ old_datasets_name,
10
+ size,
11
+ new_datasets_path,
12
+ image_indexes,
13
+ train_indexes,
14
+ val_indexes,
15
+ ):
16
+
17
+ old_datasets_path = os.path.join(
18
+ datasets_dir, old_datasets_name, f"{old_datasets_name}_{size}x{size}.h5"
19
+ )
20
+
21
+ with h5py.File(old_datasets_path, "r") as f:
22
+ image_datas = f["images"]
23
+ image_labels = f["labels"]
24
+ image_types = f["types"]
25
+
26
+ with h5py.File(new_datasets_path, "w") as f:
27
+ f.create_dataset("images", data=image_datas[image_indexes])
28
+ f.create_dataset("indx_train", data=train_indexes)
29
+ f.create_dataset("indx_valid", data=val_indexes)
30
+ f.create_dataset("labels", data=image_labels[image_indexes])
31
+ f.create_dataset("types", data=image_types[image_indexes])
32
+
33
+
34
+ __all__ = ["make_h5"]
@@ -0,0 +1,77 @@
1
+ Metadata-Version: 2.4
2
+ Name: Myosotis-Researches
3
+ Version: 0.1.1
4
+ Summary: A repository for storing my progress of researches.
5
+ Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
+ Author: Zeyu Xie
7
+ Author-email: xie.zeyu20@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.6
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
14
+ Dynamic: author
15
+ Dynamic: author-email
16
+ Dynamic: classifier
17
+ Dynamic: description
18
+ Dynamic: description-content-type
19
+ Dynamic: home-page
20
+ Dynamic: license-file
21
+ Dynamic: requires-python
22
+ Dynamic: summary
23
+
24
+ # Myosotis-Researches
25
+
26
+ ## `CcGAN` (`myosotis_researches.CcGAN`)
27
+
28
+ ### `internal`
29
+
30
+ The `internal` module is used for setting the local package itself, like installing datasets and so on.
31
+
32
+ Import with code
33
+
34
+ ```python
35
+ from myosotis_researches.internal import *
36
+ ```
37
+
38
+ | Function | Desctiption |
39
+ | --------------------------------- | ------------------------------------------------------------ |
40
+ | `install_datasets(datasets_name)` | Install the datasets in `datasets_name` to the local python package. |
41
+ | `uninstall_datasets()` | Remove all the datasets installed to the local python package. |
42
+ | `show_datasets()` | Show all datasets installed. |
43
+
44
+ **Note**:
45
+
46
+ 1. The path of the installed datasets are
47
+
48
+ `resources.files("myosotis_researches").join("CcGAN", "<datasets_name>")`
49
+
50
+ To run this code, remember to add `from importlib import resources` at the beginning.
51
+
52
+ ### `utils`
53
+
54
+ The `utils` module contains some basic functions and classes which are frequently used during the CcGAN research.
55
+
56
+ Import with code
57
+
58
+ ```python
59
+ from myosotis_researches.utils import *
60
+ ```
61
+
62
+ | Function | Description |
63
+ | ------------------------------------------------------------ | ----------------------------------------- |
64
+ | `concat_image(img_list, gap=2, direction="vertical")` | Concat images vertically or horizontally. |
65
+ | `make_h5(old_datasets_name, size, new_datasets_path, image_indexes, train_indexes, val_indexes)` | Get piece of original HDF5 datasets. |
66
+ | `print_hdf5(name, obj)` | Print a basic structure of an HDF5 file. |
67
+
68
+ **Note**:
69
+
70
+ 1. Function `print_hdf5` should be used within a `with` block:
71
+
72
+ ```python
73
+ import h5py
74
+
75
+ with h5py.File(<HDF5_file_path>, "r") as f:
76
+ f.visititems(print_hdf5)
77
+ ```
@@ -46,10 +46,10 @@ myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py,sha25
46
46
  myosotis_researches/CcGAN/train_128_output_10/utils.py,sha256=B-V6ct4WDisVVCOLO0W7VIBL8StPVNJJTZZ2b2NkMFU,3766
47
47
  myosotis_researches/CcGAN/utils/__init__.py,sha256=azZ2ZSSmWREoptI_5oQ180HojMoCqv2oleveRswq40w,155
48
48
  myosotis_researches/CcGAN/utils/concat_image.py,sha256=zSVFkIgj18m9wKTNWxBmZIdqMgVKF2IB2m1C65l_qyo,2151
49
- myosotis_researches/CcGAN/utils/make_h5.py,sha256=Jzsr9q7lneHyvi5HX1m4WBNarUYU1jUsXJuHnyQlAGc,1392
49
+ myosotis_researches/CcGAN/utils/make_h5.py,sha256=HS0wzFVMh_Hh2xxoOpc47SUfhU6S2wR0wtveDJUkpOg,940
50
50
  myosotis_researches/CcGAN/utils/print_hdf5.py,sha256=VvmNAWtMDmg6D9V6ZbSUXrQTKRh9WIJeC4BR_ORJkco,300
51
- myosotis_researches-0.0.32.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
52
- myosotis_researches-0.0.32.dist-info/METADATA,sha256=no1tptSMdyKbj2_EdXmaoP1Ep2qoodtWj9n6D3JfQmo,844
53
- myosotis_researches-0.0.32.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
54
- myosotis_researches-0.0.32.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
55
- myosotis_researches-0.0.32.dist-info/RECORD,,
51
+ myosotis_researches-0.1.1.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
52
+ myosotis_researches-0.1.1.dist-info/METADATA,sha256=aewWyGfrabRZt7zLm06RfKdBT6hXl9HysE11rNd8Aeg,2663
53
+ myosotis_researches-0.1.1.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
54
+ myosotis_researches-0.1.1.dist-info/top_level.txt,sha256=zxAiMn5eyZNJM28MewTAkgi_RZJMbfWbzVR-KF0LdZE,20
55
+ myosotis_researches-0.1.1.dist-info/RECORD,,
@@ -1,37 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: Myosotis-Researches
3
- Version: 0.0.32
4
- Summary: A repository for storing my progress of researches.
5
- Home-page: https://github.com/Zeyu-Xie/Myosotis-Researches
6
- Author: Zeyu Xie
7
- Author-email: xie.zeyu20@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
10
- Classifier: Operating System :: OS Independent
11
- Requires-Python: >=3.6
12
- Description-Content-Type: text/markdown
13
- License-File: LICENSE
14
- Dynamic: author
15
- Dynamic: author-email
16
- Dynamic: classifier
17
- Dynamic: description
18
- Dynamic: description-content-type
19
- Dynamic: home-page
20
- Dynamic: license-file
21
- Dynamic: requires-python
22
- Dynamic: summary
23
-
24
- # Myosotis-Researches
25
-
26
- ## `CcGAN` (`myosotis_researches.CcGAN`)
27
-
28
- ### `internal`
29
-
30
- Import
31
-
32
- ```
33
- from myosotis_researches.internal import *
34
- ```
35
-
36
- ### `utils`
37
-